Implementation of the CORAL Deductive Database System*

Raghu Ramakrishnan
Univ. of Wisconsin, Madison
S. Sudarshan |
AT&T Bell Labs, Murray Hill.

Abstract

CORAL is a deductive database system that provides a modu-
lar, declarative query language/programming language. CORAL
is a deductive system that supports a rich declarative language,
provides a wide range of evaluation methods, and allows a combi-
nation of declarative and imperative programming. The data can
be persistent on disk or can reside in main-memory. We describe
the architecture and implementation of CORAL.

There were two important goals in the design of the CORAL ar-
chitecture: (1) to integrate the different optimization techniques
in a reasonable fashion, and (2) to allow users to influence the
evaluation strategies used so as to exploit the full power of the
CORAL implementation. A CORAL declarative program can be
organized as a collection of interacting modules and this mod-
ule structure is the key to satisfying both these goals. The high
level module interface allows modules with different evaluation
techniques to interact in a transparent fashion. Further, users
can optionally tailor the execution of a program by selecting from
among a wide range of control choices at the level of each module.

CORAL also has an interface with C++, and users can pro-
gram in a combination of declarative CORAL, and C++ extended
with CORAL primitives. A high degree of extensibility is provided
by allowing C++4 programmers to use the class structure of C++
to enhance the CORAL implementation.
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1 Introduction

In this paper, we discuss the design and implementation of
the CORAL deductive database system. CORAL seecks to
combine features of a database query language, such as effi-
cient treatment of large relations, aggregate operations and
declarative semantics, with those of a logic programming
language, such as more powerful inference capabilities and
support for incomplete and structured data. Support for
persistent relations is provided by interfacing with the EX-
ODUS storage manager [4]. A unique feature of CORAL is
that it provides a wide range of evaluation strategies (such as
top-down, bottom-up, and their variants) and allows users to
optionally tailor execution of a program through high-level
annotations. The language is described in [24]. Applica-
tions in which large amounts of data must be extensively
analyzed are likely to benefit from this combination of fea-
tures. In comparison to other deductive database systems
such as Aditi [31], EKS-V1 [32], LDL [30], LOLA [6] and
Nail-Glue [13], CORAL provides a more powerful language

and supports a much wider range of optimization techniques.

We highlight several design decisions that allowed us to
integrate (often unrelated) evaluation techniques and opti-
mizations in a nearly seamless fashion. Specifically, we con-
sider the following issues:

1. Data representation (e.g. constants, lists, terms).

2. Relation representation and implementation (e.g. in

main-memory and disk-resident).
3. Index structures (e.g. hash-structures and B-trees).

4. Evaluation techniques (e.g. materialization and top-

down)

In the CORAL implementation, we divide evaluation into
a number of distinct subtasks, and provide a clean inter-
face between the subtasks; relevant optimization techniques
can be (almost) independently applied to each subtask. Ex-
tending database programming languages has received much
attention lately, and we believe that the CORAL experi-
ence offers guidelines for resolving several common issues
that go beyond the specific extensions that are addressed in



CORAL.

One of our goals was to allow users to exploit the full
power of the implementation. CORAL supports a very rich
language, and we believe that some user guidance is criti-
cal to effectively optimizing many sophisticated programs.
The problem is to provide users with the ability to choose
from the suite of optimizations supported by CORAL in a
relatively orthogonal and high-level way, and to use a combi-
nation of optimizations for different parts of a program. The
module structure was a key to solving this problem. The in-
terface between modules is kept at a high level; evaluation
techniques can be chosen on a per-module basis through (op-
tional) annotations, and modules with different evaluation
techniques can interact in a nearly transparent fashion.

An overview of the CORAL declarative language is pre-
sented in [24]. The query language supports general Horn
clauses with complex terms, set-grouping, aggregate oper-
ations, negation and data that contains universally quanti-
fied variables. A number of user annotations can also be
specified to guide the system in query evaluation and opti-
mization. The details of the language are beyond the scope
of the paper. Many features of the implementation ranging
from low-level structures to the interactive system environ-
ment have also been omitted from the paper, due to shortage
of space. The implementation details are found in [?]. In
Sections 2- 5, we discuss some important aspects of the sys-
tem implementation. Section 2 contains an overview of the
CORAL system architecture. Section 3 explains the under-
lying representation of the data and Section 4 provides an
overview of query evaluation and optimization. Section 5 is
the main section that deals with implementation issues. It
covers the basic strategies used in evaluating a module, as
well as several important refinements. It also addresses user
guidance of query optimization, and the interaction in the
evaluation of different modules. The CORAL/C++ inter-
face and support for extensibility in CORAL, including the
addition of new data types and operations, and new rela-
tion and index implementations, are discussed in Sections 6
and 7. We discuss related systems in Section 8. Finally, we
provide a retrospective discussion of the CORAL design and
outline future research directions in Section 9.

