Secure Web Transactions

Sridhar Iyer
K R School of Information Technology
IIT Bombay
sri@it.iitb.ernet.in

http://www.it.iitb.ernet.in/~sri

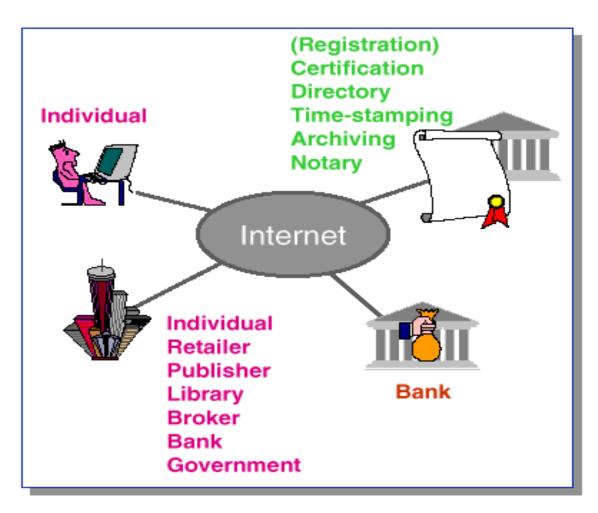
Overview

- Electronic Commerce
- Underlying Technologies
 - Cryptography
 - Network Security Protocols
- Electronic Payment Systems
 - Credit card-based methods
 - Electronic Cheques
 - Anonymous payment
 - Micropayments
 - SmartCards

Commerce

- Commerce: Exchange of Goods / Services
- Contracting parties: Buyer and Seller
- Fundamental principles: Trust and Security
- Intermediaries:
 - Direct (Distributors, Retailers)
 - Indirect (Banks, Regulators)
- Money is a medium to facilitate transactions
- Attributes of money:
 - Acceptability, Portability, Divisibility
 - Security, Anonymity
 - Durability, Interoperability

E-Commerce


- Automation of commercial transactions using computer and communication technologies
- Facilitated by Internet and WWW
- Business-to-Business: EDI
- Business-to-Consumer: WWW retailing
- Some features:
 - Easy, global access, 24 hour availability
 - Customized products and services
 - Back Office integration
 - Additional revenue stream

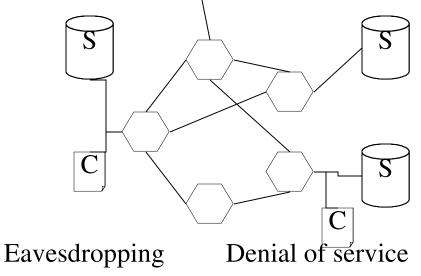
E-Commerce Steps

- Attract prospects to your site
 - Positive online experience
 - Value over traditional retail
- Convert prospect to customer
 - Provide customized services
 - Online ordering, billing and payment
- Keep them coming back
 - Online customer service
 - Offer more products and conveniences

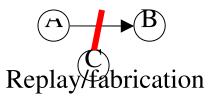
Maximize revenue per sale

E-Commerce Participants

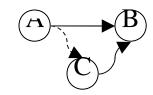
- Secure email
- Secure document exchange
- Mail order retailing
- Electronic publishing
- Ticketing
- Subscriptions
- Information brokerage
- Contract signing
- Secure auctioning
- ...

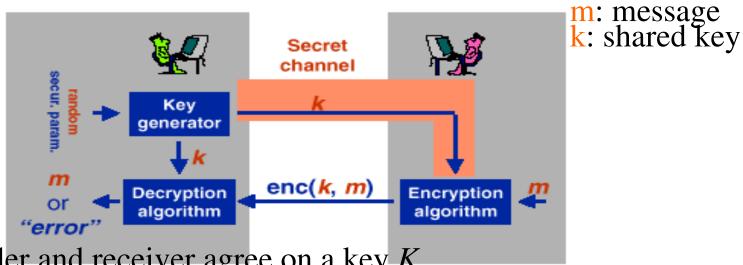

E-Commerce Problems Snoope **Electronic Commerce** Unknown customer Unreliable Merchant

