
DBridge: A Program Rewrite Tool for Set-Oriented

Query Execution

Mahendra Chavan #, Ravindra Guravannavar ∗, Karthik Ramachandra #, S. Sudarshan #

#Indian Institute of Technology, Bombay
{mahcha, karthiksr, sudarsha}@cse.iitb.ac.in

∗Indian Institute of Technology, Hyderabad
ravig@iith.ac.in

Abstract—We present DBridge, a novel static analysis and
program transformation tool to optimize database access. Tradi-
tionally, rewrite of queries and programs are done independently,
by the database query optimzier and the language compiler re-
spectively, leaving out many optimization opportunities. Our tool
aims to bridge this gap by performing holistic transformations,
which include both program and query rewrite.

Many applications invoke database queries multiple times with
different parameter values. Such query invocations made using
imperative loops are often the cause of poor performance due to
random I/O and round trip delays. In practice, such performance
issues are addressed by manually rewriting the application to
make it set oriented. Such manual rewriting of programs is
often time consuming and error prone. Guravannavar et. al.[1]
propose program analysis and transformation techniques for
automatically rewriting an application to make it set oriented.
DBridge implements these program transformation techniques
for Java programs that use JDBC to access database.

In this demonstration, we showcase the holistic program/query
transformations that DBridge can perform, over a variety of
scenarios taken from real-world applications. We then walk
through the design of DBridge, which uses the SOOT optimiza-
tion framework for static analysis. Finally, we demonstrate the
performance gains achieved through the transformations.

I. INTRODUCTION

Database applications perform queries and updates from

within procedural code that encodes business logic. Such

applications use a mix of procedural constructs and SQL, and

can run either inside the database system, as stored procedures,

or outside the database system, as external programs. In such

applications, iterative execution of parameterized queries is

often the main cause of poor performance as it leads to random

I/O and network round-trip delays.

The importance of set oriented execution is well known

in the context of nested subqueries. Query decorrelation [2],

[3], [4] addresses the problem of iterative execution of nested

subqueries, by rewriting them using set operations such as

joins. Thus, decorrelation enables set oriented plans with

reduced random I/O. However, decorrelation techniques are

not directly applicable to imperative program loops. Guravan-

navar et. al.[1] propose a program transformation approach

for rewriting applications to use batched parameter bindings,

thereby enabling set oriented execution of database queries.

The key idea proposed by Guravannavar et. al.[1] is to

replace repeated invocations of a query with a single call to

the batched form or set oriented form of the query, which

is often far more efficient than iterative invocation of the

original query. To this end, Guravannavar et. al.[1] propose

a set of program transformation rules which can be used to

automatically rewrite a given program loop containing query

invocation statements. The transformation rules make use of

information about inter-statement data dependencies gathered

from static analysis of the program. The proposed program

transformation rules are powerful enough to rewrite a large

class of loops involving complex control flow and arbitrary

level of nesting.

DBridge is a program transformation tool based on the tech-

niques presented in [1]. DBridge works on Java applications

that use JDBC API [5] to access database. The tool performs

static analysis of the input program and identifies opportunities

for replacing iterative database access with set oriented access;

it then rewrites the application code and the embedded queries

together for set oriented processing. DBridge is designed to

be a source-to-source transformation tool, and to this end,

it ensures readability and maintainability of the transformed

code. The tool is thus best suited for integration into an

application development environment (IDE). DBridge can also

be used as a preprocessing step inside a language compiler,

thus making the compiler “database access aware”.

II. OVERVIEW OF DBRIDGE

As an illustration of the kind of transformations DBridge

can perform, consider the Java program snippet shown in

Example 1.

Connection con = DriverManager.getConnection(url);

PreparedStatement pstmt = con.prepare(

”SELECT count(partkey) FROM part WHERE category=?”);

while(category != -1) {
pstmt.setInt(1, category);

ResultSet rs = pstmt.executeQuery();

if (rs.next()) {
partCount = rs.getInt(0);

total += partCount;

}
category = getParent(category);

}

Example 1: A Program Snippet with JDBC Calls



Connection con = DriverManager.getConnection(dbrUrl);

PreparedStatement pstmt = con.prepare(

”SELECT count(partkey) FROM part WHERE category=?”);

while(category != -1) {
pstmt.setInt(1, category);

pstmt.addBatch();

category = getParent(category);

}
pstmt.executeBatch();

while (pstmt.getMoreResults()) {
ResultSet rs = pstmt.getResultSet();

if (rs.next()) {
partCount = rs.getInt(0);

total += partCount;

}
}

Example 2: JDBC Example after Transformation

The program computes the total number of parts in a

given category and all its parent categories. Note the repeated

execution of a parameterized aggregate query inside the while

loop. The program snippet after transformation by DBridge

is shown in Example 2. The transformed code is a result of

the application of several transformation rules. We give an

overview of some of the important transformations with the

help of the example.

