RFID: Technology and Applications

Sridhar lyer

IIT Bombay

sri@it.iitb.ac.in www.it.iitb.ac.in/~sri

Outline

- Overview of RFID
 - Reader-Tag; Potential applications
- RFID Technology Internals
 - RF communications; Reader/Tag protocols
 - Middleware architecture; EPC standards
- RFID Business Aspects
- Security and Privacy
- Conclusion

Product Marketing – 75 years ago

You can have any color, as long as its black !

4

Product Marketing - Today

Add consumer flexibility, courtesy of robotics, computers ...

Customer window into final stage of manufacturin g

Effect on manufacturing

- Need to ensure error-free, custom assembly
- Need inventory of components for the various customization options
- Critical Issues
 - Assembly process control
 - Inventory management
 - Supply chain integration
 - Customer insight
- One solution: RFID

What is **RFID**?

- RFID = Radio Frequency IDentification.
- An ADC (Automated Data Collection) technology that:
 - uses radio-frequency waves to transfer data between a reader and a movable item to identify, categorize, track..
 - Is fast and does not require physical sight or contact between reader/scanner and the tagged item.
 - Performs the operation using low cost components.
 - Attempts to provide unique identification and backend integration that allows for wide range of applications.
- Other ADC technologies: Bar codes, OCR.

RFID system components

RFID systems: logical view

RFID tags: Smart labels

... and a chip

attached to it

A paper label with RFID inside

an antenna, printed, etched or stamped ...

... on a substrate e.g. a plastic foil ...

RFID 2005

IIT Bombay

9 Source: www.rfidprivacy.org

Some RFID tags

IIT Bombay

10 Source: www.rfidprivacy.org

RFID tags

Tags can be attached to almost anything:

- Items, cases or pallets of products, high value goods
- vehicles, assets, livestock or personnel

Passive Tags

- Do not require power Draws from Interrogator Field
- Lower storage capacities (few bits to 1 KB)
- Shorter read ranges (4 inches to 15 feet)
- Usually Write-Once-Read-Many/Read-Only tags
- Cost around 25 cents to few dollars

Active Tags

- Battery powered
- Higher storage capacities (512 KB)
- Longer read range (300 feet)
- Typically can be re-written by RF Interrogators
- Cost around 50 to 250 dollars

IIT Bombay

Tag block diagram

RFID tag memory

Read-only tags

- Tag ID is assigned at the factory during manufacturing
 - Can never be changed
 - No additional data can be assigned to the tag
- Write once, read many (WORM) tags
 - Data written once, e.g., during packing or manufacturing
 - Tag is locked once data is written
 - Similar to a compact disc or DVD
- Read/Write
 - Tag data can be changed over time
 - Part or all of the data section can be locked

RFID readers

- Reader functions:
 - Remotely power tags
 - Establish a bidirectional data link
 - Inventory tags, filter results
 - Communicate with networked server(s)
 - Can read 100-300 tags per second

- Readers (interrogators) can be at a fixed point such as
 - Entrance/exit
 - Point of sale
- Readers can also be mobile/hand-held

Some RFID readers

F

IIT Bombay

15 Source: www.buyrfid.org

Reader anatomy

Shipping Portals **RFID 2005**

RFID applications

- Manufacturing and Processing
 - Inventory and production process monitoring
 - Warehouse order fulfillment
- Supply Chain Management
 - Inventory tracking systems
 - Logistics management
- Retail
 - Inventory control and customer insight
 - Auto checkout with reverse logistics
- Security
 - Access control
 - Counterfeiting and Theft control/prevention
- Location Tracking
 - Traffic movement control and parking management
- Wildlife/Livestock monitoring and tracking

Smart groceries

- Add an RFID tag to all items in the grocery.
- As the cart leaves the store, it passes through an RFID transceiver.
- The cart is rung up in seconds.