2 Architecture of the CORAL
System

The architecture of the CORAL deductive system is shown
in Figure 1. CORAL is designed primarily as a single user
database system, and can be used in a stand-alone mode.
Persistent data is stored either in text files, or using the
EXODUS storage manager [4], which has a client-server ar-
chitecture. Each CORAL single-user process is a client that
accesses the common persistent data from the server. Multi-
ple CORAL processes could interact by accessing persistent
data stored using the EXODUS storage manager. Trans-
actions and concurrency control are supported by the EX-
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Figure 1: CORAL System Architecture

ODUS toolkit, and thus by CORAL. However, within each
CORAL process, all data that is not managed by the EXO-
DUS storage manager is strictly local to the process. Most of
the effort of design and implementation in CORAL has con-
centrated on the single-user client, and the implementation
has focused on operation out of main memory. While this
is in keeping with Prolog-style systems, there is no part of
the design that is particularly biased towards a main-memory
systeml.

Data stored in text files can be ‘consulted’, at which point
the data is converted into main-memory relations, with any
specified indices; indices can also be created at a later time.
Data stored using the EXODUS storage manager is paged
into EXODUS buffers on demand, making use of the index-
ing and scan facilities of the storage manager. The design of
the system does not require that this data be collected into
main-memory CORAL structures before being used; as is
usual in database systems, the data can be accessed purely

out of pages in the EXODUS buffer pool.

The query processing system consists of two main parts
— a query optimizer and a query evaluation system. Simple
queries (selecting facts from a base relation, for instance)
can be typed in at the user interface, and are not opti-
mized. Complex queries are typically defined in declarative
‘program modules’ that export predicates (views) with as-
sociated ‘query forms’ (i.e., specifications of what kinds of
queries, or selections, are allowed on the predicate).

The query optimizer takes a program module and a query
form as input, and generates a rewritten program that is
optimized for the specified query forms. In addition to doing
rewriting transformations, the optimizer adds several control
annotations (to those, if any, specified by the user). The
rewritten program is stored as a text file — which is useful
as a debugging aid for the user — and is also converted
into an internal representation that is used by the query
evaluation system.

1 Certain optimizations like structure-sharing have however
been implemented that optimize main-memory operation.



The query evaluation system takes as input annotated
declarative programs (in an internal representation), and
database relations. The annotations in the declarative pro-
grams provide execution hints and directives. The query
evaluation system interprets the internal form of the opti-
mized program. We also developed a fully compiled ver-
sion of CORAL, in which we generated a C+4 program
from each user program. (This is the approach taken by
LDL [15, 5].) We found that this approach took a signifi-
cantly longer time to compile programs, and the resulting
gain in execution speed was minimal. We have therefore
focused on the interpreted version; ‘consulting’ a program
takes very little time, and is comparable to Prolog systems.
This makes CORAL very convenient for interactive program

development.

The query evaluation system has a well defined ‘get-next-
tuple’ interface with the data manager for access to relations.
This interface is independent of how the relation is defined
(as a base relation, declaratively through rules, or through
system- or user-defined C++ code). In conjunction with the
modular nature of the CORAL language, such a high level
interface is very useful, since it allows the different modules
to be evaluated using different strategies. It is important to
stress that CORAL does manipulate data in a set-oriented
fashion, and the ‘get-next-tuple’ interface is merely an ab-
straction provided to support modularity in the language.
For example, a ‘get-next-tuple’ request on a persistent rela-
tion results in a page-level I/O request by the buffer manager

of EXODUS.

CORAL supports an interface to C++, extended with
several features that provide the abstraction of relations and
tuples. C++ can be used to define new relations as well as
manipulate relations computed using embedded declarative
CORAL rules. The CORAL-C4+ interface is intended to

be used for the development of large applications.

3 The Data Manager

The data manager (DM) is responsible for maintaining and
manipulating the data in relations. In discussing the DM,
we also discuss the representation of the various data types.
While the representation of simple types is straight-forward,
complex structural types and incomplete data present in-
teresting challenges. The efficiency with which such data
can be processed depends in large part on the manner in
which it is represented in the system. This section therefore
presents the data representation at a fairly detailed level,
and this facilitates the discussion of evaluation techniques

in the subsequent sections.

The CORAL system is implemented in C++, and all data
types are defined as C++ classes. Fatensibility is an impor-
tant goal of the CORAL system. In particular, we view sup-
port for user-defined abstract data types as important. In
order to provide this support, CORAL provides the generic
class Arg that is the root of all CORAL data-types; specific

types such as integers, strings, or other abstract data-types
are subclasses of Arg. The class Arg defines a set of virtual
methodssuch as equals, hash, and print, which must be de-
fined for each abstract data-type that is created. The class
Tuple defines tuples of Args. A member of the class Relation
is a set of tuples. The class Relation has a number of virtual
methods defined on it. These include insert (Tuple*), delete
(Tuple*), and an iterator interface that allows tuples to be
fetched from the relation, one at a time®>. The iterator is
implemented using a member of a Tuplelterator class that
is used to store the state or position of a scan on the rela-
tion, and to allow multiple concurrent scans over the same
relation.

3.1 Representation of Terms

The primitive data types provided in the CORAL system
include integers, doubles, strings, and arbitrary precision
integers?. The current implementation restricts data that
is stored using the EXODUS storage manager to be lim-
ited to terms of these primitive types. Such data is stored
on disk in its machine representation, while in memory, the

data types are implemented as subclasses of Arg.

The evaluation of rules in CORAL is based on the op-
eration of unification that generates bindings for variables
based on patterns in the rules and the data. An impor-
tant feature of the CORAL implementation of data types
is the support for unique identifiers to make unification of
large terms very efficient. Such support is critical for effi-
cient declarative program evaluation in the presence of large
terms. In CORAL, each type can define how it generates
unique identifiers, independent of how other types construct
their unique identifiers (if any); because of this orthogonal-
ity, no further integration is needed to generate unique iden-
tifiers for terms built using several different kinds of types.
This is very important for supporting extensibility and the

creation of new abstract data types.