E-Commerce risks


- Customer's risks
 - Stolen credentials or password
 - Dishonest merchant
 - Disputes over transaction
 - Inappropriate use of transaction details
- Merchant's risk
 - Forged or copied instruments
 - Disputed charges
 - Insufficient funds in customer's account
 - Unauthorized redistribution of purchased items
- Main issue: Secure payment scheme

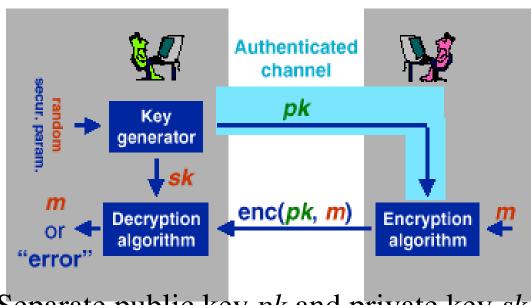
Why is the Internet insecure?


- Host security
 - Client
 - Server (multi-user)
- Transmission security
 - Passive sniffing
 - Active spoofing and masquerading
 - Denial of service
- Active content
 - Java, Javascript, ActiveX, DCOM



E-Commerce Security

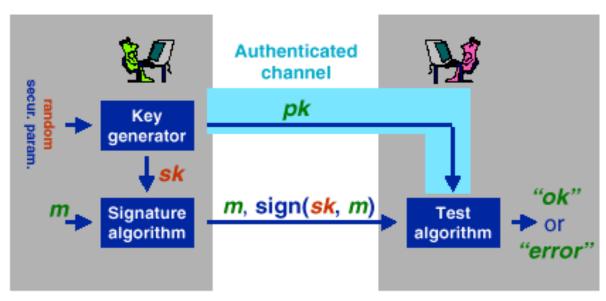
- Authorization, Access Control:
 - protect intranet from hordes: Firewalls
- Confidentiality, Data Integrity:
 - protect contents against snoopers: Encryption
- Authentication:
 - both parties prove identity before starting transaction:
 Digital certificates
- Non-repudiation:
 - proof that the document originated by you & you only:
 Digital signature


Encryption (shared key)

Sender and receiver agree on a key K
No one else knows K

K is used to derive encryption key EK & decryption key DK
Sender computes and sends EK(Message)
Receiver computes DK(EK(Message))
Example: DES: Data Encryption Standard

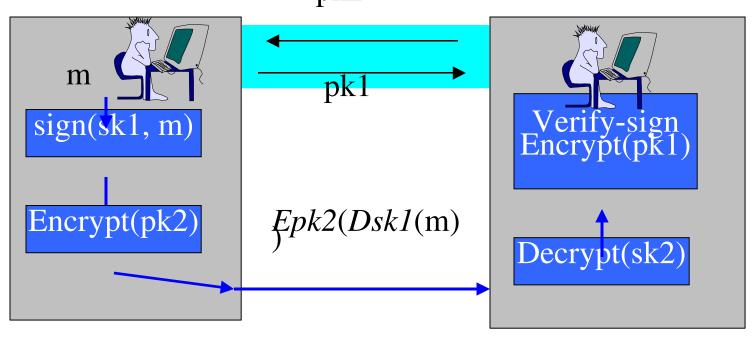
Public key encryption


m: message

sk: private secret key

pk: public key

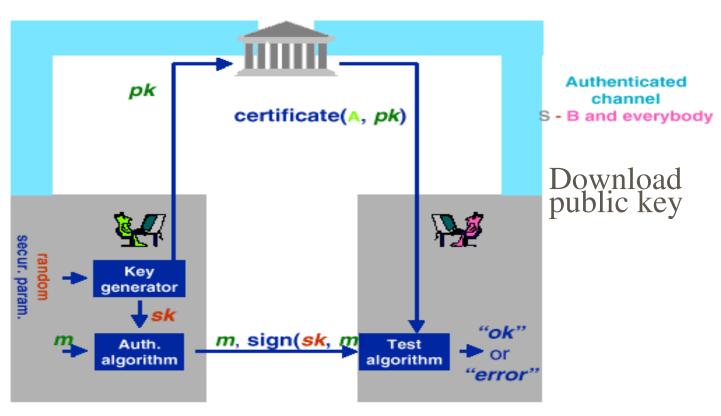
- · Separate public key pk and private key sk
- · Private key is kept secret by receiver
- $\cdot Dsk(Epk(mesg)) = mesg and vice versa$
- · Knowing Ke gives no clue about Kd


