Foundations of Aggregation Constraints*

Kenneth A. Ross Divesh Srivastava'
Columbia University AT&T Bell Laboratories
New York, NY 10027, USA Murray Hill, NJ 07974, USA
kar@cs.columbia.edu divesh@research.att.com

Peter J. Stuckey S. Sudarshan?
University of Melbourne Indian Institute of Technology
Parkville, 3052, Australia Powai, Bombay 400 076, India

pjs@cs.mu.oz.au sudarsha@cse.iitb.ernet.in
Abstract

We introduce a new constraint domain, aggregation constraints, that is useful in
database query languages, and in constraint logic programming languages that incor-
porate aggregate functions. First, we formally study the fundamental problem of deter-
mining if a conjunction of aggregation constraints is solvable, and show that, for many
classes of aggregation constraints, the problem is undecidable. Second, we describe a
complete and minimal axiomatization of aggregation constraints, for the SQL aggre-
gate functions min, maz, sum, count and average, over a non-empty, finite multiset on
several domains. This axiomatization helps identify efficiently solvable classes of aggre-
gation constraints. Third, we present a polynomial-time algorithm that directly checks
for solvability of a conjunction of aggregation range constraints over a single multiset;
this is a practically useful class of aggregation constraints. Fourth, we discuss the rela-
tionships between aggregation constraints on a finite multiset of reals, and constraints
on the elements of the multiset. Finally, we show how these relationships can be used
to push constraints through aggregate functions to enable compile-time optimization of
database queries involving aggregate functions and constraints.

Keywords: Aggregate functions, solvability, constraint selections, query optimization

*A preliminary version of this paper appeared in [RSSS94].

tContact author. AT&T Bell Laboratories, Room 2C-404, 600 Mountain Avenue, Murray Hill, NJ 07974,
USA, Tel: +1-(908)-582-3194, Fax: +1-(908)-582-7550, E-mail: divesh@research.att.com.

*The work of this author was performed while he was at AT&T Bell Laboratories, Murray Hill, NJ 07974,
USA.

1 Introduction

Database query languages (e.g., SQL) use aggregate functions (such as min, maz, sum,
count and average) to obtain summary information from the database, typically in combi-
nation with a grouping facility, which is used to partition values into groups and aggregate
on the multiset of values within each group. Database query languages also allow con-
straints (e.g., M1 > 0, M2 < 10000) to be specified on values, in particular on the results
of aggregate functions, to restrict the answers to a query.

In this paper, we formally study constraints on the results of aggregate functions on
multisets; we refer to this constraint domain as aggregation comnstraints. This is a novel
constraint domain that is useful in database query languages, and in constraint logic pro-
gramming languages that incorporate aggregate functions [MS94]. We make the following
contributions in this paper:

1. We study the fundamental problem of determining if a conjunction of aggregation
constraints is solvable, and show that, for many classes of aggregation constraints, the
problem is undecidable (Section 3).

2. We describe a complete and minimal axiomatization of aggregation constraints, for
the aggregate functions min, maxz, sum, count and average, over a non-empty, finite
multiset on several domains. These aggregate functions are exactly those supported
in SQL-92 [MS93]. The axiomatization enables a natural reduction from this class
of aggregation constraints to the class of mixed integer/real, non-linear arithmetic
constraints (Section 4). This axiomatization also helps identify efficiently solvable
interesting classes of aggregation constraints.

3. We present a polynomial-time algorithm that checks for solvability of a conjunction
of aggregation range constraints, for the SQL aggregate functions, on a non-empty,
finite multiset of reals (Section 5 and Appendix A). Our algorithm operates directly
on the aggregation constraints, rather than on the reduced form obtained using the
axiomatization; it is not clear how to operate directly on the reduced form to attain
the same complexity.

4. We discuss the relationships between aggregation constraints on a finite multiset of
reals, and constraints on the elements of the multiset. In Section 6, we describe how
to infer aggregation constraints on a multiset, given constraints on the elements of
the multiset. In Section 7, we describe how to infer constraints on multiset elements,
given aggregation constraints on the multiset.

5. We show how aggregation constraints on queries (i.e., query comstraints involving
aggregation) can be used for compile-time database query optimization. (Section 8).

Example 1.1 (Illustrative Example)
Let E denote an employee relation with attributes Emp denoting the employee identifier,

Dept denoting the employee’s department, and Salary denoting the employee’s salary. The
following view V defines departments (and aggregates of their employees’ salaries) where
the minimum salary is greater than 0, where the maximum salary is less than or equal to
10000 and where the number of employees is less than or equal to 10:

Create View V (Dept, Min-Sal, Max-Sal, Sum-Sal, Count) As

Select Dept, MIN(Salary), MAX(Salary), SUM(Salary), COUNT(Salary)
From E

Group-by Dept

Having COUNT(Salary)< 10 and MIN(Salary)> 0 and MAX(Salary)< 10000

Consider the query Q given by

Select *
From v
Where Sum-Sal> 100000

To determine (at compile-time, by examining only the view definition and the query,
but not the database) that there are no answers to this query, we need to determine that,
independent of the actual tuples in the employee relation E, the conjunction of aggregation
constraints: min(M) > 0 A count(M) <10 A maz(M) < 10000 A sum(M) > 100000
is unsolvable, where M is a non-empty, finite multiset of salaries. This can be determined
by observing that the results of different aggregate functions on a multiset M are not
independent of each other. For example, the results of the sum, count and maz aggregate
functions are related as follows:

sum(M) < count(M) * maz(M).

This inequality can be used to infer the unsolvability of the previous conjunction of aggre-
gation constraints, and hence determine that the query Q has no answers. The techniques
described in this paper can be used to efficiently check for solvability of such aggregation
constraints.

Checking solvability of aggregation constraints can be used much like checking solv-
ability of ordinary arithmetic constraints in a constraint logic programming system like
CLP(R) [JMSY92]. Aggregate functions are typically applied only after multisets have
been constructed. However, checking solvability of aggregation constraints even before the
multisets have been constructed can be used to restrict the search space by not generating
subgoals that are guaranteed to fail, as illustrated by the above view and query. O

Our work provides the foundations of the area of aggregation constraints. We believe
there is a lot of interesting research to be done in the further study of aggregation con-
straints, e.g., the relationships between aggregation constraints on different multisets that
are related by multiset functions and predicates such as U, N, C, applications of aggrega-
tion constraints to query optimization, database integrity constraints and constraint logic
programming.

2 Aggregation Constraints

The constraint domain we study is specified by the class of first-order languages L(J), where
J C R, is an arithmetic domain, and R denotes the reals. For example, J can denote the
reals, the integers, the non-negative integers, etc. The distinguished sorts in L(J) are:

e the atomic sorts, which include J, the non-negative integers A/, the positive inte-
gers A1, and the sort J/ANt (e.g., N/NT denotes the non-negative rationals, and
R/NT =R), and

e the multiset sorts, which include finite multisets of elements from J, denoted by M(J),
and non-empty, finite multisets of elements from J, denoted by M™(J).

Clearly, M(J) contains M™*(J).

Constants of the atomic sorts are in L(J). Variables of sort M(J) and M*(J) are called
multiset variables, and are usually denoted by S, S1, etc. For simplicity, we do not consider
variables of the atomic sorts in our treatment.

Multiplication and addition functions on the atomic sorts J,N,N't and J/N* (and
between these sorts) are in L(J). We require that each of J, A/, N, and J/N is closed
under addition and multiplication, as is any union of these domains.

There are aggregate functions sum, min, maz, count and average in L(J). The func-
tions sum, min, and maz take arguments from M™*(J) and return a value of sort J. The
function count takes arguments from M(J) and returns a value of sort A/. The function
average takes arguments from M™(J) and returns a value of sort J/ANT.

The primitive terms of L(J) are constants of the atomic sorts, and aggregation terms,
which are formed using aggregate functions on multiset variables. Thus, 7, 3.142 and
maz(S) are primitive terms of L(R), where S is a multiset variable that ranges over non-
empty, finite multisets of reals. Complex terms are constructed using primitive terms and
arithmetic functions such as + and *. Thus, min(S;) * maz(S2) + (—3.142) x count(S,) is
a complex term in L(R).