Terms can be built from a function symbol, or functor,
and such terms are important for representing structured
information. For instance, lists are a special type of func-
tor term. A term f(X,10,Y) is represented by a record
containing (1) the function symbol f, (2) an array of ar-
guments, and (3) extra information to make unification of
such terms efficient. The current implementation of CORAL
uses a modified version of hash-consing [7, 5] that operates
in a lazy fashion. Hash-consing assigns unique identifiers to
each (ground) functor term, such that two (ground) func-
tor terms unify if and only if their unique identifiers are the
same. We note that such identifiers cannot be assigned to
functor terms that contain free variables, and these have to

be handled differently.
Variables constitute a primitive type in CORAL, since

2This is analogous to the cursor notion in SQL.
3 Arbitrary precision integers are supported using the BigNum
package provided by DEC France.
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Figure 2: Representation of an Example Term

CORAL allows facts (and not just rules) to contain variables;
in this, CORAL differs from most other deductive database
systems. The semantics of a variable in a fact is that the
variable i1s universally quantified in the fact. Although the
basic representation of variables is fairly simple, the repre-
sentation is complicated by requirements of efficiency when
using non-ground facts in rules. We describe the problems
briefly.

Suppose we want to make an inference using a rule. Vari-
ables in the rule may get bound in the course of an inference.
A naive scheme would replace every reference to the variable
by its binding. It is more efficient however to record vari-
able bindings in a binding environment, at least during the
course of an inference. A binding environment (often re-
ferred to as a bindenv)is a structure that stores bindings for
variables. Therefore whenever a variable is accessed during
an inference; a corresponding binding environment must be
accessed to find if the variable has been bound. We show the
representation of the term f(X,10,Y), where X is bound to
25 and Y is bound to Z, and Z is bound to 50 in a separate
bindenv, in Figure 2.

3.2 Representation of Relations

CORAL currently supports in-memory hash-relations, as
well as persistent relations (the latter by using the EXO-
DUS storage manager [4]). Multiple indices can be created
on relations, and can be added to existing relations. The
relation interface is designed to make the addition of new
relation implementations (as subclasses of the generic class
Relation) relatively easy.

CORAL relations (currently only the in-memory versions)
support several features that are not provided by typical
database systems. The first and most important extension
is the ability to get marks into a relation, and distinguish
between facts inserted after a mark was obtained and facts
inserted before the mark was obtained. This feature is im-

portant for the implementation of all variants of semi-naive

evaluation described in Section 5.3. The implementation
of this extension involves creating subsidiary relations, one
corresponding to each interval between marks, and trans-
parently providing the union of the subsidiary relations cor-
responding to the desired range of marks. A benefit of this
organization is that it does not interfere with the indexing
mechanisms used for the relation (the indexing mechanisms
are used on each subsidiary relation).

CORAL uses the EXODUS storage manager to support
persistent relations. EXODUS uses a client-server architec-
ture; CORAL is the client process, and maintains buffers for
persistent relations. If a requested tuple is not in the client
buffer pool, a request is forwarded to the EXODUS server
and the page with the requested tuple is retrieved. While
the architectural design does not require any copying of this
data into other CORAL structures, the current implemen-
tation does perform some copying. This is an artifact of the
basic implementation decision to share constants instead of
copying their values. Currently, tuples in a persistent rela-
tion are restricted to have fields of primitive types only. At
least in the case of constants of primitive types like integers,
this has proven to be a poor decision, and we are in the
process of modifying the implementation.

3.3 Implementation of Index Structures

Hash-based indices for in-memory relations and B-tree in-
dices for persistent relations are currently available in the
CORAL system. CORAL allows for the specification of two
types of hash-based indices: (1) argument form indices, and
(2) pattern form indices. The first form is the traditional
multi-attribute hash index on a subset of the arguments of
a relation. The hash function chosen works well on ground
terms; however, all terms that contain a variable are hashed
to a special value, denoted as var. The second form is more
sophisticated, and allows us to retrieve precisely those facts
that match a specified pattern, where the pattern can con-
tain variables. Such indices are of great use when dealing
with complex objects created using functors. One can re-
trieve, for example, those tuples in relation append that have
as the first argument a list that matches [X|[1,2, 3]]. A tuple
(5111, 2, 311, [4], [5, 1, 2, 3, 4]) would then be retrieved [26].

4 Overview of Query Evaluation

A number of query evaluation strategies have been developed
for deductive databases, and each technique is particularly
efficient for some classes of programs, but may perform rela-
tively poorly on others. It is our premise that in such a pow-
erful language, completely automatic optimization can only
be an ideal; the programmer must be able to provide hints
or annotations and occasionally even override the system’s
decisions in order to obtain good performance across a wide
range of programs. Since they are expressed at a high level,
they give the programmer the power to control optimization
and evaluation in a relatively abstract manner. A detailed
description of the annotations provided by CORAL may be
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found in [24]; we mention some of them when discussing the

query evaluation techniques.