Digital signature

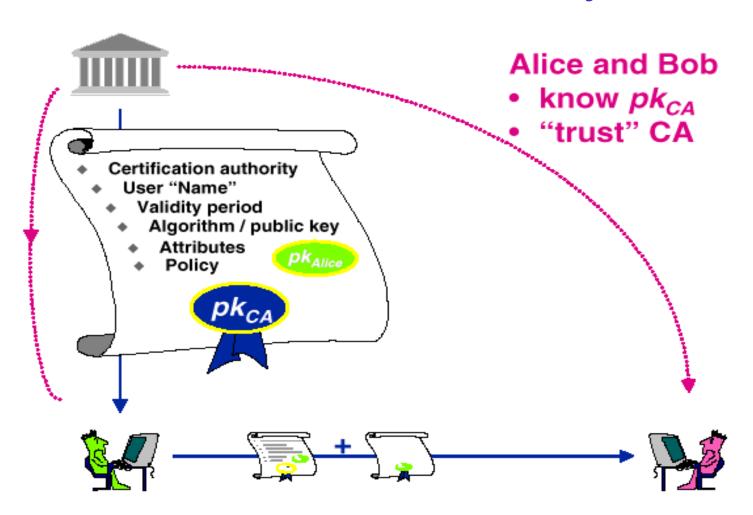
Sign: sign(sk,m) = Dsk(m)Verify: Epk(sign(sk,m)) = m

Sign on small hash function to reduce cost

Signed and secret messages pk2

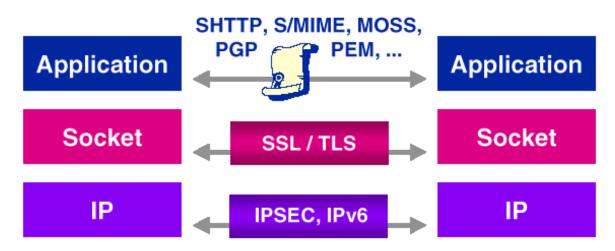


First sign, then encrypt: order is important.


Digital certificates

How to establish authenticity of public key?

Certification authority



Electronic payments: Issues

- Secure transfer across internet
- High reliability: no single failure point
- Atomic transactions
- Anonymity of buyer
- Economic and computational efficiency: allow micropayments
- Flexiblility: across different methods
- Scalability in number of servers and users

E-Payments: Secure transfer

- SSL: Secure socket layer
 - below application layer
- S-HTTP: Secure HTTP:
 - On top of http

SSL: Secure Socket Layer

- Application protocol independent
- Provides connection security as:
 - Connection is private: Encryption is used after an initial handshake to define secret (symmetric) key
 - Peer's identity can be authenticated using public (asymmetric) key
 - Connection is reliable: Message transport includes a message integrity check (hash)
- SSL Handshake protocol:
 - Allows server and client to authenticate each other and negotiate a encryption key

SSL Handshake Protocol

- 1. Client "Hello": challenge data, cipher specs
- 2. Server "Hello": connection ID, public key certificate, cipher specs
- 3. Client "session-key": encrypted with server's public key
- 4. Client "finish": connection ID signed with client's private key
- 5. Server "verify": client's challenge data signed with server's private key
- 6. Server "finish": session ID signed with server's private key
- Session IDs and encryption options cached to avoid renegotiation for reconnection

