
Implementation of the CORAL Deductive Database System�Raghu RamakrishnanUniv. of Wisconsin, Madison Divesh SrivastavaUniv. of Wisconsin, MadisonS. Sudarshan yAT&T Bell Labs, Murray Hill. Praveen SeshadriUniv. of Wisconsin, MadisonAbstractCORAL is a deductive database system that provides a modu-lar, declarative query language/programming language. CORALis a deductive system that supports a rich declarative language,provides a wide range of evaluationmethods, and allows a combi-nation of declarative and imperative programming. The data canbe persistent on disk or can reside in main-memory. We describethe architecture and implementation of CORAL.There were two importantgoals in the design of the CORAL ar-chitecture: (1) to integrate the di�erent optimization techniquesin a reasonable fashion, and (2) to allow users to in
uence theevaluation strategies used so as to exploit the full power of theCORAL implementation. A CORAL declarative program can beorganized as a collection of interacting modules and this mod-ule structure is the key to satisfying both these goals. The highlevel module interface allows modules with di�erent evaluationtechniques to interact in a transparent fashion. Further, userscan optionally tailor the execution of a program by selecting fromamong a wide range of control choices at the level of each module.CORAL also has an interface with C++, and users can pro-gram in a combinationof declarativeCORAL, and C++ extendedwith CORAL primitives. A high degree of extensibility is providedby allowing C++ programmers to use the class structure of C++to enhance the CORAL implementation.�This research was supported by a David and Lucile PackardFoundation Fellowship in Science and engineering, a PresidentialYoung Investigator Award, with matching grants from DigitalEquipmentCorporation, Tandem and Xerox, and NSF grant IRI-9011563.The address of the authors are Computer Sciences De-partment, University of Wisconsin, Madison, WI 53706,USA, and AT&T Bell Laboratories, 600 Mountain Av-enue Murray Hill, NJ 07974, USA. The authors emailaddresses are fraghu,divesh,praveeng@cs.wisc.edu and sudar-sha@research.att.com.yThe work of this author was performed largely while he wasin the University of Wisconsin, Madison.0

1 IntroductionIn this paper, we discuss the design and implementation ofthe CORAL deductive database system. CORAL seeks tocombine features of a database query language, such as e�-cient treatment of large relations, aggregate operations anddeclarative semantics, with those of a logic programminglanguage, such as more powerful inference capabilities andsupport for incomplete and structured data. Support forpersistent relations is provided by interfacing with the EX-ODUS storage manager [4]. A unique feature of CORAL isthat it provides a wide range of evaluation strategies (such astop-down, bottom-up, and their variants) and allows users tooptionally tailor execution of a program through high-levelannotations. The language is described in [24]. Applica-tions in which large amounts of data must be extensivelyanalyzed are likely to bene�t from this combination of fea-tures. In comparison to other deductive database systemssuch as Aditi [31], EKS-V1 [32], LDL [30], LOLA [6] andNail-Glue [13], CORAL provides a more powerful languageand supports a much wider range of optimization techniques.We highlight several design decisions that allowed us tointegrate (often unrelated) evaluation techniques and opti-mizations in a nearly seamless fashion. Speci�cally, we con-sider the following issues:1. Data representation (e.g. constants, lists, terms).2. Relation representation and implementation (e.g. inmain-memory and disk-resident).3. Index structures (e.g. hash-structures and B-trees).4. Evaluation techniques (e.g. materialization and top-down)In the CORAL implementation, we divide evaluation intoa number of distinct subtasks, and provide a clean inter-face between the subtasks; relevant optimization techniquescan be (almost) independently applied to each subtask. Ex-tending database programming languages has received muchattention lately, and we believe that the CORAL experi-ence o�ers guidelines for resolving several common issuesthat go beyond the speci�c extensions that are addressed inPage 1