Statement Reordering: DBridge applies a set of transforma-

tion rules to reorder the statements within the loop body, so as

to permit set oriented execution. In Example 2, note that the

statement invoking getParent, is moved up ahead of the query

execution. Statement reordering is performed taking inter-

statement data dependencies into account. DBridge can also

introduce temporary variables to break certain inter-statement

data dependencies that otherwise prohibit set oriented execu-

tion; see [1], [6] for details.

Loop Splitting: This is the key transformation, described in

[1] to enable set oriented execution. In Example 2, the loop in

the original program is split into two parts. The first loop in

the transformed program generates all the parameter bindings.

Next, a rewritten form of the query is executed to obtain results

for all the parameter bindings together. Then, the second

loop executes statements that depend on the query results.

The loop splitting transformation has certain preconditions

for its applicability [1], and may require prior application of

statement reordering so that the preconditions are met.

In general, the body of a loop may contain more than one

parameterized query. Repeated application of the loop splitting

transformation allows batching of any number of queries that

lie inside the loop.

Query Rewrite: After collecting all the parameter bindings,

the program calls the executeBatch method, which internally

transforms the query statement into a set oriented form, which

is often more efficient. For example, the scalar aggregate query

in the example would be transformed into the following query,

where pb is a temporary table in which the parameter bindings

are materialized.

SELECT pb.category, le.c1

FROM pbatch pb,

OUTER APPLY (SELECT count(partkey) as c1

FROM part

WHERE category=pb.category) le;

The rewritten query uses the OUTER APPLY construct of

Microsoft SQL Server but can instead be written using a left

outer join combined with the LATERAL construct of SQL:99.

Most widely used database systems can unnest such a query

into a form that uses joins or outer joins [4]. For example, the

unnested form of the above query could be:

SELECT pb.category, count(partkey)

FROM pbatch pb LEFT OUTER JOIN part p

ON pb.category=p.category

GROUP BY pb.category;

Such a rewriting enables the use of efficient set oriented

query processing algorithms such as hash or merge join.

In Example 2, note the use of a different JDBC URL

(dbrUrl) in the transformed program. DBridge wraps JDBC

API in order to perform query rewrite as described above. The

query rewrite is performed within DBrdge’s implementation of

the executeBatch method.

Rewrite of Conditional Blocks: DBridge can deal with

conditional control transfer statements (if-then-else), and query

execution statements inside conditional blocks. DBridge also

handles order-sensitive operations within the loop correctly.

Order-sensitive operations are operations whose order of ex-

ecution is important for the correctness of the program. We

illustrate these two features using Example 3. The program,

after transformation, is shown in Example 4.

while(category != -1) {
if(isActive(category)) {

pstmt.bind(1, category);

rs = pstmt.executeQuery();

rs.next();

partCount = rs.getInt(0);

total += partCount;

print(category, partCount);

}
category = getParent(category);

}

Example 3: Queries inside Conditional Blocks

DBridge first transforms conditional blocks into a sequence

of guarded statements by introducing a boolean variable to

remember the branching decision. It then applies the loop

splitting transformation and replaces repeated execution of

the query with a single invocation of its set oriented form.

Finally, the sequence of guarded statements are merged back

to have conditional blocks, as can be seen in the second loop

of Example 4.