S-HTTP: Secure HTTP

- Application level security (HTTP specific)
- "Content-Privacy-Domain" header:
 - Allows use of digital signatures &/ encryption
 - Various encryption options
- Server-Browser negotiate
 - Property: cryptographic scheme to be used
 - Value: specific algorithm to be used
 - Direction: One way/Two way security

Secure end to end protocols

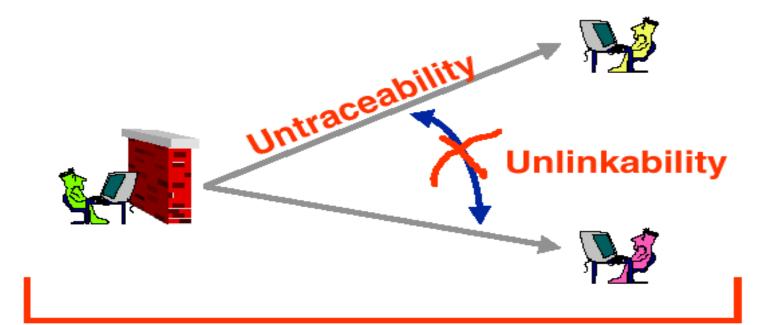
Application

- Semantics & Security
 Domain known
 - Non-repudation
- Application awareness
- Lots of (new) protocols

Socker

- Already established
- OS independent

- No non-repudation
- Only end-to-end


- Most general coverage
- Virtual private networks
- System-enforceable

- OS integration required
- How to manage policies
 - What is "User" ?

E-Payments: Atomicity

- Money atomicity: no creation/destruction of money when transferred
- Goods atomicity: no payment w/o goods and viceversa.
 - Eg: pay on delivery of parcel
- Certified delivery: the goods delivered is what was promised:
 - Open the parcel in front of a trusted 3rd party

Anonymity of purchaser

Unobservability by Outsiders

Payment system types

- Credit card-based methods
 - Credit card over SSLFirst Virtual
- -SET

- Electronic Cheques
 - NetCheque
- Anonymous payments
 - - Digicash– CAFE
- Micropayments
- SmartCards

Encrypted credit card payment

- Set secure communication channel between buyer and seller
- Send credit card number to merchant encrypted using merchant's public key
- Problems: merchant fraud, no customer signature
- Ensures money but no goods atomicity
- Not suitable for microtransactions

First virtual

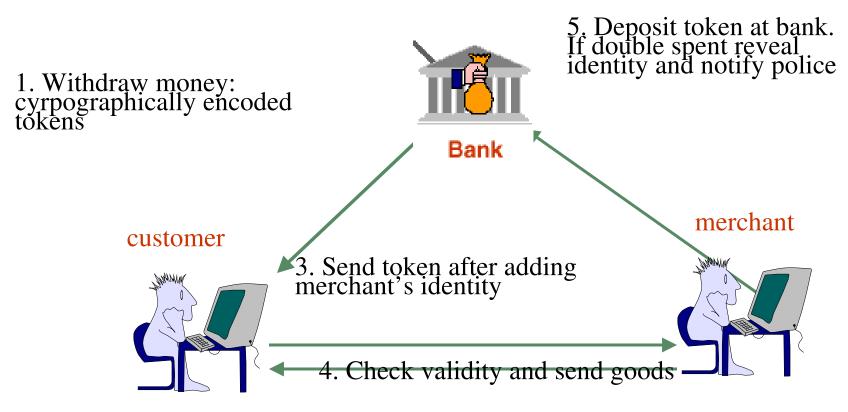
- Customer assigned virtual PIN by phone
- Customer uses PIN to make purchases
- Merchant contacts First virtual
- First virtual send email to customer
- If customer confirms, payment made to merchant
- Not goods atomic since customer can refuse to pay
- Not suitable for small transactions
- Flood customer's mailbox, delay merchant

Cybercash

- Customer opens account with cybercash, gives credit card number and gets a PIN
- Special software on customer side sends PIN, signature, transaction amount to merchant
- Merchant forwards to cybercash server that completes credit card transaction
- Pros: credit card # not shown to server, fast
- Cons: not for microtransactions