The CORAL programmer decides (on a per-module ba-
sis) whether to use one of two basic evaluation approaches,
namely pipelining or materialization, which are discussed in
Section 5. Many other optimizations are dependent upon
the choice of the basic evaluation mode. The optimizer gen-
erates annotations that govern many run-time actions, and,
if materialization is chosen, does source-to-source rewriting
of the user’s program. We discuss these two major tasks of
the optimizer below.

4.1 Rewriting Techniques

Materialized evaluation in CORAL is essentially a fixpoint
evaluation using a bottom-up iteration on the program rules.
If this is done on the original program, selections in a query
are not utilized. Several program transformations have been

proposed to ‘propagate’ such selections, and many of these
are implemented in CORAL.

The desired selection pattern is specified using a query
form, where a ‘bound’ argument indicates that any binding
in that argument position of the query is to be propagated.
Bindings are propagated by creating 'magic’ facts that rep-
resent the appropriate binding values. By specifying that all
arguments are bound, binding propagation similar to Prolog
is achieved (i.e. all available bindings are propagated). By
specifying that all arguments are ‘free’; in contrast, bindings
in the query are ignored, except for a final selection.

The default rewriting technique is Supplementary Magic
Templates [3, 18] ; see also [27, 28]. The rewriting can
be tailored to propagate bindings across subgoals in a rule
body using different subgoal orderings; CORAL uses a left-
to-right ordering within the body of a rule by default.
Other selection-propagating rewriting techniques supported
in CORAL include Magic Templates [18], Supplementary
Magic With Goalld Indexing [26], and Context Factoring
[16, 9]. Supplementary Magic is a good choice as a default,
although each technique is superior to the rest for some pro-
grams. CORAL also supports Existential Query Rewriting
[19], which seeks to propagate projections. This is applied
by default in conjunction with a selection-pushing rewriting.

4.2 Decisions On Run-time Alternatives

In addition to choosing rewriting techniques for material-
ized evaluation, the optimizer makes a number of decisions
that affect execution. The optimizer analyzes the (rewrit-
ten) program, and identifies some evaluation and optimiza-

tion choices that appear appropriate.

The default fixpoint evaluation strategy is called Basic
Semi-Naive evaluation (BSN), but a variant, called Predicate
Semi-Naive evaluation (PSN), which is better for programs
with many mutually recursive predicates, is also available.
With respect to semi-naive evaluation, the optimizer is re-
sponsible for: (1) join order selection, (2) index selection,

(3) deciding whether to refine the basic nested-loops join
with intelligent backtracking. These aspects are discussed in
detail in [?].

The optimizer also decides on the subsumption checks to
be carried out on each relation. The default is to do sub-
sumption checks on all relations. A user can ask that a rela-
tion be treated as a multiset, with as many copies of a tuple
as there are derivations for it in the original program®. This
semantics is supported by carrying out duplicate checks only
on the ‘magic’ predicates; some version of Magic Templates
must used.

5 Module Evaluation Strategies

The evaluation of a declarative CORAL program is divided
into a number of distinct sub-computations by expressing
the program as a collection of modules. Each module is
a unit of compilation and its evaluation strategies are in-
dependent of the rest of the program. Modules ezport the
predicates that they define; a predicate exported from one
module is visible to all other modules, and can be used by
them in rules. Since different modules may have widely vary-
ing evaluation strategies, some relatively high level interface

is required for interaction between modules. The basic ap-

proach used by CORAL is outlined here.

During the evaluation of a rule r in module M, if we gen-
erate a query on a predicate exported by module N, a call
is set up on module N. The answers to this query are used
iteratively in rule r; each time a new answer to the query
is required, rule r requests for a new tuple from the inter-
face to module N. The interface to relations exported by a
module makes no assumptions about the evaluation of the
module. Module N may contain only base predicates, or
may have rules that are evaluated in any of several differ-
ent ways. The module may choose to cache answers between
calls, or choose to recompute answers. All this is transparent
to the calling module. Similarly, the evaluation of the called
module N makes no assumptions about the evaluation of
calling module M. This orthogonality permits the free mix-
ing of different evaluation techniques in different modules in
CORAL and is central to how different executions in differ-

ent modules are combined cleanly.

Two basic evaluation approaches are supported, namely
pipelining and materialization. Pipelining uses facts ‘on-
the-fly’ and does not store them, at the potential cost of
recomputation. Materialization stores facts and looks them
up to avoid recomputation. Several variants of material-
ized evaluation are supported: Basic Semi-Naive, Predicate
Semi-Naive [22], and Ordered Search [23].

5.1 Module and Rule Data Structures

The compilation of a materialized module generates an in-
ternal module structure that consists of a list of structures

40On non-recursive queries, this semantics is consistent with
SQL when duplicate checks are omitted.



corresponding to the strongly connected components (SCCs)
of the module®, and each SCC structure contains struc-
tures corresponding to semi-naive rewritten versions of rules.
These semi-natve rule structures have fields that specify the
argument lists of each body literal, and the predicates that
they correspond to. Each semi-naive rule also contains eval-
uation order information, pre-computed backtrack points,
and precomputed offsets into a table of relations.

A module to be evaluated using pipelining is stored as
a list of predicates defined in the module. Associated with
each predicate is a list of rules defining it (in the order they
occur in the module definition), each rule being represented
using structures like those used for semi-naive rules.