A primitive aggregation constraint in L(J) is constructed using complex terms and
arithmetic predicates such as <, <,=,#,> and >, which take arguments of the atomic
sorts J, N, Nt and J/N*. Thus, sum(S1) < min(S1) + maz(Ss) + 3.1 is a primitive
aggregation constraint in L(R). Complex aggregation constraints can be constructed using
conjunction, disjunction and complementation, in the usual manner. However, in this paper,
we shall deal only with conjunctions of primitive aggregation constraints. Note that the
multiset variables cannot be quantified in L(J).

Given a primitive aggregation term FE, an aggregation range constraint on E is a con-
junction of primitive aggregation constraints, where each primitive constraint is of the form
Efc or of the form c6F, 8 is one of < and <, and ¢ is a constant of an atomic sort.

2.1 Solvability

Given a sort J for multiset elements, an argument of an aggregate function in {min, maz,
sum, count, average} is said to be well-typed, if it matches the signature of the aggregate
function. Thus, S in maz(S) is well-typed if it is a non-empty, finite multiset on J.

The notion of assignments, 8, of values to free variables (here, the multiset variables) is
defined in the usual way; given a sort J, an assignment is said to be well-typed if each of
the variables in the assignment is well-typed for the aggregate functions it participates in.

We are interested in the following fundamental problem:

Solvability: Given a conjunction C of primitive aggregation constraints, does
there exist a well-typed assignment 6 of multisets to the multiset variables in C,
such that C is satisfied?

Checking for solvability of more complex aggregation constraints can be reduced to
this fundamental problem. The other important problems of checking implication (or en-
tailment) and equivalence of pairs of aggregation constraints can be reduced to checking
solvability of other aggregation constraints, in polynomial-time.

2.2 A Taxonomy

We present below several factors that affect the complexity of checking for solvability, and
in later sections present algorithms for checking solvability of special cases of aggregation
constraints, defined on the basis of these factors.

Domain of multiset elements : This determines the feasible assignments to the mul-
tiset variables in checking for solvability. Possibilities include integers and reals;
correspondingly, the multiset variables range over finite multisets of integers or fi-
nite multisets of reals. In general, restricting the domain of the multiset elements to
integers increases the difficulty of the problem.

Operations : If we allow just addition and multiplication, solving constraints may be
easier than if we also allowed exponentiation, for example.

Aggregate functions : This determines the possible aggregate functions that are allowed
in constructing aggregation terms. Possibilities include min,maz,sum,count,average,
etc. In general, the complexity of checking for solvability increases if more aggregate
functions are allowed.

Class of constraints : This determines the form of the primitive aggregation constraints
considered. There are at least two factors that are relevant:

1. Linear vs. Non-linear constraints: Checking for solvability of linear constraints
is, in general, easier than for non-linear constraints. By restricting the form even
further, such that each primitive aggregation constraint has at most one or two
aggregation terms, the problem can become even simpler.

2. Constraint predicates allowed: The complexity of checking for solvability also
depends on which types of the constraint predicates are allowed. We can choose
to allow only equational constraints (=) or add inequalities (<, <) or possibly
even disequalities (#). In general, the difficulty of the solvability problem in-
creases with each new type.

Separability : This also determines the form of the primitive aggregation constraints
considered. The two possible dimensions in this case are:

1. Multiset variables: A conjunction of primitive aggregation constraints is said
to be multiset-variable-separable if each primitive aggregation constraint involves
only one multiset variable. For example, the conjunction of primitive aggrega-
tion constraints min(S;) + maz(S1) < 5 A sum(Sz) > 10 is multiset-variable-
separable, while min(S;) + min(Sz) < 10 is not. In general, multiset-variable-
separability makes the solvability problem easier since one can check solvability
of the aggregation constraints separately for each multiset variable.

2. Aggregate functions: A conjunction of primitive aggregation constraints is
said to be aggregate-function-separable if each primitive aggregation constraint
involves only one aggregate function. For example, the conjunction min(S;) <
min(Sz) A sum(S1) > sum(S;) + 2 is aggregate-function-separable. Note that
this conjunction is not multiset-variable-separable.

3 Undecidability Results

We show undecidability of checking solvability of conjunctions of primitive aggregation
constraints by a linear-time, linear-space reduction from quadratic arithmetic constraints
over the positive integers to linear aggregation constraints over non-empty, finite multisets
of reals. The reduction makes essential use of the relationships sum(S) = count(S) *
average(S), and min(S) = maz(S) implies that sum(S) = count(S) » min(S5).

Theorem 3.1 Checking solvability of a conjunction C of linear aggregation constraints over
finite multisets of reals is undecidable if:

1. C involves the sum, count and average aggregate functions, or

2. C involves the sum, min, maz and count aggregate functions.

Proof: Consider a conjunction C of quadratic primitive arithmetic constraints over the
positive integers. Replace each quadratic term X;* X}, (where X; and X}, are not necessarily
distinct variables) in C by a “new” positive integer variable X;, and conjoin a quadratic
equation of the form X; = Xj; * X to C. The resulting conjunction of constraints C;
is equivalent to C (on the variables of C). Further, C; contains only linear arithmetic
constraints and quadratic equations of the form X; = X; x X, over the positive integers.

For each variable X; in Cy, the reduction algorithm creates a new multiset variable
S;, and replaces each occurrence of X; in the linear arithmetic constraints of C; by the
aggregation term count(S;) + 1. For each quadratic equation of the form X; = X, « X}
in Cq, the reduction algorithm creates a new multiset variable S;;z, and replaces the above
quadratic equation by the following three linear aggregation equations:

count(S;) + 1 = sum(S;jx)
count(S;) + 1 = count(S;;k)
count(Sy) + 1 = average(Siji)

The resulting conjunction of linear aggregation constraints Cy is solvable over finite multisets
of reals if and only if the original conjunction of quadratic constraints C is solvable over the
positive integers.

There is a similar reduction using the aggregate functions sum, min, maz and count,
where the quadratic arithmetic equation X; = X;* X}, is replaced by the following four linear
aggregation equations: count(S;)+1 = sum(S;;k), count(S;)+1 = count(S;ji), count(Sk)+
1 = min(S;jx) and count(Sk) + 1 = maz(S;jr). Again, the resulting conjunction of linear
aggregation constraints is solvable over finite multisets of reals if and only if the original
conjunction of quadratic constraints is solvable over the positive integers.

The theorem follows from the undecidability of the solvability of quadratic arithmetic
constraints over the positive integers (e.g., Diophantine equations). O

The proof of the above theorem also shows the following result:

Corollary 3.1 Checking solvability of a conjunction C of linear aggregation constraints
over finite multisets of integers is undecidable if:

1. C involves the sum, count and average aggregate functions, or

2. C involves the sum, min, maz and count aggregate functions.

A natural question that can be raised is the complexity of checking for solvability when
fewer aggregate functions occur in the aggregation constraints. The following result estab-
lishes the hardness of some simple special cases.

Theorem 3.2 Checking solvability of a conjunction of linear aggregation constraints over
finite multisets of values drawn from any domain, involving just the count aggregate function
is NP-complete.

Checking solvability of a conjunction of linear aggregation constraints, over finite mul-
tisets of integers, involving either min or max or sum is NP-complete.

Proof: For integer linear arithmetic constraints, there is a reduction to linear aggregation
constraints, where integer variable X; is replaced by either of:

e count(S;1) — count(S;2), where S;; and S;» are new multiset variables ranging over
finite multisets of values drawn from any domain, or

e any of the aggregation terms min(S;), maz(S;) or sum(S;), where S; is a new multiset
variable ranging over non-empty, finite multisets of integers.

There is a similar reduction from linear aggregation constraints to integer linear arithmetic
constraints as well. Checking for solvability of linear arithmetic constraints over the integers
is NP-complete [Sch86]. The result follows. O

4 An Axiomatization

In this section, we present a complete and minimal set of relationships between the aggre-
gate functions on a single multiset. The intuition here is that the domain of aggregation
constraints only allows primitive aggregate functions on individual multisets. Interactions
between different multisets is possible only via arithmetic constraints between the results
of the aggregate functions on individual multisets. Consequently, relationships between the
results of aggregate functions on different multisets can be inferred using techniques from
the domain of ordinary arithmetic constraints (see [Sch86], for example).

Definition 4.1 (Aggregate Assignment and Aggregate Solvability) An aggregate
assignment maps each aggregation term of the form F(S), where F is an aggregate function
and S is a free variable, to a value.

Given a sort J, an aggregate assignment is said to be well-typed if each term F(S) is
mapped to a value that is in the sort of the result of F(S).