SET:Secure Electronic Transactions

- Merge of STT, SEPP, iKP
- Secure credit card based protocol
- Common structure:
 - Customer digitally signs a purchase along with price and encrypts in bank's public key
 - Merchant submits a sales request with price to bank.
 - Bank compares purchase and sales request. If price match, bank authorizes sales
- Avoids merchant fraud, ensures money but no goods atomicity

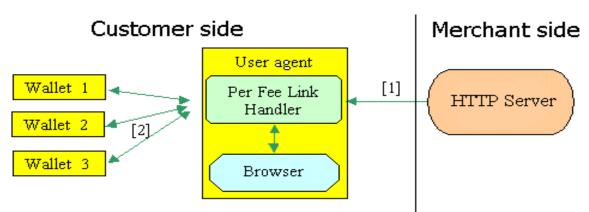

Electronic Cheques

- Leverages the check payments system, a core competency of the banking industry.
- Fits within current business practices
- Works like a paper check does but in pure electronic form, with fewer manual steps.
- Can be used by all bank customers who have checking accounts
- Different from Electronic fund transfers

How does echeck work?

- Exactly same way as paper
- Check writer "writes" the echeck using one of many types of electronic devices
- "Gives" the echeck to the payee electronically.
- Payee "deposits" echeck, receives credit,
- Payee's bank "clears" the echeck to the paying bank.
- Paying bank validates the echeck and "charges" the check writer's account for the check.

Anonymous payments



2. Transform so merchant can check validity but identity hidden

Problems with the protocol

- Not money atomic: if crash after 3, money lost
 - if money actually sent to merchant: returning to bank will alert police
 - if money not sent: not sending will lead to loss
- High cost of cryptographic transformations: not suitable for micropayments
- Examples: Digicash

Micropayments on hyperlinks

- HTML extended to have pricing details with each link: displayed when user around the link
- On clicking, browser talks to E-Wallet that initiates payment to webserver of the source site
- Payment for content providers
- Attempt to reduce overhead per transaction

Micropayments: NetBill

- Customer & merchant have account with NetBill server
- Protocol:
 - Customer request quote from merchant, gets quote and accepts
 - Merchant sends goods encrypted by key K
 - Customer prepares & signs Electronic Purchase Order having
 <price, crypto-checksum of goods>
 - Merchant countersigns EPO, signs K and sends both to NetBill server
 - NetBill verifies signatures and transfers funds, stores K and crypto-checksum and
 - NetBill sends receipt to merchant and K to customer

Recent micropayment systems

Company	Payment system	Unique code
Compaq	Millicent	mcent
IBM	IBM payment system	mpay
France Telecom	Micrommerce	microm

Smartcards

- 8-bit micro, < 5MHz, < 2k RAM, 20k ROM</p>
- Download electronic money on a card: wallet on a card
- Efficient, secure, paperless, intuitive and speedy
- Real and virtual stores accept them
- Less susceptible to net attacks since disconnected
- Has other uses spanning many industries, from banking to health care

Mondex

- Smart card based sales and card to card transfers
- Money is secured through a password and transactions are logged on the card
- Other operation and features similar to traditional debit cards
- Card signs transaction: so no anonymity
- Need card reader everywhere
- Available only in prototypes

Summary

- Various protocols and software infrastructure for ecommerce
- Today: credit card over SSL or S-HTTP
- Getting there:
 - smart cards,
 - digital certificates
- Need:
 - legal base for the entire ecommerce business
 - global market place for ecommerce

References

- State of the art in electronic payment systems, IEEE COMPUTER 30/9 (1997) 28-35
- Internet privacy The quest for anonymity, Communications of the ACM 42/2 (1999) 28-60.
- Hyper links:
 - http://www.javasoft.com/products/commerce/
 - http://www.semper.org/
 - http://www.echeck.org/
 - http://nii-server.isi.edu/info/NetCheque/
 - http://www.ec-europe.org/Welcome.html/
 - http://www.zdnet.com/icom/e-business/