5.2 Pipelining

For pipelining, which is essentially top-down evaluation, the
rule evaluation code is designed to work in a co-routining
fashion — when rule evaluation is invoked, using the get-
next-tuple interface, it generates an answer (if there is one)
and transfers control back to the consumer of answers (the
caller). Control is transferred back to the (suspended) rule
evaluation when more answers are desired.

At module invocation, the first rule in the list associated
with the queried predicate is evaluated. This could involve
recursive calls on other rules within the module (which are
also evaluated in a similar pipelined fashion). If the rule
evaluation of the queried predicate succeeds, the state of the
computation is frozen, and the generated answer is returned.
A subsequent request for the next answer tuple results in
the reactivation of the frozen computation, and processing
continues until the next answer is returned. At any stage, if
a rule fails to produce an answer, the next rule in the rule list
for the head predicate is tried. When there are no more rules
to try, the query on the predicate fails. When the topmost
query fails, no further answers can be generated, and the
pipelined module execution is terminated.

There are three important points to note. Firstly, the
implementation of pipelining, which is a radically different
evaluation technique from bottom-up fixpoint evaluation,
demonstrates the modularity of the CORAL implementa-
tion. Secondly, from a language point of view, it demon-
strates that the module mechanism allows a user to effec-
tively combine bottom-up and top-down evaluation tech-
niques in a single program. (Indeed, our implementation
of pipelining could be replaced by an interface to a Prolog
system.) Thirdly, pipelining guarantees a particular evalua-
tion strategy, and order of execution. While the program is
no longer truly ‘declarative’; programmers can exploit this
guarantee and use predicates like updates that involve side-
effects.

5An SCC is a maximal set of mutually recursive predicates.

5.3 Materialization

The variants of materialization are all bottom-up fixpoint
evaluation methods. Bottom-up evaluation iterates on a
set of rules, repeatedly evaluating them until a fixpoint is
reached. In order to perform incremental evaluation of rules
across multiple iterations, CORAL uses the semi-naive eval-
uation technique [2, 1, 22]. This technique consists of a rule
rewriting part performed at compile time, which creates ver-
sions of rules with delta relations, and an evaluation part.
(The delta relations contain changes in relations since the
last iteration.) The evaluation part evaluates each rewritten
rule once in each iteration, and performs some updates to
the delta relations at the end of the iteration. An evaluation

terminates when an iteration produces no new facts.

The optimizer analyzes the semi-naive rewritten rules and
generates annotations to create any indexes that may be use-
ful during the evaluation phase®. The basic join mechanism
in CORAL is nested-loops with indexing. In a manner simi-
lar to Prolog, CORAL maintains a trail of variable bindings
when a rule is evaluated; this is used to undo variable bind-
ings when the nested-loops join considers the next tuple in
any loop.

5.4 Module Level Control Choices

At the level of the module, a number of choices exist with
respect to the evaluation strategy for the module, and the
specific optimizations to be used. We describe the imple-
mentation of some of these strategies.

5.4.1 Ordered Search

Ordered Search is an evaluation mechanism that orders the
use of generated subgoals in a program and thereby provides
an important strategy for handling programs with negation,
set-grouping and aggregation, that are left-to-right modu-
larly stratified. Full details of Ordered Search are not pre-
sented here, but the reader is referred to [23]. The principle
of Ordered Search is that the computation is ordered by
‘hiding’ subgoals. This is achieved by maintaining a ‘con-
text’ that stores subgoals in an ordered fashion, and that
decides at each stage in the evaluation, which subgoal to
make available for use next. The order in which generated
subgoals are made available for use is somewhat similar to

a top-down evaluation.

From an implementation perspective, in addition to main-
taining the context, two changes have to be made. First, the
rewriting phase, which must use a version of Magic in con-
junction with Ordered Search fixpoint evaluation, must be
modified to introduce ‘done’ literals guarding negated liter-
als and rules that have grouping and aggregation. Second,
the evaluation must add a goal (‘magic’ fact) to the corre-
sponding ‘done’ predicate when (and only when) all answers
to it have been generated. (The context mechanism is used

6Index generation also occurs for pipelined modules, but at
the level of the original rules.



to determine the point at which a goal is considered done.) dul
module s_p.

export s_p(bfff, ffff) '
@aggregate_selection p(X,Y, P,C) (X,Y) min(C).

These changes ensure that rules involving negation, for ex-
ample, are not applied until enough facts have been com-

puted to reduce the negation to a set-difference operation. sp(X,Y, P,C) :— s_plength(X,Y,C),p(X,Y, P,C
splength(X,Y, min(< C >)) : — p(X,Y, P,C).
5.4.2 The Save Module Facility p(X,Y, P1,C1) :—p(X,Z,P,C),edge(Z,Y, EC),

append([edge(Z,Y)], P, P1),C1 :

In most cases, facts (other than answers to the query) com-

puted during the evaluation of a module are best discarded
to save space (since bottom-up evaluation stores many facts,
space is generally at a premium). Module calls provide a
convenient unit for discarding intermediate answers. By de-
fault, CORAL does precisely this — it discards all interme-
diate facts and subgoals computed by a module at the end of
a call to the module. However, there are some cases where
this leads to a significant amount of recomputation. This is
especially so in cases where the same subgoal in a module is
generated in many different invocations of the module. In
such cases, the user can tell the CORAL system to maintain
the state of the module (i.e., retain generated facts) in be-
tween calls to the module, and thereby avoid recomputation;

we call this facility the save module facility.