Smart cabinet

- 1. Tagged item is removed from or placed in "Smart Cabinet"
- 1. "Smart Cabinet" periodically interrogates to assess inventory
- 1. Server/Database is updated to reflect item's disposition
- 1. Designated individuals are notified regarding items that need attention (cabinet and shelf location, action required)

Smart fridge

- Recognizes what's been put in it
- Recognizes when things are removed
- Creates automatic shopping lists
- Notifies you when things are past their expiration
- Shows you the recipes that most closely match what is available

Smart groceries enhanced

 Track products through their entire lifetime.

Some more smart applications

- "Smart" appliances:
 - Closets that advice on style depending on clothes available.
 - Ovens that know recipes to cook pre-packaged food.
- "Smart" products:
 - Clothing, appliances, CDs, etc. tagged for store returns.
- "Smart" paper:
 - Airline tickets that indicate your location in the airport.
- "Smart" currency:
 - Anti-counterfeiting and tracking.
- "Smart" people ??

RFID advantages over bar-codes

- No line of sight required for reading
- Multiple items can be read with a single scan
- Each tag can carry a lot of data (read/write)
- Individual items identified and not just the category
- Passive tags have a virtually unlimited lifetime
- Active tags can be read from great distances
- Can be combined with barcode technology

Outline

- Overview of RFID
 - Reader-Tag; Potential applications
- RFID Technology Internals
 - RF communications; Reader/Tag protocols
 - Middleware architecture; EPC standards
- RFID Business AspectsSecurity and Privacy
- Conclusion

RFID communications

RFID communication

- Host manages Reader(s) and issues Commands
- Reader and tag communicate via RF signal
- Carrier signal generated by the reader
- Carrier signal sent out through the antennas
- Carrier signal hits tag(s)
- Tag receives and modifies carrier signal
 - "sends back" modulated signal (Passive Backscatter also referred to as "field disturbance device")
- Antennas receive the modulated signal and send them to the Reader
- Reader decodes the data
- Results returned to the host application

Antenna fields: Inductive coupling

Antenna fields: Propagation coupling

Operational frequencies

Frequency Ranges	LF 125 KHz	HF 13.56 MHz	UHF 868 - 915 MHz	Microwave 2.45 GHz & 5.8 GHz
Typical Max Read Range (Passive Tags)	Shortest 1"-12"	Short 2"-24"	Medium 1'-10'	Longest 1'-15'
Tag Power Source	Generally passive tags only, using inductive coupling	Generally passive tags only, using inductive or capacitive coupling	Active tags with integral battery or passive tags using capacitive storage, E-field coupling	Active tags with integral battery or passive tags using capacitive storage, E-field coupling
Data Rate	Slower	Moderate	Fast	Faster
Ability to read near metal or wet surfaces	Better	Moderate	Poor	Worse
Applications	Access Control & Security Identifying widgets through manufacturing processes or in harsh environments Ranch animal identification Employee IDs	Library books Laundry identification Access Control Employee IDs	supply chain tracking Highway toll Tags	Highway toll Tags Identification of private vehicle fleets in/out of a yard or facility Asset tracking

Reader->Tag power transfer

Q: If a reader transmits Pr watts, how much power Pt does the tag receive at a separation distance d?

A: It depends-UHF (915MHz) : Far field propagation : Pt ∝ 1/d² HF (13.56MHz) : Inductive coupling : Pt ∝1/d⁶

IIT Bombay

Limiting factors for passive RFID

- 1. Reader transmitter power Pr (Gov't. limited)
- 2. Reader receiver sensitivity Sr
- 3. Reader antenna gain Gr (Gov't. limited)
- 4. Tag antenna gain Gt (Size limited)
- 5. Power required at tag Pt (Silicon process limited)
- 6. Tag modulator efficiency Et

Implications

- Since Pt ~ 1/d², doubling read range requires 4X the transmitter power.
- Larger antennas can help, but at the expense of larger physical size because G{t,r} ∝ Area.
- More advanced CMOS process technology will help by reducing Pt.
- At large distances, reader sensitivity limitations dominate.