An aggregation constraint is said to be satisfied by an aggregate assignment if the
aggregate assignment is well-typed and the constraint obtained by replacing each F'(S) by
its value in the aggregate assignment is solvable.

An aggregation constraint is said to be aggregate solvable if there exists an aggregate
assignment that satisfies the constraint. O

A set of aggregation constraints ,A(S) that defines the relationships between the results
of aggregate functions on a multiset S is said to be an aziomatization of the aggregate
functions on S.

Intuitively, to ensure solvability of a given aggregation constraint, we must check the
aggregate solvability of the conjunction of the aggregation constraint with the axiomatiza-
tions A(S;) for every multiset S; in the aggregation constraint. (The axiomatization may
depends on the sort of S;.) Checking for aggregate solvability amounts to treating each
F(S;) as a distinct variable (of the appropriate sort), and using techniques from the domain
of ordinary arithmetic constraints.

Definition 4.2 (Soundness and Completeness) A set of axioms A(S) is sound for a
given sort of multisets if every finite multiset S of the appropriate sort satisfies A(S).

A set A(S) of axioms is complete for a given sort of multisets and a given collection
of aggregate functions if for every aggregate assignment that assigns values to the given
aggregate functions on S, and that satisfies the axioms A(S), there exists a finite multiset
S of the appropriate sort, with the corresponding aggregate values. O

Theorem 4.1 Suppose a set of axioms A(S) is sound and complete for a given sort and a
given collection of aggregate functions. An aggregation constraint C using the given aggregate
functions on multisets Sy, ..., S, of the given sort is solvable iff C AN A(S1) A ... N A(Sy) is
aggregate solvable.

Proof: For the “only if” direction, if the constraints are solvable by an assignment to the
multiset variables Si,..., Sy, we can assign to each aggregate expression F(S;) the value
defined by the assignment to S;. The soundness of the axiomatization implies aggregate
solvability.

For the “if” direction, suppose we have an aggregate assignment that satisfies CAA(S1)A
...ANA(Sy). For each variable S;, the completeness of the axiomatization implies that there
is a multiset S; of the appropriate sort such that A(S;) is solvable using S}, and the results
of the aggregate functions on S; are the same as in the aggregate assignment. Hence C is
solvable. O

For the SQL aggregate functions sum, min, maz, count and average, on the sorts
MT(J) for several different J, there is a sound and complete axiomatization as shown by
the following theorem. The only aggregate function in the above set applicable to M(J),
for any J, is count. The axiomatization for this case is trivial.

Theorem 4.2 The following relationships provide a sound, complete and minimal azioma-
tization of the relationships between aggregate functions min, maz,sum,count and average
on a finite multiset S from M™(J), where J is either the reals, the rationals, the integers,
the non-negative integers, or the integers divisible by any fixzed number k.

1. min(S) < maz(S).

2. count(S) * min(S) + maz(S) < sum(S) + min(S).
3. sum(S) + maz(S) < min(S) + count(S) * maz(S).

4. sum(S) = average(S) * count(S).

Proof: That each of these axioms is sound follows from the mathematical properties of the
various aggregate functions. We now consider completeness.

Consider an arbitrary non-empty multiset S = {X1,---, X,} where n > 1 and X; <
Xy < --- < X,,. By definition, we have min(S) = X1, maz(S) = X, sum(S)=X1+---+
Xn, count(S) = n, and average(S) = (X1 + - - -+ X,,)/n. We consider several cases.

count(S) =1 : The axioms imply that min(S) = maz(S) = sum(S) = average(S). For
any choice of min(S), we let X; = min(S), and we have the required multiset.

count(S) =2 : The axioms imply that min(S) < maz(S), sum(S) = min(S) + maz(S),
sum(S) = 2 * average(S). Choose X; = min(S), X3 = maz(S), and we have the
required multiset.

count(S) = 3 : The axioms imply that min(S) < maz(S), sum(S) < min(S)+2+maz(S),
sum(S) > 2 * min(S) + maz(S), sum(S) = 3 * average(S). Choose X; = min(S),
X3 = maz(S), X2 = sum(S) — min(S) — maz(S) and we have the required multiset.

count(S) > 4 : The axioms imply that min(S) < maz(S), sum(S) < min(S)+ (n — 1) *
maz(S), sum(S) > (n— 1) *min(S) + maz(S), sum(S) = n*average(S). We choose
X1 = min(S), X, = maz(S). We now subdivide into several cases:

1. J is the reals or the rationals. Choose X = ... = X,,_; = (sum(S) — min(S) —
maz(S))/(n — 2), and we have the required multiset.

2. J is the integers. Let ¢ = (sum(S) — min(S) — ma=z(S))/(n — 2). Choose X3 =
o= X;=|e] and Xy == X1 = [2], where j =14 (n — 2)([z] —),
and we have the required multiset.

3. If J is the non-negative integers, or the even integers, or the integers divisible by
k for any fixed k, then a construction similar to that of the previous case applies.

This completes the proof of completeness. Minimality follows from the fact that none of
the axioms is entailed by the remaining axioms.! O

Other relationships between the results of aggregate functions can be inferred using these
basic relationships. For example, we can infer that count(S) = 1 implies that min(S) =
maz(S). Similarly, we can infer that the constraint maz(S) < average(S) is unsolvable.

The above set of axioms contains nonlinear constraints. We now show that linear con-
straints are not sufficient to axiomatize aggregation constraints.

! Axiom (1) is implied by axioms (2) and (3) only for the case that count(S) > 3.

Theorem 4.3 There is no finite set of linear aggregation constraints over non-empty, finite
multisets of reals and integers that soundly and completely axiomatizes the relationships
between the aggregate functions min, maz, sum and count.

Proof: From axioms (1)—(3), the following statement) is provable:
min(S) = maz(S) A min(S) = count(S) = sum(S) = count(S) * count(S)

Given the linear aggregation constraint (min(S) = maz(S) A min(S) = count(S)), the set
of possible values for sum(S) is {1,4,9, 16, ...}, which cannot be expressed as the solution
of a finite set of linear constraints. Thus) cannot be entailed by a finite linear set of
axioms.

For any sound finite linear axiomatization A, @ is not entailed by A. Tt follows that it
is possible to choose values of min(S), maz(S), sum(S), and count(S) such that min(S) =
maz(S), min(S) = count(S) and sum(S) # count(S) xcount(S), but for which these values
satisfy the axioms of \A. Since no such multiset S exists, A is not complete. O

5 Solvable Special Cases

In this section, we present some special cases of aggregation constraints where checking for
solvability is tractable, i.e., solvability can be checked in time polynomial in the size of the
representation of the constraints.

5.1 Directly Using the Axiomatization

We briefly describe two cases where the axiomatization presented in Section 4 can be used to
obtain polynomial-time algorithms for checking solvability. The intuition here is that in each
of the two cases the axiomatization of the relationships between the results of the various
aggregate functions can be simplified to a conjunction of linear arithmetic constraints. These
simplified axioms can then be conjoined with the given aggregation constraints, each distinct
aggregation term can be replaced by a distinct arithmetic variable (of the appropriate sort)
and solvability can be determined using techniques from existing constraint domains.

The first case is when the conjunction of constraints involves only min and maz. In this
case, only the relationship min(S) < maz(S) needs to be added. If the original conjunction
of aggregation constraints is linear and the multiset elements are drawn from the reals, the
transformed conjunction of arithmetic constraints is also linear over the reals; solvability can
now be checked in time polynomial in the size of the aggregation constraints, using any of
the standard techniques (see [Sch86], for example) for solving linear arithmetic constraints
over the reals.

The second case is when the conjunction of linear aggregation constraints explicitly
specifies the cardinality of each multiset, i.e., for each multiset variable S;, we know that

10

count(S;) = k;, where k; is a constant. In this case, each of the non-linear constraints in
our axiomatization can be simplified to a linear constraint; checking for solvability again
takes time polynomial in the size of the aggregation constraints if the multiset elements are
drawn from the reals.