CORAL.One of our goals was to allow users to exploit the fullpower of the implementation. CORAL supports a very richlanguage, and we believe that some user guidance is criti-cal to e�ectively optimizing many sophisticated programs.The problem is to provide users with the ability to choosefrom the suite of optimizations supported by CORAL in arelatively orthogonal and high-level way, and to use a combi-nation of optimizations for di�erent parts of a program. Themodule structure was a key to solving this problem. The in-terface between modules is kept at a high level; evaluationtechniques can be chosen on a per-module basis through (op-tional) annotations, and modules with di�erent evaluationtechniques can interact in a nearly transparent fashion.An overview of the CORAL declarative language is pre-sented in [24]. The query language supports general Hornclauses with complex terms, set-grouping, aggregate oper-ations, negation and data that contains universally quanti-�ed variables. A number of user annotations can also bespeci�ed to guide the system in query evaluation and opti-mization. The details of the language are beyond the scopeof the paper. Many features of the implementation rangingfrom low-level structures to the interactive system environ-ment have also been omitted from the paper, due to shortageof space. The implementation details are found in [?]. InSections 2- 5, we discuss some important aspects of the sys-tem implementation. Section 2 contains an overview of theCORAL system architecture. Section 3 explains the under-lying representation of the data and Section 4 provides anoverview of query evaluation and optimization. Section 5 isthe main section that deals with implementation issues. Itcovers the basic strategies used in evaluating a module, aswell as several important re�nements. It also addresses userguidance of query optimization, and the interaction in theevaluation of di�erent modules. The CORAL/C++ inter-face and support for extensibility in CORAL, including theaddition of new data types and operations, and new rela-tion and index implementations, are discussed in Sections 6and 7. We discuss related systems in Section 8. Finally, weprovide a retrospective discussion of the CORAL design andoutline future research directions in Section 9.2 Architecture of the CORALSystemThe architecture of the CORAL deductive system is shownin Figure 1. CORAL is designed primarily as a single userdatabase system, and can be used in a stand-alone mode.Persistent data is stored either in text �les, or using theEXODUS storage manager [4], which has a client-server ar-chitecture. Each CORAL single-user process is a client thataccesses the common persistent data from the server. Multi-ple CORAL processes could interact by accessing persistentdata stored using the EXODUS storage manager. Trans-actions and concurrency control are supported by the EX-

USER

INTERFACE

QUERY

EVALUATION
SYSTEM

QUERY

OPTIMIZER

DATA

MANAGER

MAIN

MEMORY

EXODUS

STORAGE

MANAGER

O.S.

FILES

optimized
program

query

answers

programFigure 1: CORAL System ArchitectureODUS toolkit, and thus by CORAL. However, within eachCORAL process, all data that is not managed by the EXO-DUS storage manager is strictly local to the process. Most ofthe e�ort of design and implementation in CORAL has con-centrated on the single-user client, and the implementationhas focused on operation out of main memory. While thisis in keeping with Prolog-style systems, there is no part ofthe design that is particularly biased towards a main-memorysystem1.Data stored in text �les can be `consulted', at which pointthe data is converted into main-memory relations, with anyspeci�ed indices; indices can also be created at a later time.Data stored using the EXODUS storage manager is pagedinto EXODUS bu�ers on demand, making use of the index-ing and scan facilities of the storage manager. The design ofthe system does not require that this data be collected intomain-memory CORAL structures before being used; as isusual in database systems, the data can be accessed purelyout of pages in the EXODUS bu�er pool.The query processing system consists of two main parts| a query optimizer and a query evaluation system. Simplequeries (selecting facts from a base relation, for instance)can be typed in at the user interface, and are not opti-mized. Complex queries are typically de�ned in declarative`program modules' that export predicates (views) with as-sociated `query forms' (i.e., speci�cations of what kinds ofqueries, or selections, are allowed on the predicate).The query optimizer takes a program module and a queryform as input, and generates a rewritten program that isoptimized for the speci�ed query forms. In addition to doingrewriting transformations, the optimizer adds several controlannotations (to those, if any, speci�ed by the user). Therewritten program is stored as a text �le | which is usefulas a debugging aid for the user | and is also convertedinto an internal representation that is used by the queryevaluation system.1Certain optimizations like structure-sharing have howeverbeen implemented that optimize main-memory operation.Page 2

The query evaluation system takes as input annotateddeclarative programs (in an internal representation), anddatabase relations. The annotations in the declarative pro-grams provide execution hints and directives. The queryevaluation system interprets the internal form of the opti-mized program. We also developed a fully compiled ver-sion of CORAL, in which we generated a C++ programfrom each user program. (This is the approach taken byLDL [15, 5].) We found that this approach took a signi�-cantly longer time to compile programs, and the resultinggain in execution speed was minimal. We have thereforefocused on the interpreted version; `consulting' a programtakes very little time, and is comparable to Prolog systems.This makes CORAL very convenient for interactive programdevelopment.The query evaluation system has a well de�ned `get-next-tuple' interface with the data manager for access to relations.This interface is independent of how the relation is de�ned(as a base relation, declaratively through rules, or throughsystem- or user-de�ned C++ code). In conjunction with themodular nature of the CORAL language, such a high levelinterface is very useful, since it allows the di�erent modulesto be evaluated using di�erent strategies. It is important tostress that CORAL does manipulate data in a set-orientedfashion, and the `get-next-tuple' interface is merely an ab-straction provided to support modularity in the language.For example, a `get-next-tuple' request on a persistent rela-tion results in a page-level I/O request by the bu�er managerof EXODUS.CORAL supports an interface to C++, extended withseveral features that provide the abstraction of relations andtuples. C++ can be used to de�ne new relations as well asmanipulate relations computed using embedded declarativeCORAL rules. The CORAL-C++ interface is intended tobe used for the development of large applications.3 The Data ManagerThe data manager (DM) is responsible for maintaining andmanipulating the data in relations. In discussing the DM,we also discuss the representation of the various data types.While the representation of simple types is straight-forward,complex structural types and incomplete data present in-teresting challenges. The e�ciency with which such datacan be processed depends in large part on the manner inwhich it is represented in the system. This section thereforepresents the data representation at a fairly detailed level,and this facilitates the discussion of evaluation techniquesin the subsequent sections.The CORAL system is implemented in C++, and all datatypes are de�ned as C++ classes. Extensibility is an impor-tant goal of the CORAL system. In particular, we view sup-port for user-de�ned abstract data types as important. Inorder to provide this support, CORAL provides the genericclass Arg that is the root of all CORAL data-types; speci�c