RF effects of common materials

Material	Effect(s) on RF signal
Cardboard	Absorption (moisture)
	Detuning (dielectric)
Conductive liquids (shampoo)	Absorption
Plastics	Detuning (dielectric)
Metals	Reflection
Groups of cans	Complex effects (lenses, filters) Reflection
Human body / animals	Absorption, Detuning,
RFID 2005 II	T Bompay Reflection 34

Communication protocols

- Listen before talk
- Mandatory listen time of >5 msec before each transmission

ETSI EN 302 208 standard

- Shared operation in band 865.0 868.0 MHz at transmit powers upto 2 W ERP.
 - Operation in 10 sub-bands of 200 kHz.
 - Power levels of 100 mW, 500 mW and 2 W ERP.
- Mandatory "listen before talk" and "look before leap".

RFID 2005

IIT Bombay

36 Source: www.etsi.org
Reader Collision Problem

- Reader-Reader Interference
- Reader-Tag Interference

Reader Collision and Hidden Terminal

- The passive tags are not able to take part in the collision resolution or avoidance, as in other wireless systems
- Consider: RTS-CTS for hidden terminal problem in 802.11
 rfid: T is not able to send a CTS in response to an RTS from R
- In case multiple readers try to read the same tag, the tag cannot respond selectively to a particular reader

R2 is a hidden terminal for R1 – T communication IIT Bombay 38

TDMA based solution

- Assign different time slots and/or frequencies to nearby readers
 - Reduces to graph coloring problem (readers form vertices)
- Only reader to reader interference
 - Assign different operating frequencies
- Only multiple reader to tag interference
 Assign different time slots for operation
- Both types of interference
 - First allot different time slots, then frequencies

Beacon based solution

- A reader while reading tag, periodically sends a beacon on the control channel
- Assumptions
 - Separate control channel between readers
 - The range in the control channel is sufficient for a reader to communicate with all the possible readers that might interfere in the data channel

Beacon based solution (contd.)

Multiple Tags

When multiple tags are in range of the reader:

- All the tags will be excited at the same time.
- Makes it very difficult to distinguish between the tags.

Collision avoidance mechanisms:

- Probabilistic:
 - Tags return at random times.
- Deterministic:
 - Reader searches for specific tags.

Tag Collision Problem

- Multiple tags simultaneously respond to query
 - Results in collision at the reader
- Several approaches
 - Tree algorithm
 - Memoryless protocol
 - Contactless protocol
 - I-code protocol

Tree Algorithm

- Reader queries for tags
- Reader informs in case of collision and tags generates 0 or 1 randomly
- If 0 then tag retransmits on next query
- If 1 then tag becomes silent and starts incrementing its counter (which is initially zero)
- Counter incremented every time collision reported and decremented every time identification reported
- Tag remains silent till its counter becomes zero

Tree Algorithm – Example

Reader informs tags in case of collision and tags generate 0 or 1

•If 0 then tag retransmits on next query, else tag becomes silent and starts a counter. Counter incremented every time collision reported and decremented otherwise.

Tree Algorithm - Complexity

- Time Complexity O(n) where n is number of tags to be identified
- Message Complexity
 - n is unknown $\theta(nlogn)$
 - n is known $\theta(n)$
- Overheads
 - Requires random number generator
 - Requires counter

Memoryless Protocol

- Assumption: tagID stored in k bit binary string
- Algorithm
 - Reader queries for prefix p
 - In case of collision queries for p0 or p1
- Time complexity
 - Running time O(n)
 - Worst Case $n^*(k + 2 logn)$
- Message Complexity k*(2.21logn + 4.19)

Memoryless Protocol – Example

- Reader queries for prefix p
- In case of collision, reader queries for p0 or p1
- Example: consider tags with prefixes: 00111, 01010, 01100, 10101, 10110 and 10111