In the interest of efficient implementation, we have the
following restriction on the use of the save module feature:
tf a module uses the save module feature, it should not be
invoked recursively. We do not make any guarantees about
correct evaluation, should this happen at run-time. (Note
that the predicates defined in the module can be recursive;
this does not cause recursive invocations of the module).
From an implementation point of view, the challenge is to
ensure that no derivations are repeated across multiple calls
to the module. This requires significant changes to semi-
naive evaluation; while the details are omitted here for lack

of space, they can be found in [25],

5.4.3 Lazy Evaluation

In the traditional approach to bottom-up evaluation, all an-
swers to a query are computed by iterating over rules till
a fixpoint is reached, and then returning all the answers.
Lazy evaluation tries to return the answers at the end of
every iteration, instead of at the end of computation. Lazy
evaluation is implemented by storing the state of the compu-
tation at the end of an iteration, and returning the answer
tuples generated in that iteration. The state is stored with
the iterator that is created for the query (recall the ‘get-
next-tuple’ iterative interface). The iterator then iterates
over the tuples returned, and when it has stepped through
all the tuples, it reactivates the ‘frozen’ computation that it
has stored. This reactivation results in the execution of one
more iteration of the rules, and the whole process is repeated
until an iteration over the rules produces no new tuples.

5.5 Predicate Level Control
CORAL provides a variety of annotations at the level of

individual predicates in a module. We discuss a couple of
them in this section.

(X, Y, [edge(X,Y)], C)
end_module.

:— edge(X, Y, C).

Figure 3: Program Shortest_Path

5.5.1 Indexing Relations

As mentioned in Section 3.3, CORAL supports two forms
of indices: (1) argument form indices, and (2) pattern form
indices. The first form creates an index on a subset of the
arguments of a relation. The second form is more sophis-
ticated, and creates an index on a specified pattern that
can contain variables. Suppose a relation emp had two ar-
guments, the first a name and the second a complex term
addr(Street, City). The following declaration then creates
a pattern form index that can efficiently retrieve employees
named “John” | who stay in “Madison”, without knowing

their street.
@ make_index emp(Name, addr(Street, City))(Name, City).

The Magic Templates rewriting stage generates annota-
tions to create all indices that are needed for efficient eval-
uation. The user i1s allowed to specify additional indices,
which is particularly useful if the Magic Templates rewrit-
ing stage is bypassed.

5.5.2 Aggregate Selections

Consider the shortest_path program in Figure 3. To com-
pute shortest paths between points, it suffices to use only the
shortest paths between pairs of points — path facts that do
not correspond to shortest paths are irrelevant. CORAL per-
mits the user to specify an aggregate selection on the predi-
cate path in the manner shown. The system then checks (at
run-time) if a path fact is such that there is a path fact of
lesser cost C' with the same value for X, Y (i.e., between the
same pair of points), and if there is such a fact, the costlier
path fact is discarded. This aggregate selection is extremely
important for efficiency — without it the program may
run for ever, generating cyclic paths of increasing length.
With this aggregate selection, along with the choice annota-
tion @aggregate_selection path(X,Y, P,C)(X,Y, C)any(P),
a single source query on the program runs in time O(E V),
where there are F edge facts, and V nodes in the graph.
CORAL’s aggregate selection mechanism can also be used
to provide a version of the choice operator of LDL, but with
altogether different semantics [20].



5.6 Inter-Module Calls

The interaction between modules merits some discussion.
Suppose that p is a predicate that appears in the body of a
rule of module M2. Evaluation within a rule proceeds left-to-
right” and can be thought of as a nested-loops join. (While
this 1s not entirely accurate with respect to pipelined evalu-
ation, it is an accurate enough description for our purposes.)
When evaluation reaches the p literal, a scan is opened on p.
A p tuple retrieved by the scan is used to instantiate the rule.
When evaluation returns to the p literal on backtracking®,

the scan on p is advanced to get the next p tuple.

This ‘get-next-tuple’ interface to a relation p via a scan is
the only interface presented to M2 by any relation, regardless
of the nature of the relation. If p is defined in module M1
as a derived relation, the interface is still the same as if
p were a base relation. We emphasize that the user need
not be concerned about the details of how ‘get-next-tuple’
requests are generated. This is just an abstraction of how
the evaluation proceeds, and is presented here for clarity of

exposition.

An important consequence of this interface is that if M1 is
materialized, then p is fully evaluated as evaluation repeat-
edly reaches the p literal upon backtracking. (More precisely,
the part of p that is relevant to this p literal is fully evalu-
ated.) Thus, the following rule governs inter-module calls:

The calling module will wazt until the called module
returns answers to the subquery. The called mod-
ule presents a scan-like interface, and returns all
answers to the subquery upon repeated ‘get-next-

tuple’ requests.

This is independent of the evaluation modes of the two mod-
ules involved. The point at which the called module returns

answers, however, depends on its evaluation mode.

If the called module is pipelined, an answer is returned as
soon as it is found, and the computation of the called module
is suspended until another answer is requested by the caller.
The use of certain features, such as ‘save module’ and ‘ag-
gregate selections’ can result in all answers being computed
before any answers are returned by the called module. Oth-
erwise, answers are returned at the end of each fixpoint it-
eration in the called module; further iterations are carried
out if more answers are requested by the calling module. At
the level of the top-most query, this results in answers being
available at the end of each iteration.