5.2 Linear Separable Aggregation Constraints

In this section, we examine a very useful class of aggregation constraints, and present a
polynomial-time algorithm to check for solvability of constraints in the class. Our technique
operates directly on the aggregation constraints, rather than on their reduction to arithmetic
constraints. The reduced form of this class includes mixed integer/real constraints, and is
non-linear; it is not clear how to operate directly on the reduced form and attain the same
complexity as our algorithm. We specify the class of constraints in terms of the factors,
described in Section 3, that affect the complexity of checking for solvability. We require the
following:

1. The domain of multiset elements is R, the reals.
2. The constraints are linear and specified using <, <,=, > and >.

3. The constraints are multiset-variable-separable and aggregate-function-separable.

The above restrictions ensure that we can simplify the given conjunction of aggregation
constraints to range constraints on each aggregate function on each multiset variable. We
refer to this class of aggregation constraints as £LS-aggregation-constraints.2

Most aggregation constraints occurring in queries are multiset-variable-separable. Only
when we consider constraint propagation or fold/unfold transformations are we likely to
obtain non-multiset-variable-separable aggregation constraints. The further restrictions for
LS-aggregation-constraints are not onerous; Example 1.1 uses such constraints.

The general algorithm along with a proof of correctness is presented in Appendix A.
Here, to present the main ideas underlying the general algorithm, we describe the algorithm
for the simpler case when the only aggregate functions present are min, maz, sum and count,
i.e., there are no aggregation constraints involving average.

5.2.1 Multiset Ranges: No average

The heart of our algorithm is a function Multiset_Ranges that takes four finite and closed
ranges, [my, my|, [M;, M), [si, sn), and an integer range [ki, kx|, and answers the following
question:

2£S = linear, separable.

11

Do there exist & > 0 numbers, k between k; and kj, such that the minimum of
the & numbers is between m; and my, the maximum of the & numbers is between
M; and M}y, and the sum of the & numbers is between s; and s,?

When a > b, the closed range [a, b] is empty. We use operations such as “overlaps” on
pairs of ranges; these can be defined easily in terms of the primitive comparison operations
between endpoints of the two ranges. Note that the empty range does not overlap with any
range.

function Multiset_Ranges (mq, mp, My, My, si, sn, ki, kr) {

/¥ We assume finite and closed ranges. */
(1) /* Tighten min, maz and count bounds. */
(a) if (M; < my) then M; = my.
(b) if (mp > Mp) then mp, = Mj,.
(c) if (k1 < 1) then & = 1.
(2) /* Obviously unsolvable cases. */
(a) if (k1 > kp or my > my, or My > My, or s; > sp,) then
/¥ infeasible ranges */
return 0.
/* Case A: Elements can be negative, positive, or 0. */
(3) if ([mi, M4] overlaps [0, 0]) then
(a) if ([s1, sn] does not overlap [(kn, — 1) * my + Mj, mp + (kp, — 1) * Mp]) then
return 0.
(b) else return 1.
/* Case B: All elements are negative. Switch everything. */
(4) if (Mp, < 0) then
(a) [tl,t2] = [—Mh, —Ml]; [Ml, Mh] = [—mh, —ml]; [ml,mh] = [tl,t2].
(b) t = —s1; 851 = —sp; s =1.
/* Continue with Case C */
/* Case C: All elements are positive. */
(5) /*my > 0. */
(a) if ([s1, sn] does not overlap [(k; — 1) * my + M, mp + (kp, — 1) x Mpy]) then
return 0. /* sum is too low or too high. */
(b) define integers kq and ke by s = mp + (k1 — 1) * My — k2,0 < ky < Mj,.
/¥ Multiset cardinality must be > kq, for sum > s;. */
(c) define integers k3 and k4 by sp, = (ks — 1) x my + Mi + k4,0 < kg < my.
/¥ Multiset cardinality must be < k3, for sum < sp. */
(d) if (([k1, k3] is feasible) and ([k1, k3] overlaps [k, kp])) then
return 1. /¥ any k in the intersection is a witness. */
(e) else return 0.

12

Theorem 5.1 Function Multiset_Ranges returns 1 iff there exist k > 0 (real or integer)
numbers, k; < k < kp, such that the minimum of the k numbers is in [m;, my|, the mazimum
of the k numbers is in [M;, My], and the sum of the k numbers is in [s;, sp].

Further, Multiset_Ranges is polynomial in the size of representation of the input.

Proof: We prove the first part of the theorem by showing that the algorithm returns 1 if
and only if the given constraints along with the four axioms of Theorem 4.2 are solvable.

Steps (1a) and (1b) generate all constraints on min and maz that can be inferred from
the given range constraints on min and maz and the axioms. If Step (2) returns 0, the
resultant set of constraints is clearly unsolvable. Else, the conjunction of the given range
constraints on min, maz and count along with all the axioms is solvable. We now have to
consider only the constraints on sum.

All elements in the multiset have to lie in the range [m;, M}]; the minimum and maximum
elements are additionally constrained to lie in the ranges [m;, my] and [M;, M}] respectively.
Axioms (2) and (3) are satisfied if and only if the sum is in the union of the ranges:

kp,
U[(i—l)*ml—I—Ml,mh—l—(i—1)*Mh]
1=k

In general, this union of ranges need not be convex; there may be gaps.

Thus, the conjunction of the given constraints and axioms (1)—(4) is solvable if and
only if there is an ¢ such that the given range on sum, [s;, sp] overlaps with the range:
[(i — 1) xmy + M, mp + (¢ — 1) x Mp]. The algorithm for testing the above has three cases,
based on the location of the [m;, M}y] range with respect to zero.

The first case is when the [m;, M}] range includes zero; in this case, the union of the
ranges from which the sum can take values is convex, and is given by:

[(kh — 1) *my + My, mp + (kh — 1) * Mh]

Step (3) checks that [s;, sp] overlaps with this range.

The second case is when the [m;, M}] range includes only negative numbers, and the
third case is when the [m;, M}] range includes only positive numbers. These two cases are
symmetric, and we transform the second case into the third case in Step (4), and consider
only the third case in detail.

In the third case, the sum lies within the range [(k;— 1) *m;+ Mj, mp+ (kn— 1) * M), but
not all values in this range are feasible — there may be gaps. The conjunction of constraints
is unsolvable if and only if the [s;, sp] range lies outside [(k;— 1) *xm;+ M, mp+ (kp — 1) x Mp],
or entirely within one of the gaps. Step (5a) checks for the first possibility, and Steps (5b)-
(5e) check for the second possibility. The number k; gives the smallest cardinality that the
multiset can have subject to the constraints on min and maz, such that its sum is > s;.
Similarly, the number k3 gives the largest cardinality that the multiset can have subject to
the constraints on min and mae, such that its sum is < sp.

13

Clearly, if [kq, k3] is infeasible, the constraints are unsolvable. If [kq, k3] is feasible,
let j be any integer in [k;, k3]. The possible values of sum for this j are all values in
[(7—1)*xmy+ M;,mp+ (j — 1) * Mp]. Now by the definition of k; the range for j = k; is not
entirely to the left of [s;, si], and the range for j = k3 is not entirely to the right of [s;, sp].
But since k; < k3, both these ranges must overlap [s;, sp]. It is then easy to show that for
all j in [kq, k3] the range for j overlaps [s;, sp]. Since [k1, k3] overlaps [ki, kp], there is a j
element multiset that satisfies all the constraints. This concludes the proof of the first part
of the theorem.

The proof of the second part of the theorem is straightforward because the number of
steps in Multiset_Ranges is bounded above by a constant, and each step is polynomial in the
size of representation of the input. O

Checking for solvability of a conjunction of £LS-aggregation constraints proceeds as fol-
lows. Since the aggregation constraints are multiset-variable-separable, the primitive aggre-
gation constraints can be partitioned based on the multiset variable, and the conjunction of
aggregation constraints in each partition can be solved separately. The overall conjunction
is solvable iff the conjunction in each partition is separately solvable.

Though £S-aggregation-constraints are restricted, they are strong enough to infer useful
new aggregate constraint information. They can be used to infer some information about
an arbitrary aggregation constraint C by determining an £S-aggregation-constraint H that
is implied by C; any aggregation constraints implied by H are then also implied by C.

5.2.2 Dealing with average in Multiset Ranges

In Appendix A, we describe Gen_Multiset_Ranges, which is a generalization of the function
Multiset_Ranges, described in the previous section. It takes a finite and closed range [a;, a]
for average, in addition to the ranges for min, maz, sum and count, and determines in
polynomial-time if there is a non-empty, finite multiset of real numbers that satisfies all the
aggregation constraints. Gen_Multiset_Ranges is based on three key observations, presented
here.