Step	Query Prefix	Response
1	0	Collision
2	1	Collision
3	00	00111 (Identified)
4	01	Collision
5	10	Collision
6	11	No Response
7	010	01010 (Identified)
8	011	01100 (Identified)
9	100	No Response
10	101	Collision
11	1010	10101 (Identified)
12	1011	Collision
13	10110	10110 (Identified)
14	10111	10111 (Identified)

Contactless Protocol

- Assumption: tagID stored in k bit binary string
- Algorithm
 - Reader queries for (i)th bit
 - Reader informs in case of collision
 - Tags with (i)th bit 0 become silent and maintain counter
 - Tags with (i)th bit 1 respond to next query for (i+1)th bit
- Time complexity $O(2^k)$
- Message complexity O(m(k+1)), where m is number of tags

Contactless Protocol – Example

- Reader queries for (i)th bit
- Reader informs in case of collision
 - Tags with (i)th bit 0 become silent and maintain counter
 - Tags with (i)th bit 1 respond to next query for (i+1)th bit
- Example: tags with prefixes: 01 10 and 11

IIT Bombay

I-Code Protocol

- Based on slotted ALOHA principle
- Algorithm
 - Reader provides time frame with N slots, N calculated for estimate n of tags
 - Tags randomly choose a slot and transmit their information
 - Responses possible for each slot are
 - Empty, no tag transmitted in this slot $-c_0$
 - Single response, identifying the tag $-c_1$
 - Multiple responses, collision c_k

I-Code Protocol

New estimate for *n* : lower bound

 $\varepsilon_{lb}(N, C_0, C_1, C_k) = C_1 + 2C_k$

- _ Using estimate *n*, *N* calculated
- N becomes constant after some time
- _ Using this N calculate number of read cycles s to identify tags with a given level of accuracy α
- Time complexity $t_0^*(s+p)$
 - t_0 is time for one read cycle
 - p number of read cycles for estimating N
- Message complexity n*(s+p)

N slots	1	4	8	16	31	64	128	256
n_low	-	-	-	1	10	17	51	112
n_high	-	-	-	9	27	56	129	∞

Outline

- Overview of RFID
 - Reader-Tag; Potential applications
- RFID Technology Internals

 RF communications; Reader/Tag protocols
 - Middleware architecture; EPC standards
- RFID Business AspectsSecurity and Privacy
- Conclusion

How much data?

Consider a supermarket chain implementing RFID:

- ▶12 bytes EPC + Reader ID + Time = 18 bytes per tag
- \blacktriangleright Average number of tags in a neighborhood store = 700,000
- Data generated per second = 12.6 GB
- \succ Data generated per day = 544 TB
- >Assuming 50 stores in the chain,

 \blacktriangleright data generated per day = 2720 TB

Stanford Linear Accelerator Center generates 500 TB

RFID middleware

55 Source: Forrester Research: RFID Middleware

FORRESTER

Middleware framework: PINES™

Retail case study: Enabling real-time decisions

RFID 2005

IIT Bombay

57 Source: Persistent Systems

Layout Management Framework

Site Layout Configuration and Location Management

Source: Persistent Systems

IIT Bombay

61 Source: **Persistent Systems**

IIT Bombay

IIT Bombay

63 Source: **Persistent Systems**

Device Management Framework

Remote monitoring and configuration of RF Sensor network elements -Readers and Antennas