6 Interface with C++

The CORAL system has been integrated with C+4 in or-
der to support a combination of imperative and declarative
programming styles. We have extended C++ by providing
a collection of new classes (relations, tuples, args and scan

"More generally, in a user specified order.
8Backtracking is only intra-rule unless evaluation in M2 is
pipelined.

descriptors) and a suite of associated methods. In addition,
there is a construct to embed CORAL commands in C4++
code. This extended C++ can be used in conjunction with
the declarative language features of CORAL in two distinct
ways:

e Relations can be computed in a declarative style using
declarative modules, and then manipulated in imper-
ative fashion in extended C++ without breaking the
relation abstraction. In this mode of usage, typically
there is a main program written in C++ that calls upon
CORAL for the evaluation of some relations defined in
CORAL modules. The main program is compiled (after
some preprocessing) and executed from the operating
system command prompt; the CORAL interactive in-
terface 1s not used.

o New predicates can be defined using extended C++.
These predicates can be used in declarative CORAL
code and are incrementally loaded from the CORAL
interactive command interface. There are, however,
some restrictions on the types of arguments that can

be passed to the newly defined predicates.
Thus, declarative code can call extended C++ code and

vice-versa. The above two modes are further discussed in

the following sections.

6.1 Extensions to C+-+

C+4++ has been extended by adding a collection of classes

and associated methods. The new classes are:
Relation : This allows access to relations from C++. Re-

lation values can be constructed through a series of ex-
plicit inserts and deletes, or through a call to a declar-
ative CORAL module. The associated methods al-
low manipulation of relation values from C++ without
breaking the relation abstraction.

Tuple :
tuples.

A relation is a collection — set or multiset — of

Arg : A tuple, in turn, is a list of args (i.e., arguments). A
number of methods are provided to construct and take

apart arguments and argument lists.

C_ScanDesc : This abstraction supports relational scans
in C++ code. A C_ScanDesc object is essentially a

cursor over a relation.
In addition to the new classes, any sequence of commands

that can be typed in at the CORAL interactive command
interface can be embedded in C++ code, bracketed by spe-
cial delimiters. A file containing C++ code with embedded
CORAL code must first be passed through a CORAL pre-
processor and then compiled using a standard C+4++ com-
piler. One restriction in the current interface is that a very
limited abstraction of variables is presented to the user.
Variables can be used as selections for a query (say, via
repeated variables) or in a scan, but variables cannot be
returned as answers (i.e., the presence of non-ground terms
is hidden at the interface). Presenting the abstraction of
non-ground terms would require that binding environments



be provided as a basic abstraction, and this would make the

interface rather complex.

6.2 Defining New Predicates

As we have already seen, predicates exported from one
CORAL module can be used freely in other modules. Some-
times, it may be desirable to define a predicate using ex-
tended C+4+, rather than the declarative language sup-
ported within CORAL modules. A _coral_export statement
is used to declare the arguments of the predicate being de-
fined. The CORAL primitive types are the only types that
can be used in a _coral_export declaration; user-defined types
are not allowed. It is important to note that the CORAL
preprocessor currently does no type checking, or even at-
tempt to check if the exported function is defined in the file;
it operates purely at a syntactic level.

The export mechanism makes it easy to pass values of
these limited types between CORAL and C++4 code. The
predicate definition can use all features of extended C++.
The source file is pre-processed into a C++ file, and com-
piled to produce a .o file. If this file was consulted from the
CORAL prompt, then it is loaded into a newly allocated re-
gion in the data area of the executing CORAL system.® It is
also possible to directly consult a pre-processed .C file or .o
file, and avoid repeating the pre-processing and compilation
steps.

7 Extensibility in CORAL

The implementation of the declarative language of CORAL
is designed to be extensible. The user can define new ab-
stract data types, new relation implementations, or new in-
dexing methods, and use the query evaluation system with
no (or in a few cases, minor) changes. The user’s program
will, of course, have to be compiled and linked with the sys-
tem code. We assume a set of standard operations on data
types, and all abstract data types must provide these oper-
ations (as C++ virtual methods).

7.1 Extensibility of Data Types

The type system in CORAL is designed to be extensible;
the class mechanism and virtual methods provided by C++
help make extensibility clean and local. ‘Locality’ refers to
the ability to extend the type system by adding new code,
without modifying existing system code — the changes are
thus local to the code that is added. All abstract data types
should have certain virtual methods defined in their inter-
face, and all system code that manipulates objects operates
only via this interface. This ensures that the query eval-
uation system does not need to be modified or recompiled
when a new abstract data type is defined. The required
methods include the method equals that is used to check if
two objects are equal, the method print for printing the ob-
ject, the method construct that is used to create new objects

?That is, the new code is incrementally loaded into CORAL.

from a list of arguments (used to re-create objects given a
printed representation), hash to return a hash value, and
some memory management functions. For a summary of
the virtual methods that constitute the abstract data type
interface, see [24, 21]. In addition to creating the abstract
data type, the user can define predicates to manipulate (and
possibly display in novel ways) objects belonging to the ab-
stract data types. These predicates must be registered with
the system; registration is accomplished by a single com-
mand.