Queries, being side-effect free, can be executed in any order

of the parameter bindings. However, the loop can contain other



LoopContextTable ctx;

while(category != -1) {
boolean f = isActive(category);

if(f) {
pstmt.bind(1, category);

pstmt.addBatch();

}
tempCat = category;

category = getParent(category);

ctx.addRecord(new Record(loopKey, f, tempCat));

}
pstmt.executeBatch();

// Now, read all the results and augment ctx with a new

// column partCount to hold the part count for each category.

ctx.mergeResults(pstmt);

for (Record r: ctx) { // We assume ctx to be an ordered table

if(r.f) {
total += r.partCount;

print(r.tempCat, r.partCount);

}
}

Example 4: Transformation of Example 3

order-sensitive operations, which must be executed in the same

order as in the original program. To ensure this, the loop

splitting transformation of DBridge maintains the loop context

in an ordered table, and iterates over the loop context records

in the order in which they are produced (see Example 4).

Nested Loops: A query execution statement can be inside a

loop, which is nested within another loop. DBridge works with

arbitrary levels of loop nesting. We omit an example in the

interest of space, but include it as a case in the demonstration.

III. SYSTEM DESIGN AND IMPLEMENTATION

DBridge is designed to meet the following requirements:

• Semantics Preservation: For a program transformation

tool like DBridge, ensuring correctness is a strict require-

ment. DBridge ensures that the transformed program is

equivalent in its functionality to the original program.

DBridge’s transformations are based on a set of formally

defined equivalence rules, whose correctness proofs can

be found in [6].

• Robustness: In our context, robustness is the ability of

the tool to accommodate various kinds of programs, to

successfully identify opportunities for set orientation, and

to transform them. DBridge can deal with a variety of

procedural language constructs, such as variable assign-

ments, conditional control transfer, loops, method calls

and field dereferences. Work to support exceptions is in

progress. Further, DBridge employs inter-procedural data

flow analysis to find data dependencies between program

statements caused due to inter-procedural reads/writes.

These abilities make DBridge applicable for a large

number of real-world programs.

It is not always possible to transform every query ex-

ecution statement within a loop into a statement that

uses set oriented form of the query. Inter-statement data

dependencies may prohibit such a rewrite. The transfor-

mation rules and statement reordering algorithm which

DBridge uses are powerful enough to transform a large

number of the identified opportunities for set orientation.

In fact, in [6] we prove the following: the transformation

rules, together with our statement reordering algorithm

can transform every query execution statement that does

not have a cyclic data dependency on itself. Intuitively,

DBridge can transform all iterative query execution state-

ments except those such as the ones used for computing

transitive closure of a relation.

• Readability: Programmers may need to read the trans-

formed code to debug a program, or even to gain confi-

dence in the correctness of the transformed code. There-

fore, maintaining readability of the transformed code is

very important. We achieve this goal through several

measures. For instance, when we rewrite conditional

blocks and then split a loop, the resulting code will

have many guarded statements. We therefore introduce

a pass where such guarded statements are grouped back

in each of the two generated loops, so that the resulting

code resembles the original code. Further, the transformed

program uses standard JDBC calls, and contains very few

calls to the DBridge runtime library.

• Extensibility: DBridge is designed in a way that provides

an elegant framework for introducing new transformation

rules or extending existing rules. Each rule is encapsu-

lated as an object, and all the information necessary to

apply a rule is provided by the framework via the program

dependence graph.

The important phases in the program transformation process

are shown in Figure 1. The input Java source file is first

converted into an intermediate representation, on which we

perform data flow analysis. Using this analysis, we construct

a Dependence Graph, which is the basic data structure on

which our transformation rules rely. The main task of our

program transformation tool appears in the Apply Trans Rules

Code (Jimple)
Intermediate

Source Java
File

Dataflow
Analysis

Def−Use

Information

DDG

Construction

Dependence
Graph

Modified
Jimple CodeDecompile

File

Target Java

Parsing and
Conversion to
Interm Rep

 Rules

Apply Trans 

Fig. 1. Program Transformation Phases



Compute Dependence Graph

Find a candidate for Batching Merge sequence of guarded

statements to condition blocks

Split the loop

Convert conditional blocks to

sequence of guarded statements

Reorder Statements

Rewrite query in

Set Oriented form

Fig. 2. Iterative application of Transformation rules

phase. The program transformation rules are applied in an

iterative manner, updating the dataflow information each time

the code changes. The rule application process stops when

all (or the user chosen) query execution statements within

loops are transformed into their corresponding set oriented

forms. Once all the transformations are done, the intermediate

representation is converted back to a target Java source file.