types such as integers, strings, or other abstract data-typesare subclasses of Arg. The class Arg de�nes a set of virtualmethodssuch as equals, hash, and print, which must be de-�ned for each abstract data-type that is created. The classTuple de�nes tuples of Args. A member of the class Relationis a set of tuples. The class Relation has a number of virtualmethods de�ned on it. These include insert (Tuple*), delete(Tuple*), and an iterator interface that allows tuples to befetched from the relation, one at a time2. The iterator isimplemented using a member of a TupleIterator class thatis used to store the state or position of a scan on the rela-tion, and to allow multiple concurrent scans over the samerelation.3.1 Representation of TermsThe primitive data types provided in the CORAL systeminclude integers, doubles, strings, and arbitrary precisionintegers3 . The current implementation restricts data thatis stored using the EXODUS storage manager to be lim-ited to terms of these primitive types. Such data is storedon disk in its machine representation, while in memory, thedata types are implemented as subclasses of Arg.The evaluation of rules in CORAL is based on the op-eration of uni�cation that generates bindings for variablesbased on patterns in the rules and the data. An impor-tant feature of the CORAL implementation of data typesis the support for unique identi�ers to make uni�cation oflarge terms very e�cient. Such support is critical for e�-cient declarative program evaluation in the presence of largeterms. In CORAL, each type can de�ne how it generatesunique identi�ers, independent of how other types constructtheir unique identi�ers (if any); because of this orthogonal-ity, no further integration is needed to generate unique iden-ti�ers for terms built using several di�erent kinds of types.This is very important for supporting extensibility and thecreation of new abstract data types.Terms can be built from a function symbol, or functor,and such terms are important for representing structuredinformation. For instance, lists are a special type of func-tor term. A term f(X; 10; Y) is represented by a recordcontaining (1) the function symbol f , (2) an array of ar-guments, and (3) extra information to make uni�cation ofsuch terms e�cient. The current implementation of CORALuses a modi�ed version of hash-consing [7, 5] that operatesin a lazy fashion. Hash-consing assigns unique identi�ers toeach (ground) functor term, such that two (ground) func-tor terms unify if and only if their unique identi�ers are thesame. We note that such identi�ers cannot be assigned tofunctor terms that contain free variables, and these have tobe handled di�erently.Variables constitute a primitive type in CORAL, since2This is analogous to the cursor notion in SQL.3Arbitrary precision integers are supported using the BigNumpackage provided by DEC France. Page 3

arguments

BINDING

ENVIRONMENT

BINDING

ENVIRONMENT

name
"f"

arity
3

25

X #0

Y #1

TERM STRUCTURE

FUNCTOR

VAR

VAR

#0

10

null

#1

Z #0

#0 50 null

VAR

argument
*

binding
environment *

argument binding environment *

ARGUMENT

f(X, 10, Y) X −−> 25, Y −−> Z, Z −−> 50Figure 2: Representation of an Example TermCORAL allows facts (and not just rules) to contain variables;in this, CORAL di�ers from most other deductive databasesystems. The semantics of a variable in a fact is that thevariable is universally quanti�ed in the fact. Although thebasic representation of variables is fairly simple, the repre-sentation is complicated by requirements of e�ciency whenusing non-ground facts in rules. We describe the problemsbrie
y.Suppose we want to make an inference using a rule. Vari-ables in the rule may get bound in the course of an inference.A naive scheme would replace every reference to the variableby its binding. It is more e�cient however to record vari-able bindings in a binding environment, at least during thecourse of an inference. A binding environment (often re-ferred to as a bindenv) is a structure that stores bindings forvariables. Therefore whenever a variable is accessed duringan inference, a corresponding binding environment must beaccessed to �nd if the variable has been bound. We show therepresentation of the term f(X; 10; Y), where X is bound to25 and Y is bound to Z, and Z is bound to 50 in a separatebindenv, in Figure 2.3.2 Representation of RelationsCORAL currently supports in-memory hash-relations, aswell as persistent relations (the latter by using the EXO-DUS storage manager [4]). Multiple indices can be createdon relations, and can be added to existing relations. Therelation interface is designed to make the addition of newrelation implementations (as subclasses of the generic classRelation) relatively easy.CORAL relations (currently only the in-memory versions)support several features that are not provided by typicaldatabase systems. The �rst and most important extensionis the ability to get marks into a relation, and distinguishbetween facts inserted after a mark was obtained and factsinserted before the mark was obtained. This feature is im-portant for the implementation of all variants of semi-naive