7.2 Extensibilty of Access Structures

CORAL currently supports relations organized as linked
lists, relations organized as hash tables, relations defined by
rules, and relations defined by C++ functions. The interface
code to relations makes no assumptions about the structure
of relations, and is designed to make the task of adding new
relation implementations easy. The ‘get-next-tuple’ inter-
face between the query evaluation system and a relation is
the basis for adding new relation implementations and index
implementations in a clean fashion. The implementation of
persistent relations using EXODUS illustrates the utility of

such extensibility (Section ?7).

8 Related Systems

There are many similarities between CORAL and deductive
database systems such as Aditi [31], EKS-V1 [32], LDL [15,
5], Glue-NATL! [13, 17], Starburst SQL [14], DECLARE [11],
ConceptBase [8] and LOLA [6]. However, there are several
important differences, and CORAL extends all the above

systems in the following ways:
1. CORAL supports a larger class of programs, includ-

ing programs with non-ground facts and non-stratified
negation and set-generation.

2. CORAL supports a wide range of evaluation tech-
niques, and gives the user considerable control over the
choice of techniques.

3. CORAL is extensible — new data and relation types
and index implementations can be added without mod-

ifying the rest of the system.
EKS-V1 supports integrity constraint checking, hypothet-

ical reasoning and provides some support for non-stratified
aggregation [12]. ConceptBase supports DATALOG, along
with locally stratified negation (but no set-generation), sev-
eral object-oriented features, integrity constraint checking,
and provides a one-way interface to C/Prolog, i.e., the im-
perative language can call ConceptBase, but not vice versa.
LOLA supports stratified programs, integrity constraints,
several join strategies, and some support for type informa-
tion. The host language of LOLA is Lisp, and it is linked
to the TransBase relational database. Aditi gives primary
importance to disk-resident data and supports several join

strategies.

Unlike Glue-NAIL! and LDL, where modules have only a

compile-time meaning and no run-time meaning, modules in



CORAL have important run-time semantics. in that several
run-time optimizations are done at the module level. Mod-
ules with run-time semantics are also available in several
production rule systems (for example, RDL1 [10]). LDL+4+,
a successor to LDL under development at MCC Austin, is
reportedly also moving in the direction taken by CORAL in
many respects. It will be partially interpreted, support ab-
stract data types, and use a local semantics for choice (Carlo
Zaniolo, personal communication). XSB is a system being
developed at SUNY, Stony Brook. It will support several
features similar to CORAL, such as non-ground terms and
modularly stratified set grouping and negation. Program
evaluation in XSB will use OLDTNF, which has been imple-
mented by modifying the WAM (David S. Warren, personal
communication). DECLARE and SDS are early efforts to
commercialize deductive database technology.

In comparison to logic programming systems, such as var-
ious implementations of Prolog, CORAL provides better in-
dexing facilities and support for persistent data. Most im-
portantly, the declarative intended model semantics is sup-
ported (for all positive Horn clause programs, and a large
class of programs with negation and aggregation as well).

9 Conclusions

The CORAL project is at a stage where one version of the
system has been released in the public domain, and an en-
hanced version will soon be released. The effects of several
design decisions are becoming increasingly evident. On the
positive side, most of the decisions we made seem to have
paid off with respect to simplicity and ease of efficient im-
plementation.
Modular Design : The concept of modules in CORAL
was In many ways the key to the successful implemen-
tation of the system. Given the ambitious goal of com-
bining many evaluation strategies controlled by user
hints in an orthogonal fashion, the module mechanism
appears to have been the ideal approach.

Annotations : It has been our experience in practice that
often, the discerning user is able to determine good con-
trol strategies that would be extremely difficult, if not
impossible, for a system to do automatically. Hence the
strategy of allowing the users to express control choices
was a convenient approach to solving an otherwise dif-
ficult problem.

Extensibility : The decision to design an extensible sys-
tem seems to have helped greatly in keeping our code
clean and modular, in addition to its utility from an
application development perspective.

System Architecture : The architecture concentrated on
the design of a single user database system, leaving is-
sues like transaction management, concurrency control
and recovery to be handled by the EXODUS toolkit.
Thus CORAL could build on these facilities that were

already available, and focus instead on the subtleties of

deductive databases and logic rules. The overall archi-
tecture was reasonably successful in breaking the prob-
lem of query processing into relatively orthogonal tasks.

On the negative side, some poor decisions were made, and
some issues were not addressed adequately.

Type Information : CORAL makes no effort to use type
information in its processing. No type checking or infer-
encing is performed at compile-time, and errors due to
type mismatches lead to subtle run-time errors. Typing
is a desirable feature, especially if the language is to be
used to develop large applications. This is one of the is-
sues addressed by a proposed extension to CORAL [29].

Memory Management : In an effort to make the sys-
tem as efficient as possible for main-memory operations,
copying of data has largely been replaced by pointer
sharing. While this does make evaluation more effi-
cient, it requires extensive memory management and
garbage collection. Also, pointer based copying is per-

formed even for primitive data types such as integers.

There are a number of directions in which CORAL could
be, and in some cases needs to be, extended. These include
better support for persistent data, improved memory man-
agement, enhanced C++ interface features, object-oriented
extensions and support for constraints. While performance
measurements of a preliminary nature have been made, an
extensive performance evaluation of CORAL, both to eval-
uate various aspects of the system and to compare it with
other systems also needs to be performed.
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