¢ Requiring the minimum value of a multiset to be in the (consistent) range [m;, ms],
and the maximum value of the multiset to be in the (consistent) range [M;, M}], allows
us to tnfer that the sum of the values of an ¢ element multiset must be in the range:

[(i—l)*ml—l—Ml,mh—l—(i—1)*Mh]

Given that the average value of a multiset is in the (consistent) range [a;, ap], we can
infer that the sum of the values of an ¢ element multiset must be in the range:

[i*al,i*ah]

The first key observation used in Gen_Multiset_Ranges combines these two ideas as
follows. Given range constraints on the minimum value, on the maximum value, and

14

6

on the average value of a multiset, the sum of the values of an i element multiset
must be in the intersection of the inferred ranges for sum, based on min and max, on
the one hand, and based on average, on the other. When the count of the multiset is
known to be in the range [k, k], we can infer that the sum must be in the following
union of ranges:

kp,
U ([(i—l)*ml—l—Ml,mh—l—(i—l)*Mh]ﬂ[i*al,i*ah])
1=k

The second key observation used in Gen_Multiset_Ranges is as follows: If 4; is the
smallest integer ¢ > k; for which the ranges [(¢ — 1) * my; + M;, mp + (¢ — 1) * Mp] and
[Z % ai, 1 * ap] overlap, then for all ¢ > ¢;, the two ranges overlap.

This observation can be inferred from the following facts: (a) the maximum value of
a multiset can be no smaller than the minimum value (i.e., M; > m; and My > my,),
(b) the average value of a multiset can be no smaller than the minimum value (i.e.,
a; > my), and no larger than the maximum value of the multiset (i.e., an < Mp).

The third key observation, repeatedly used in Gen_Multiset_Ranges, involves two prop-
erties of ranges: (a) given three ranges such that every pair from this collection overlap,
then there exists at least one point that is common to all three ranges, and (b) given
two ranges that overlap, a third range does not overlap with the intersection of the
two ranges if and only if the third range does not overlap with at least one of the two
ranges.

Thus, in checking that the given range [s;, sp] on the sum of the values of a multiset
overlaps with the inferred union of ranges for sum (see first observation above), it
suffices to check that there exists at least one 7 in [i1, k] such that [s;, sp] overlaps
with [(s — 1) * my + My, mp + (¢ — 1) x Mp], as well as with [i* a;, %% ap]. Each of these
checks can be independently done using the technique described in Multiset_Ranges.

Using Constraints on Multiset Elements

By using the constraints that are known on the elements of a multiset, we can infer con-
straints on the results of aggregate functions on the multiset. The following example illus-
trates this:

Example 6.1 (Multiset Element Constraints)
Consider again the view from Example 1.1.

Create View V (Dept, Min-Sal, Max-Sal, Sum-Sal, Count) As

Select Dept, MIN(Salary), MAX(Salary), SUM(Salary), COUNT(Salary)
From E

Group-by Dept

Having COUNT(Salary)<10 and MIN(Salary)>0 and MAX(Salary)<10000

15

In addition to the constraints on the results of the aggregate functions present in the
body of the rule, constraints may be known on tuples of the employee relation E; for example,
each employee may be known to have a salary between 1000 and 5000. If the employee
relation is a database relation, these constraints may be specified as integrity constraints
on the database. If the employee relation is a derived view relation, these constraints may
be computed using the integrity constraints on the database relations and the definition of
the employee relation (see [SR93], for example).

Constraints on the tuples of the employee relation can be used to infer constraints on
the results of the aggregate functions (and hence on the tuples of V). For example, if each
employee is known to have a salary between 1000 and 5000, then the minimum salary and
the maximum salary of each department in the view can be inferred to be between 1000
and 5000.

Consider the query

Select *
From v
Where Sum-Sal>50000.

Given the constraints in the Where clause and in the view definition, it is possible for
this query to have answers. However, if we take the constraints on the salaries of each
employee into account, we can determine that min(M) > 1000 A maz(M) < 5000, where
M is the multiset of salaries of employees in some department. In conjunction with the
aggregation constraint count(M) < 10, it is now possible to determine that the query can
have no answers. O

Let each element E of multiset S satisfy constraint C(E), i.e., VE € S,C(E). The
following result provides a technique to infer constraints that hold on the results of aggregate
functions on multiset S.

Theorem 6.1 Let C(E) be an arithmetic constraint (in disjunctive normal form, for sim-
plicity). Consider a finite, non-empty multiset S of reals. Let A(S) be the conjunction of
the axioms relating the results of aggregate functions min, maz, sum, count and average
on multiset S. Suppose VE € S,C(E). Then, the following constraint holds:

C(min(S)) A C(maz(S)) N (count(S) > 0) A A(S).

Proof: We show soundness by showing the soundness of each conjunct in C(min(S)) A
C(maxz(S)) A (count(S) > 0) A A(S). Since min(S) and ma=z(S) are both elements of
multiset S, they must satisfy the constraint C, by assumption. The constraint count(S) > 0
is equivalent to the assumption that the multiset S is non-empty. The soundness of A(S)
follows from Theorem 4.2. O

Although the constraint C(min(S)) A C(maz(S)) A (count(S) > 0) A A(S) is sound,
it may not, in general, be the tightest possible constraint that holds on the results of the

16

aggregate functions, i.e., the above constraint may be incomplete. The following examples
present several classes of constraints for which the above constraint is incomplete. Subse-
quently, we describe a constraint class for which the above constraint is indeed complete.

Example 6.2 (Incompleteness with Disjunctive Linear Constraints)

Consider a finite, non-empty multiset S of reals. Let C(E) = (E = 0V E = 2) be the
constraint known to be satisfied by each element E of the multiset S. It is obvious that
sum(S) is non-negative and even. (Evenness can be expressed using aggregation constraints
by asserting that sum(S) = 2% count(S1), where S1 is a new multiset variable.?) However,
this cannot be inferred using the constraint in Theorem 6.1. Intuitively, this is because the
constraint C(min(S)) A C(maz(S)) does not imply that each element of the multiset is
either 0 or 2, which is the case in this example. O

Example 6.3 (Incompleteness with Non-Linear Constraints)

Consider a finite, non-empty multiset S of reals. Let C(E) = (E «x E = 2 % E) be the
constraint known to be satisfied by each element E of the multiset S. Since (E* E = 2x E)
is equivalent to F = 0V E = 2, incompleteness follows from the previous example.. O

Theorem 6.2 Let C(E) be a range constraint on E. Consider a finite, non-empty multiset
S of reals. Let A(S) be the conjunction of the azioms relating the results of aggregate
functions min, maz, sum, count and average for multiset S. Suppose VE € S,C(E).
Then,

C(min(S)) A C(maz(S)) A (count(S)>0) A A(S)

is a complete aggregation constraint satisfied by the results of the aggregate functions min,
maz,sum,count and average on multiset S.

Proof: Consider the aggregation constraint
C(min(S)) A C(maz(S)) A (count(S)>0) A A(S).

Since C is a range constraint, the constraint C(min(S)) A C(maz(S)) implies that each
element of the multiset lies in the range given by C. Further, the constraint count(S) > 0
implies that the multiset is non-empty. O

Note that the constraint C(E) allowed on the multiset elements is quite restricted.
For example, constraints of the form VE1,E2 € S, FE1 < 2 4+ E2, i.e., constraints that
relate different elements of the multiset, are not allowed. Constraints of the form, YE €
S, E = count(S) are not allowed either since the constraint involves an aggregate function.
Existential quantification on the set elements, such as 3F € §, F = 2 is not allowed either.

Although the class of constraints allowed on multiset elements is small, it is of signifi-
cant practical value in applications such as database query optimization. Database queries
typically specify only simple range constraints, as is the case in Example 6.1.

®Note that C(E) = E = 2 % count(S51), where S1 is a new multiset variable, forces each element of the
multiset S to be the same non-negative even integer, rather than S being any multiset of non-negative even
integers.

17

7 Inferring Constraints on Multiset Elements

Consider a query language that allows the construction of multisets, as well as multiset
element enumeration. Given aggregation constraints on a multiset, it is now useful to be
able to infer constraints on the elements of this multiset. Let B be a base relation with a
single attribute Mset containing a multiset of elements. The following example, using an
SQL-like syntax for unnesting, illustrates this.

Example 7.1 (Inferring Multiset Element Constraints)
Consider the following program:

Create View V As
Select X

From B

Where X In B.Mset

Suppose we are given the following (integrity) constraint on the relation B: VM, B(M) =
(min(M) > 5). Then we can infer the following constraint on the relation V: VX, V(X) =
(X >5). O

The following result is straightforward.