Status view for all readers at a glance

RFID 2005

Source: Persistent Systems

🥝 Internet

65

-

Sophisticated Query Processing Stream based event store for incessant,

high performance querying

Source: Persistent Systems

Dashboards

Corporate dashboards for enhanced decision making

🖉 PINES - Microsoft Interne	et Explorer provided by PA-SP	-CP Site				<mark>-</mark> N
File Edit View Favoriti	es Tools Help				Query	*
← Back → → → 🙆 💋	📸 🔯 Search 🛛 🙀 Favorites	🎯 History 🛛 🗟 🛛 🖉			lefinition	
Address 🙋 http://localhost:8	8080/pines/index.jsp					▼ @Go
Links 🔌 Design Patterns Tuto	orial 🛛 🙋 Extreme Programming A	Gentle Introduction. 🛛 🙋 Google	E HowStuffWorks - Le	ow Everything Works! 🖉 index	Introduction to SSL	»
	🖉 Results - Microsoft Interne	et Explorer provided by PA-SP-	CP Site			<u>ا</u>
MAM PINES™	Show the log of eve	nts of tags detected.			?	
Home Appl	Total Number Of Records =		Refresh		J	
Home						SISTENT
	PROD_ITEM_EPC	LOCATION_ID	MOVEMENT	OCCURRENCE	<u>▲</u>	*
Result Dashboards _	54.11.12.363	L1	IN	Sep 7 2004 4:51PM		
View All	54.11.12.520	L1	IN	Sep 7 2004 4:51PM		
	54.11.12.622	L1	IN	Sep 7 2004 4:51PM	Query re	
Event Notification	54.11.12.640	L1	IN	Sep 7 2004 4:51PM	snapsl	hot 🦯
Map	54.11.38.3287	L1	IN	Sep 7 200		
View All	54.11.38.436	L1	IN	Sep 7 2004 4:51PM		
	54.11.38.9670	L1 -	IN	Sep 7 2004 4:51PM		
	54.22.15.4901	L1	IN	Sep 7 2004 4:51PM		
	54.22.15.8337	L1	IN	Sep 7 2004 4:51PM		
	54.22.16.1	L1	IN	Sep 7 2004 4:51PM		
	54.22.16.1215	L1	IN	Sep 7 2004 4:51PM		
	54.22.16.22	L1	IN	Sep 7 2004 4:51PM		
· · · · · · · · · · · · · · · · · · ·	54.22.22.488	L1	IN	Sep 7 2004 4:51PM		
	54.33.11.181	L1	IN	Sep 7 2004 4:51PM		
Η.	54.33.11.2345	L1	IN	Sep 7 2004 4:51PM		
	54.33.11.6596	L1	IN	Sep 7 2004 4:51PM		
	54.33.22.1779	L1	IN	Sep 7 2004 4:51PM		
	54.33.22.1846	L1	IN	Sep 7 2004 4:51PM		
	54.33.22.4594	L1	IN	Sep 7 2004 4:51PM		
	54.33.22.5190	L1	IN	Sep 7 2004 4:51PM		
	54.11.12.4235	L1	IN	Sep 7 2004 4:49PM	T	
						1
	e Done				Local intranet	
]]	/	
		Copyright © 2004-2005, Pe	ersistent Systems Private	Limited		
javascript:viewResult('event	t_log_query','Show the log of even	ts of tags detected.','10000')			📑 Local intrane	et

Source: Persistent Systems

74 Source: **Persistent Systems**

RFID 2005

IIT Bombay

RFID 2005

IIT Bombay

75 Source: **Persistent Systems**

Source: Persistent Systems

Notifications

Notifications for enhanced decision making

🎒 Welcome to PINES - Mic	rosoft Internet Explorer					×
File Edit View Favorites Tools Help						
🗢 Back 🔹 🤿 🖉 🚺	📸 🛛 🥘 Search 🛛 📓 Favorite	s 🛞 Media 🧭 🛃 - 🖉	🌶 👿 • 📃 🖓 🌝			
Address 🙆 http://gateway.p	ospl.co.in:6104/index.html					💌 🔗 Go Links »
PINES MARKER Solm	lications Configuratio	n Help		Configuration panel for notification		PERSISTENT
Query Builder - Event Store	Notification Rule S	pecification				<u> ②Help</u> ▲
View All	Notification Details					
Query Wizard	Query For Notification Name of Notification	<u>Stock Report - Produ</u>	<u>ict wise</u>			
Filter Builder - Event Store	Notification Message					
View All						
Filter Wizard	Conditions For Notificati		·			
Graphical Dashboards	Specify the conditions of	n which notification is to b	e given			
View All	Column	Name		Criteria		Action
Dashboard Wizard	Select		Select 💌	Select	_	Add New
	ANDSelect		Select 💌	Select		Remove
Alerts and Notifications	ANDSelect	•	Select 💌	Select	•	Remove
View All	Notification Action					
Notification Wizard		taken when Notification c	ondition is satisfied.			
Enterprise Data (PML) Manipulation	Type of Notification List of Recipients	Select 💌				
Data View	 (Give a comma separately list of recipients) 	ed		> Specify ale	erts via e	email and SMS
Data Manipulation	Recurrence Required	Define Recurre	nce Frequency			
						Save Cancel
🔄 Done						🔮 Internet
						70