Applying Transformation rules

The program transformation rules presented in [6] can be

applied repeatedly to refine a given program. Applying a rule

to a program involves substituting a program fragment that

matches the antecedent (LHS) of the rule with the program

fragment instantiated by the consequent (RHS) of the rule.

Some rules facilitate the application of other rules and together

achieve the goal of batching a desired statement w.r.t. a loop.

In DBridge, the transformation rules are applied iteratively

as shown in Figure 2. A query execution statement present

within a loop body is considered as a candidate for batching,

and for each such candidate, the rules are applied. First,

conditional blocks if any, are converted into a sequence of

guarded statements as explained through Example 3. Then

the statement reordering algorithm is run, which enables loop

splitting. The query is then rewritten into a set oriented form.

Finally, the control structure of the program is restored by

merging back guarded statements into conditional blocks,

leading to a program with a set oriented query execution

statement which lies outside the loop body.

Choice of technologies

Java with JDBC is one of the most widely used platform

to build database applications. The JDBC API is the standard

mode of connecting to a database from a Java program. Object

relational mapping tools such as Hibernate provide a higher

level of abstraction than JDBC, but internally use JDBC itself.

So, by handling JDBC based programs, we cover a large class

of database applications.

The availability of Soot [7], a powerful static analysis tool

for Java, has also been a compelling reason to choose Java for

developing this tool. Soot provides a convenient intermediate

representation called Jimple, and also performs data flow

analysis which enables us to compute inter-statement data

dependencies.

IV. DEMONSTRATIONS

We demonstrate the working of DBridge using a number of

programs, some of them taken from real-world applications,

which faced performance problems. These applications include

an employee stock option management system and an end-

of-day processing system in a government organization. We

also show the impact of using DBridge on publicly available

benchmark applications [8], which model real world systems

such as an auction system modeled after ebay.com, a bulletin

board system modeled after slashdot.org. These programs

highlight the applicability of DBridge, and also demonstrate

the resulting gains in performance.

Along with programs such as Example 1, we demonstrate

the transformation of (a) programs with nested loops, (b)

programs with conditional blocks (Example 3), (c) programs

that perform a series of INSERTs into ones that performs

BULK INSERTs.

We have tested DBridge on a variety of Java programs in

order to evaluate (a) its applicability for real world applications

and (b) the performance gains that could be achieved by using

such a tool. We have observed that, by the use of the sound

techniques of reordering and other rules, DBridge can exploit

most of the potential opportunities for batching, even though

they are not explicit in the program. For the above mentioned

benchmark applications, DBridge was able to transform a

significant number of the opportunities. Our evaluation, which

has been conducted on multiple database systems, shows

performance gains achieved by the transformed programs to

the extent of about 70% in several cases. The details of the

evaluation are available in [6].

V. CONCLUSION

We present DBridge, a tool that combines program and

query transformations to make query execution set oriented.

We highlight challenges in building such a tool, and briefly

outline how we addressed them. Using complex real-world

programs we demonstrate the transformation capabilities of

DBridge, and the potential performance gains due to such

transformations.

REFERENCES

[1] R. Guravannavar and S. Sudarshan, “Rewriting Procedures for Batched
Bindings,” in Intl. Conf. on Very Large Databases, 2008.

[2] W. Kim, “On Optimizing an SQL-like Nested Query,” in ACM Trans. on
Database Systems, Vol 7, No.3, 1982.

[3] P. Seshadri, H. Pirahesh, and T. C. Leung, “Complex Query Decorrela-
tion,” in Intl. Conf. on Data Engineering, 1996.

[4] M. Elhemali, C. A. Galindo-Legaria, T. Grabs, and M. M. Joshi, “Exe-
cution Strategies for SQL Subqueries,” in ACM SIGMOD, 2007.

[5] “Java Database Connectivity (JDBC) API
http://java.sun.com/products/jdbc/overview.html.”

[6] R. Guravannavar, “Optimization and evaluation of nested queries and
procedures,” Ph.D. dissertation, IIT Bombay, 2009.

[7] “Soot: A Java Optimization Framework.” [Online]. Available:
http://www.sable.mcgill.ca/soot

[8] “ObjectWeb Consortium-JMOB (Java middleware open benchmarking).”
[Online]. Available: http://jmob.ow2.org/