Theorem 7.1 Consider a conjunction of aggregation constraints C(S) on a single multiset
denoted by S. Let A(S) be the azioms on a multiset, as in Theorem 4.2. Let E(E) be
the conjunction of constraints that can be inferred on the variable E from the following
conjunction of constraints:

C(S) N A(S) AN (E > min(S)) A (E < maz(S)).
Then, it is the case that VE € S,E(F). O

We conjecture that, if £(F) is a conjunctive constraint linear in E, it is the tightest
constraint in the class of conjunctive constraints linear in F that hold on elements of the
multiset. The conjecture does not hold if either disjunction or non-linearity is allowed, as
the following example demonstrates.

Example 7.2 (Incompleteness with Disjunctions or Non-Linearity)
Consider the following conjunction C of constraints:

sum(S) =13 A count(S)=4 A min(S)=1 A maz(S) = 10.
According to the above conjecture, the tightest conjunction of constraints linear in F is:
VEe€S,(E>1 A E<10).

However, the only multiset S that satisfies C is {1, 1,1, 10}, for which the stronger disjunctive
constraint VE € S,(F =1 V E = 10) holds. Note that this disjunctive constraint is
equivalent to the non-linear conjunctive constraint VE € S,(E* E +10=11% E). O

18

8 Query Constraints and Relevance

Queries can have constraints associated with them. Intuitively, only answers that satisfy
these constraints are “relevant” to the query. Such constraints are referred to as query con-
straints, and are used extensively in query optimization (e.g., [SR91, SR93, SS94, LMS94)).

Query constraints in the presence of aggregate functions have been considered in [SR91,
LMS94]. However, they consider special cases. Sudarshan and Ramakrishnan [SR91] essen-
tially consider dynamic order constraints of the form X < f; and X > f5, where f; is the
“current” value of min(S) and f, is the “current” value of maz(S), and S is a multiset that
is incrementally computed during program evaluation. Levy et al. [LMS94] only consider
constraints of the form maz(S) > ¢ and min(S) < ¢, where ¢ is a constant.

The following examples illustrate the benefits of inferring query constraints on multiset
elements, given query constraints on the results of aggregate functions on the multiset, in
cases that are not handled by earlier techniques.

Example 8.1 (Inferring Query Constraints)
Let P be a base relation with attributes X and Y. Consider the following view:

Create View V (X,Max) As
Select X, MAX(Y)

From P

Group-by X

and the following query:

Select X, Max
From v
Where Max>X

Consider a tuple (z,y) of P satisfying y < #. Two cases need to be considered. First,
when y is not the maximum value in the group for z. In this case, the tuple (z,y) is
irrelevant for computing V. (Note that a (z, y) tuple of P, where y is not the maximum value
in the group for z, is irrelevant whether or not y < z.) Next, consider the case when y is the
maximum value in the group for . Then, the tuple (z,y) is in the extension of V; however,
this tuple does not satisfy the given query constraint. In either case, if y < @, the tuple
(z,y) of P is irrelevant to the given query. Hence, the query constraint P(X,Y) :Y > X
can be inferred on the relation P; this can be used to optimize query evaluation.

A similar observation holds for the query

Select X, Max
From v
Where Max=X

19

Since Max=X=Max>X, the previous arguments can be used to infer the query constraint
P(X,Y):Y > X on the relation P. O

The following theorem indicates how aggregation constraints can be used in query op-
timization.

Theorem 8.1 Let view V be defined as follows.

Create View V (X;, ---, X,, Max) As
Select Xy, ---, X,, MAX(Y)

From P

Group-by X;, ---, X,

where X1, ---, X, and Y are distinct attributes of P. Let X denote the attributes X,

-+, Xn, and let Z denote the attributes of P other than X and Y. Suppose we are given

a query on V with query constraint C(X,Max) on the tuples in V. Let f(X) < Max be a

constraint that is implied by the constraint C(X,Max). Then the answer to the query is the
same if the definition of V is replaced with

Create View V (X;, ---, X,, Max) As
Select Xy, ---, X,, MAX(Y)

From P

Where f(X) <Y

Group-by X;, ---, X,

Proof: Consider any tuple (Z, z,y) of P that does not satisfy f(Z) < y. Two cases need to
be considered. First, when y is not the maximum value in the group for . In this case, the
tuple (Z, z,y) does not contribute to any tuple of V. Next, consider the case when y is the
maximum value in the group for Z. Then, the tuple (Z, y) is in the extension of V; however,
this tuple does not satisfy the given query constraint on V. In either case, if f(Z) < y is not
satisfied, the tuple (Z, z, y) of P is irrelevant to the given query. O

A consequence of this theorem is that the constraint f(X) <Y can be pushed into the
evaluation of P. If P is itself a view, or if f(X) <Y allows a more efficient indexed lookup
of P, then we can potentially improve the performance of the query. Theorem 8.1 can be
used for top-down query evaluation or bottom-up query evaluation [SR93, SS94]. A result
similar to Theorem 8.1, but with the aggregate function min used in the rule instead of
maz, and a constraint of the form f(X) >Min instead of f(X) <Max, also holds.

We conjecture that the query constraint derived by the above theorem is the strongest
conjunctive query constraint that is linear in Y that can be derived on relation P.

9 Conclusions and Future Work
We have presented a new and extremely useful class of constraints, aggregation constraints,

and studied the problem of checking for solvability of conjunctions of aggregation con-
straints. There are many interesting directions to pursue. An important direction of active

20

research is to significantly extend the class of aggregation constraints for which solvability
can be efficiently checked. We believe that our algorithm works on a larger class of ag-
gregation constraints than presented here—for instance, we believe that our algorithm will
work correctly even if we relax the conditions to not require min and maz to be separated;
characterizing this class will be very useful.

Combining aggregation constraints with multiset constraints that give additional infor-
mation about the multisets (using functions and predicates such as U, €, C, etc.) will be
very important practically.

Another important direction is to examine how this research can be used to improve
query optimization and integrity constraint verification in database query languages such
as SQL. Sudarshan and Ramakrishnan [SR91] and Levy et al. [LMS94] consider how to
use simple aggregate conditions for query optimization; it would be interesting to see how
their work can be generalized. It would also be interesting to see how to use aggregation
constraints in conjunction with Stuckey and Sudarshan’s technique [SS94] for compilation
of query constraints.

We believe that we have identified an important area of research, namely aggregation
constraints, in this paper and have laid the foundations for further research.

Acknowledgements

The research of Kenneth A. Ross was supported by NSF grant IRI-9209029, by a grant from
the AT&T Foundation, by a David and Lucile Packard Foundation Fellowship in Science and
Engineering, by a Sloan Foundation Fellowship, and by an NSF Young Investigator Award.
The research of Peter J. Stuckey was partially supported by the Centre for Intelligent
Decision Systems and ARC Grant A49130842.

A Multiset Ranges: min, maz, sum, average and count

The function Gen_Multiset_Ranges, below, is a generalization of the function in Section 5.2.1.
It takes five finite and closed ranges, [my, my], [M;, My), [s1, sn], [ai, an] and an integer range
[ki, k1], and answers the following question:

Do there exist & > 0 numbers, k between k; and kj, such that the minimum of
the & numbers is between m; and my, the maximum of the & numbers is between
M; and My, the sum of the k numbers is between s; and sp, and the average of
the k& numbers is between a; and a?

function Gen_Multiset_Ranges (mq, mp, My, M, s1, sn, ai, an, ki, k) {

/¥ we assume finite and closed ranges */

21

(1) /* Tighten min, maz, average and count bounds. */
(a) Tighten_.MMA _Bounds (mq, my, M;, My, a;, ap).
(b) Tighten_Count_Bounds (my;, mp, M, My, ai, an, ki, kr).
(2) if (Obviously_Unsolvable (mq, my,, My, My, si, s, ai, an, ki, k) then
return 0.
/¥ For each k in [k, kr], we now have that [k a;, k % ap] overlaps
[(k— 1) *my + My, mp + (k — 1) *Mh]. */
/¥ Case A: Based on min and maz elements can be < 0, =0 or > 0. */
(3) if ([mi, M4] overlaps [0, 0]) then
(a) if ([s1, sn] does not overlap [(kn, — 1) * my + Mj, mp + (kp, — 1) * Mp]) then
return 0.
(b) if ([ai, ap] overlaps [0, 0]) then
(i) if ([s1, sn] does not overlap [kp, * a, kp, * ap]) then return 0.
(i) else return 1.
(c) if (an < 0) then
(i) Switch_Signs (mq, mp, My, My, s1, sh, a1, an).
/¥ Falls through to the next case. */
(d) /*else a; >0*/
(i) if ([s1, sn] does not overlap [k; * ai, kn * ap]) then return 0.
(i) else if (In.Sum_Gap_NP (my;, mp, My, My, s1, sn, a1, an, ki, kn)) then
return 0.
(iii) else return 1.
/* Case B: All elements are negative. Switch everything. */
(4) if (Mp, < 0) then
(a) Switch_Signs (my, mp, My, M, s1, s, a1, an).
/¥ Falls through to the next case. */
/* Case C: All elements are positive. */
(5) /* else my > 0 */
/¥ Range for sum outside bounds dictated by min and maz. */
(a) if ([s1, sn] does not overlap [(k; — 1) * my + M, mp + (kp, — 1) x Mpy]) then
return 0.
/¥ Range for sum outside bounds dictated by average. */
(b) else if ([s1, sn] does not overlap [k; * ay, kp, * ap]) then
return 0.
(c) else if (In_Sum_Gap_PP (m;, mp, M, My, si, sk, a1, an, ki, kr)) then
return 0.
(d) else return 1.