RFID 2005

IIT Bombay

78 Source: **Persistent Systems**

Virtual Test Bed

Scenario emulation prior to deployment

The EPC model: Internet of Things

EPC and **PML**

- EPC Electronic Product Code
 - Header handles version and upgrades
 - EPC Manager Product Manufacturer Code
 - Object Class Class/Type of Product
 - Serial Number Unique Object Identity
- PML Physical Markup Language
 - Extension of XML
 - Representation of Tagged Object Information
 - Interaction of Tagged Object Information

ELECTR	ONIC PROD	UCT CODE TYPE I			
	01.0		000165	0001690C0	
	Header 8-bits	EPC Manager 28-bits	Object Class	Serial Number	

Savant and ONS

- Savants
 - Manage the flow of EPC data from RFID readers
 - Data smoothing
 - Reader coordination
 - Data forwarding
 - Data storage
 - Interact with the ONS network
- ONS Servers
 - Directory for EPC information, similar to Internet DNS
 - Uses the object manager number of the EPC to find out how to get more information about the product

EPC process flow

64 and 96 bit EPC tags have been defined

01	0000A21	00015E	000189DF0
Header	EPC Manager	Object Class	Serial Number
8 Bits	8 – 35 bits	39 – 56 bits	60 – 95 bits

- Allows for unique IDs for 268 million companies
- Each company can then have 16 million object classes
- Each object or SKU can have 68 billion serial numbers assigned to it

1. EPC lifecycle begins when a Manufacturer tags the product

- 1. EPC lifecycle begins when a Manufacturer tags the product
- 2. Manufacturer records product information (e.g., manufacture date, expiration date, location) into EPC Information Service
- 3. EPC Information Service registers EPC "knowledge" with EPC Discovery Service

IIT Bombay

- 4. Manufacturer sends product to Retailer
- 5. Retailer records "receipt" of product into EPC-IS
- 6. Retailer's EPC-IS then registers product "knowledge" with EPC Discovery Service

- 7. If Retailer requires product information, Root ONS is queried for location of Manufacturer's Local ONS
- 8. Manufacturer's Local ONS is queried for location of EPC-IS

9. Retailer queries Manufacturer EPC-IS for desired product information (e.g., manufacture date, expiration date, etc.)

Outline

- Overview of RFID
 - Reader-Tag; Potential applications
- RFID Technology Internals

 RF communications; Reader/Tag protocols
 - Middleware architecture; EPC standards
- RFID Business Aspects
- Security and Privacy

Business implications of RFID tagging

Cumulative Value

RFID deployment challenges

- Manage System costs
 - Choose the right hardware
 - Choose the right integration path
 - Choose the right data infrastructure
- Handle Material matters
 - RF Tagging of produced objects
 - Designing layouts for RF Interrogators
- Tag Identification Scheme Incompatibilities
 - Which standard to follow?
- Operating Frequency Variances
 - Low Frequency or High Frequency or Ultra High Frequency
- Business Process Redesign
 - New processes will be introduced
 - Existing processes will be re-defined
 - Training of HR
- Cost-ROI sharing

IIT Bombay

Using tags with metal

 Tags placed directly against metal will negatively affect readability

Getting ready for RFID

- Identify business process impacts
 - Inventory control (across the supply chain)
 - Manufacturing assembly
- Determine optimal RFID configuration
 - Where am I going to tag my components/products?
 - Surfaces, metal environment and handling issues
 - Where am I going to place the readers?
 - Moving from the lab environment to the manufacturing or distribution center can be tricky
 - When am I going to assemble the RFID data?
- Integrate with ERP and other systems

RFID services value chain

Business **Supply Chain** • ETL Product • Directory Tags Event Process Execution Catalog and Services Services Monitoring Integration Attribute Readers Managemnt ERP Legacy Discovery Data filtering Solution Application Services Label Framework Integration Warehouse • Data • **Printers** Reader Synchro-Management Authorization coordination Network nization Setup Store **Authenticatn** Policy Management Framework Management RF aspects

 Distribution Management

Privacy: The flip side of RFID

- Hidden placement of tags
- Unique identifiers for all objects worldwide
- Massive data aggregation
- Unauthorized development of detailed profiles
- Unauthorized third party access to profile data
- Hidden readers

IIT Bombay

99

The "Blocker" Tag approach

- "Tree-walking" protocol for identifying tags recursively asks question:
 - "What is your next bit?"
- Blocker tag always says both '0' and '1'!
 - Makes it seem like *all* possible tags are present
 - Reader cannot figure out which tags are actually present
 - Number of possible tags is *huge*, so reader stalls

More on blocker tags

- Blocker tag can be *selective:*
 - Privacy zones: Only block certain ranges of RFID-tag serial numbers
 - Zone mobility: Allow shops to move items into privacy zone upon purchase
- Example:
 - Blocker blocks all identifiers with leading '1' bit
 - Items in supermarket carry leading '0' bit
 - On checkout, leading bit is flipped from '0' to '1'
 - PIN required, as for "kill" operation

The Challenge-Response approach

- Tag does not give all its information to reader.
 - The closer the reader, the more the processing.
 - Tag reveals highest level of *authenticated* information.
- 1. Reader specifies which level it wants.
- 2. Tag specifies level of security, *and/or* amount of energy needed.
- 3. Reader proceeds at that level of security.
- 4. Tag responds if and only if it gets energy <u>and</u> security required.

Some more approaches

- The Faraday Cage approach.
 - Place RFID tags in a protective mesh.
 - Would make locomotion difficult.
- The Kill Tag approach.
 - Kill the tag while leaving the store.
 - RFID tags are too useful for reverse logistics.
- The Tag Encryption approach.
 - Tag cycles through several pseudonyms.
 - Getting a good model is difficult.
- No 'one-size-fits-all' solution.
- Security hinges on the fact that in the real world, an adversary must have physical proximity to tags to interact with them.

Outline

- Overview of RFID
 - Reader-Tag; Potential applications
- RFID Technology Internals
 - RF communications; Reader/Tag protocols
 - Middleware architecture; EPC standards
- RFID Business Aspects
- Security and Privacy
- Conclusion

RFID: The complete picture

Tags and Readers

Identifying Read Points Installation & RF Tuning RFID Middleware Connectors & Integration Process Changes Cross Supply-Chain View

Points to note about RFID

- RFID benefits are due to automation and optimization.
- RFID is not a plug & play technology.
- "One frequency fits all" is a myth.
- Technology is evolving but physics has limitations.
- RFID does not solve data inconsistency within and across enterprises.
- Management of RFID infrastructure and data has been underestimated.

RFID Summary

Strengths	Weaknesses
 Advanced technology Easy to use High memory capacity Small size 	 Lack of industry and application standards High cost per unit and high RFID system integration costs Weak market understanding of the benefits of RFID technology
Opportunities	Threats
 Could replace the bar code End-user demand for RFID systems is increasing Huge market potential in many businesses 	 Ethical threats concerning privacy life Highly fragmented competitive environment

Some Links

- http://www.epcglobalinc.com/
- http://www.rfidjournal.com/
- http://rfidprivacy.com/
- http://www.rfidinc.com/
- http://www.buyrfid.com/