}

Tighten_MMA _Bounds (my;, mp, My, My, ar, an) {
/* Tighten bounds for maz based on min(S) < maz(S). */
(1) if (M; < my) then M; = my.

22

/* Tighten bounds for min based on min(S) < maz(S). */

(2) if (mn > Mp) then my, = My,

/* Tighten bounds for average based on min(S) < average(S). */
(3) if (ar < my) then a; = my.

/* Tighten bounds for average based on average(S) < maz(S). */
(4) if (an > Mp) then ap, = My,

}

Tighten_Count_Bounds (my;, mp, M, My, ai, an, ki, kr) {

/¥ Tighten lower bound for count using min, maz and average ranges. */

(1) if (k; < 1) then k; = 1.

(2) if (ah < ((kl — 1) * my + Ml)/kl and M; 75 ml) then
/¥ Known range for average to the left of smallest inferred range. */
(a) ki = [(M; — mq)/(an — mi)].

(3) if (al > (mh + (kl — 1) * Mh)/kl and M, 75 mh) then
/¥ Known range for average to the right of smallest inferred range. */
(a) ki = [(Mp — mn)/(Mp — a)].

}

function Obviously_Unsolvable (m;, mp, M, My, si, sk, a1, an, ki, kr) {

/¥ Infeasible ranges. */

(1) if (k; > kn or my > mp or My > My, or s; > sp, or a; > ap) then
return 1.

(2) else return 0.

}

Switch_Signs (my, mp, My, My, si, sn, ar, ap) {

(1) [t1:t2] = [_Mh: _Ml]; [Ml: Mh] = [_mh: _ml]; [ml:mh] = [t1:t2]'
(2) t=—ai; a1 = —ap; ap = t.
(3)t=—s1; 51 = —sn; sn =1
}

In_Sum_Gap_NP (my, mpn, Mi, My, s1, sn, a1, an, ki, kn) {
/* Check if there is some k in [k, kx] such that [s;, sp] overlaps the intersection
of [kxap, kxap]and [(k— 1)« m;+ M, mp+ (k— 1)« My]. */
/* Case A: Determine a lower count bound based on sum, min, maz. */
(1) if (Sh < (kl — 1) * my + Ml) then
/¥ sum to the left of smallest inferred range from min, maz. */
(a) [k1, k3] = [[(sn + mu — My)/my], k).
(2) else if (s; > mp + (k; — 1) * Mp) then
/¥ sum to the right of smallest inferred range from min, maz. */

(a) [k1, k3] = [[(st + Mp — mp)/Mp], kn).

23

(3) else [k1, k3] = [k, kn).

/¥ Case B: check if [s;, sp] overlaps [k x a;, k * ap] for any k € [k, kp]. */

(4) define &} and &} by s; = k] *x ap, — k5,0 < ki), < ap, and integer k.
/* multiset cardinality must be > kf, for sum > s;. */

(5) define k% and k} by sp = kf x a; + k4,0 < k} < a;, and integer k5.
/* multiset cardinality must be < k%, for sum < sp. */

(6) if ([k], k5] is not feasible) then ~ /* in a gap, based on average alone */
return 1.

(7) if ([k1, k3], [k1, k5] and [k, kp] all overlap) then
/¥ any k in the intersection of the three ranges is a witness. */
return 0.

(8) else return 1.

}

In_Sum_Gap_PP (my;, mn, My, My, si, sn, a1, an, ki, kn) {
/* Check if there is some k in [k, kx] such that [s;, sp] overlaps the intersection
of [kxap, kxap]and [(k— 1)« m;+ M, mp+ (k— 1)« My]. */
/* Case A: check if [s;, sp] overlaps [(k — 1) x my + My, mp + (k — 1) % Mp]
for any k € [ki, ks). */
(1) define k1 and ko by s; = mp + (k1 — 1) x Mp — ka2, 0 < ky < My, and integer k;.
/¥ multiset cardinality must be > kq, for sum > s;. */
(2) define k3 and k4 by sp, = (k3 — 1) x my + Mj + k4,0 < ks < my, and integer k3.
/¥ multiset cardinality must be < ks, for sum < sp. */
(3) if ([k1, k3] is not feasible) then /* in a gap, based on min and maz alone */
return 1.
/¥ Case B: check if [s;, sp] overlaps [k x a;, k * ap] for any k € [k, kp]. */
(4) define &} and &} by s; = k] *x ap, — k5,0 < ki), < ap, and integer k.
/* multiset cardinality must be > kf, for sum > s;. */
(5) define k% and k} by sp = kf x a; + k4,0 < k} < a;, and integer k5.
/* multiset cardinality must be < k%, for sum < sp. */
(6) if ([k], k5] is not feasible) then ~ /* in a gap, based on average alone */
return 1.
(7) if ([k1, k3], [k1, k5] and [k, kp] all overlap) then
/¥ any k in the intersection of the three ranges is a witness. */
return 0.
(8) else return 1.

}

Theorem A.1 Function Gen_Multiset_Ranges returns 1 iff there exist k > 0 real numbers,
ki < k < kg, such that the minimum of the k numbers is in [m;, my)], the mazimum of the
k numbers is in [M;, My], the sum of the k numbers is in [s;, sp|, and the average of the k
numbers is in [a;, ap].

24

Further, Gen_Multiset_Ranges is polynomial in the size of representation of the input.

Proof: We prove the first part of the theorem by showing that the algorithm returns 1 if
and only if the given constraints along with the four axioms of Theorem 4.2 are solvable.

Consider Steps (1) and (2) of Gen_Multiset_Ranges. Step (1a) generates all constraints on
min, mazr and average that can be inferred from the given range constraints on min, maz
and average and the axioms. Step (1b) extends these by generating all constraints on
count that can be inferred from the given range constraints on min, maz and average
and the axioms. Note that all the constraints inferred above are range constraints on
min, maz, average and count.

If function Obviously _Unsolvable returns 1, the resultant set of constraints is clearly un-
solvable. If it returns 0, the conjunction of the given range constraints on min, maxz, average
and count and all the axioms is solvable.

All elements in the multiset have to lie in the range [m;, M}]; the minimum and maximum
elements are additionally constrained to lie in the ranges [m;, my] and [M;, M}] respectively.
If the multiset has ¢ elements, axioms (2) and (3) are satisfied if and only if the multiset
has a sum in the range:

[(i—1)*ml—|—Ml,mh—|—(i—1)*Mh]

Also, the average value of the multiset elements has to lie in the range [a;, az]. If the multiset
has ¢ elements, axiom (4) is satisfied if and only if the multiset has a sum in the range:

[i* al,i* ah]

Consequently, if the count of the multiset is constrained to lie in the range [k;, kp], the sum
can take values only from the union of the ranges:

kp,
U ([(’I,— 1)*ml—|—Ml,mh—|— (i— 1)*Mh]ﬂ [i*al,i*ah])
1=k
In general, this union of ranges may not be convex; there may be gaps.

Thus, the conjunction of the given constraints and axioms (1)—(4) is solvable if and
only if there is an ¢ such that the given range on sum, [s;, sp] overlaps with the range:
[(i—1)*xmy+ My, mp+ (¢ — 1) * Mp] N [i* ar, i ap]. The algorithm for testing the above
has three cases, based on the location of the [m;, M}] range with respect to zero.

e The first case is when the [m;, M}y] range includes zero. Three subcases arise based
on the location of the [a;, ap] range with respect to zero.

The first subcase is when the [a;, ap] range includes zero; in this case the union of the
ranges is convex, and is given by:

[(kh — 1) *my + My, mp + (kh — 1) * Mh] N [kh * ay, kp, * ah]

25

To check that the given range for sum, [s;,sp], overlaps with this intersection of
ranges, it suffices to check that [s;, sp] intersects with each of the ranges separately,
since [(kn—1)*mi+ My, mp+ (kn — 1) * My] and [ky % a7, kg * ap) are known to intersect
at 0. Steps (3a) and (3b) of Gen_Multiset_Ranges check for this subcase.

The second subcase is when the [a;, ap] range includes only negative numbers, and the
third subcase is when the [a;, ap] range includes only positive numbers. These two
subcases are symmetric, and we transform the second subcase into the third subcase
in Step (3c) of Gen_Multiset_Ranges, and consider only the third subcase in detail in
Step (3d).

In the third subcase, the sum lies within the range
[(kh — 1) *my + My, mp + (kh — 1) * Mh] N [kl * ay, kp, * ah]

but not all values in this range are feasible — there may be gaps. The conjunction of
constraints is unsolvable if and only if the [s;, sp] range lies outside [(kr — 1) x m; +
M, mp + (kn — 1) * Mp] N [kr % ar, kp, * ap], or entirely within one of the gaps. Since
Function Tighten_Count_Bounds was invoked in Step (1b) of Gen_Multiset_Ranges, the
two ranges [(kr — 1) x my + My, mp + (kn — 1) x My] and [k; % ai, kn * ap] overlap.
Consequently, from the property of ranges, it follows that to check that the [si, sp]
range lies outside the intersection of these two ranges, it suffices to check that [s;, sp]
lies outside at least one of the two ranges; steps (3a) and (3d)(i) check for this.
Steps (3d)(ii) and (3d)(iii) check for the second possibility, viz., [s;, sp] lies entirely
within one of the gaps of:

kp,
U ([(i—l)*ml—l—Ml,mh—l—(i—l)*Mh]ﬂ[i*al,i*ah])
1=k

Tighten_Count_Bounds has adjusted k; to ensure that for k; is the smallest i for
which the ranges [(¢ — 1) * my + M, mp + (¢ — 1) * My] and [% a;,% % ap] over-
lap. Further, Tighten_MMA _Bounds (invoked in Step (1a) of Gen_Multiset_Ranges has
tightened M;j, mp, a; and ap to ensure each of my < M;,m; < a;, mp, < My and
ap < Mp hold. The above two points guarantee that for all ¢ > k; it is the case
[(i—1)«my + Mi,mp+ (i — 1) * My] and [i % a;, @ * ap] overlap. Hence, from the
property of ranges, it follows that to check that [s;, s5] does not fall entirely within a
gap of:

kp,
U ([(’I,— 1) *ml—l—Ml,mh—l—(i— 1) *Mh]ﬂ[i*al,i*ah])
1=k
it suffices to check that there is at least one 7 in [ky, kp], such that [s;, sp] overlaps with

each of [(¢—1)*my+M;, mp+(i—1)*My] and with [ixa;, txap]. Function In_Sum_Gap_NP

26

checks for this possibility as follows: (a) it computes the range [k, k3] such that for
each 7 in [kq, k3], the range [s;, sp] overlaps with [(s — 1) * my + My, mp + (¢ — 1) * My];
(b) it computes the range [k}, k5] (using the same technique as in Multiset_Ranges)
such that for each ¢ in [k], k3], the range [s;, sp] overlaps with [* a;, 7 % az]; (c) finally,
it checks that there is some 7 which lies in each of the three ranges [k, k], [k1, k3] and
[k1, k3], which provides the required witness.

The second case is when the [m;, M}] range includes only negative numbers, and hence
the average must also be negative. Function Tighten_.MMA Bounds has tightened the
[ai, ap] range to include only negative numbers. This is symmetric to the third case
(discussed in detail below), and Switch_Signs (invoked in Step (4a)) transforms the
second case into the third case.

The third case is when the [m;, M}y] range includes only positive numbers, and hence
the average must also be positive. Function Tighten_.MMA _Bounds has tightened the
[ai, ap] range to include only positive numbers. In this case, the sum lies within the
range

[(kl — 1) *my + My, mp + (kh — 1) *Mh] N [kl * ay, kp *ah]

but not all values in this range are feasible — as before, there may be gaps. The
conjunction of constraints is unsolvable if and only if the [s;, sp] range lies outside
[(ki—1)xmy+ My, mp+ (kp,— 1) % Mp])N[ki*ar, kp*ap], or entirely within one of the gaps.
Since Function Tighten_Count_Bounds was invoked in Step (1b) of Gen_Multiset_Ranges,
the two ranges [(k; — 1) x my + My, mp, + (kn — 1) * My] and [k; % ay, kp, * ap] overlap.
Consequently, from the property of ranges, it follows that to check that the [si, sp]
range lies outside the intersection of these two ranges, it suffices to check that [s;, sp]
lies outside at least one of the two ranges; steps (5a) and (5b) of Gen_Multiset_Ranges
check for this. Steps (5¢) and (5d) check for the second possibility, viz., [s;, si] lies
entirely within one of the gaps of:

kp,
U ([(i—l)*ml—l—Ml,mh—l—(i—l)*Mh]ﬂ[i*al,i*ah])
1=k

As in the third subcase of the first case above, it suffices to check that there is at least
one 7 in [kg, kr], such that [s;, sp] overlaps with each of [(¢—1)xmy+M;, mp+(i—1)* M4]
and with [¢ % a;, 7 * a]. Function In_Sum_Gap_PP checks for this possibility as follows:
(a) it computes the range [k1, k3] (using the same technique as in Multiset_Ranges) such
that for each ¢ in [k, k3], the range [s;, sp] overlaps with [(¢ — 1) xmy+ M, mp+ (1 —1) *
Ma]; (b) it computes the range [k], k3] (using the same technique as in Multiset_Ranges)
such that for each ¢ in [k], k%], the range [s;, sp] overlaps with [% a7, ¢ * ap]; (c) finally,
it checks that there is some 7 which lies in each of the three ranges [k, k], [k1, k3] and
[k], k], which provides the required witness.

27

This concludes the proof of the first part of the theorem.

The proof of the second part of the theorem is straightforward because the number of
steps in Gen_Multiset_Ranges is bounded above by a constant, and each step is polynomial
in the size of representation of the input. O

References

[JMSY92] J. Jaffar, S. Michaylov, P. Stuckey, and R. Yap. The CLP(R) language and

[LMS94]

[MS93]

[MS94]

[RSSS94]

[Sch86]

[SR91]

[SR93]

[SS94]

system. ACM Transactions on Programming Languages and Systems, 14(3):339-
395, July 1992.

Alon Y. Levy, Inderpal S. Mumick, and Yehoshua Sagiv. Query optimization by
predicate move-around. In Proceedings of the International Conference on Very
Large Databases, Santiago, Chile, September 1994.

Jim Melton and Alan R. Simon. Understanding the new SQL: A complete guide.
Morgan Kaufmann, San Francisco, CA, 1993.

Kim Marriott and Peter J. Stuckey. Semantics of constraint logic programs with
optimization. Letters on Programming Languages and Systems, 1994.

Kenneth A. Ross, Divesh Srivastava, Peter Stuckey, and S. Sudarshan. Foun-
dations of aggregation constraints. In Proceedings of the Second International
Workshop on Principles and Practice of Constraint Programming, Orcas Island,
WA, 1994. Lecture Notes in Computer Science 874, Springer-Verlag.

Alexander Schrijver. Theory of Linear and Integer Programming. Discrete Math-
ematics and Optimization. Wiley-Interscience, 1986.

S. Sudarshan and Raghu Ramakrishnan. Aggregation and relevance in deductive
databases. In Proceedings of the Seventeenth International Conference on Very
Large Databases, September 1991.

Divesh Srivastava and Raghu Ramakrishnan. Pushing constraint selections.
Journal of Logic Programming, 16(3—4):361-414, 1993.

Peter J. Stuckey and S. Sudarshan. Compiling query constraints. In Proceedings
of the ACM Symposium on Principles of Database Systems, Minneapolis, MN,
May 1994.

28