evaluation described in Section 5.3. The implementationof this extension involves creating subsidiary relations, onecorresponding to each interval between marks, and trans-parently providing the union of the subsidiary relations cor-responding to the desired range of marks. A bene�t of thisorganization is that it does not interfere with the indexingmechanisms used for the relation (the indexing mechanismsare used on each subsidiary relation).CORAL uses the EXODUS storage manager to supportpersistent relations. EXODUS uses a client-server architec-ture; CORAL is the client process, and maintains bu�ers forpersistent relations. If a requested tuple is not in the clientbu�er pool, a request is forwarded to the EXODUS serverand the page with the requested tuple is retrieved. Whilethe architectural design does not require any copying of thisdata into other CORAL structures, the current implemen-tation does perform some copying. This is an artifact of thebasic implementation decision to share constants instead ofcopying their values. Currently, tuples in a persistent rela-tion are restricted to have �elds of primitive types only. Atleast in the case of constants of primitive types like integers,this has proven to be a poor decision, and we are in theprocess of modifying the implementation.3.3 Implementation of Index StructuresHash-based indices for in-memory relations and B-tree in-dices for persistent relations are currently available in theCORAL system. CORAL allows for the speci�cation of twotypes of hash-based indices: (1) argument form indices, and(2) pattern form indices. The �rst form is the traditionalmulti-attribute hash index on a subset of the arguments ofa relation. The hash function chosen works well on groundterms; however, all terms that contain a variable are hashedto a special value, denoted as var. The second form is moresophisticated, and allows us to retrieve precisely those factsthat match a speci�ed pattern, where the pattern can con-tain variables. Such indices are of great use when dealingwith complex objects created using functors. One can re-trieve, for example, those tuples in relation append that haveas the �rst argument a list that matches [Xj[1;2; 3]]. A tuple([5j[1;2; 3]]; [4]; [5; 1; 2; 3; 4]) would then be retrieved [26].4 Overview of Query EvaluationA number of query evaluation strategies have been developedfor deductive databases, and each technique is particularlye�cient for some classes of programs, but may perform rela-tively poorly on others. It is our premise that in such a pow-erful language, completely automatic optimization can onlybe an ideal; the programmer must be able to provide hintsor annotations and occasionally even override the system'sdecisions in order to obtain good performance across a widerange of programs. Since they are expressed at a high level,they give the programmer the power to control optimizationand evaluation in a relatively abstract manner. A detaileddescription of the annotations provided by CORAL may bePage 4

found in [24]; we mention some of them when discussing thequery evaluation techniques.The CORAL programmer decides (on a per-module ba-sis) whether to use one of two basic evaluation approaches,namely pipelining or materialization, which are discussed inSection 5. Many other optimizations are dependent uponthe choice of the basic evaluation mode. The optimizer gen-erates annotations that govern many run-time actions, and,if materialization is chosen, does source-to-source rewritingof the user's program. We discuss these two major tasks ofthe optimizer below.4.1 Rewriting TechniquesMaterialized evaluation in CORAL is essentially a �xpointevaluation using a bottom-up iteration on the program rules.If this is done on the original program, selections in a queryare not utilized. Several program transformations have beenproposed to `propagate' such selections, and many of theseare implemented in CORAL.The desired selection pattern is speci�ed using a queryform, where a `bound' argument indicates that any bindingin that argument position of the query is to be propagated.Bindings are propagated by creating 'magic' facts that rep-resent the appropriate binding values. By specifying that allarguments are bound, binding propagation similar to Prologis achieved (i.e. all available bindings are propagated). Byspecifying that all arguments are `free', in contrast, bindingsin the query are ignored, except for a �nal selection.The default rewriting technique is Supplementary MagicTemplates [3, 18] ; see also [27, 28]. The rewriting canbe tailored to propagate bindings across subgoals in a rulebody using di�erent subgoal orderings; CORAL uses a left-to-right ordering within the body of a rule by default.Other selection-propagating rewriting techniques supportedin CORAL include Magic Templates [18], SupplementaryMagic With GoalId Indexing [26], and Context Factoring[16, 9]. Supplementary Magic is a good choice as a default,although each technique is superior to the rest for some pro-grams. CORAL also supports Existential Query Rewriting[19], which seeks to propagate projections. This is appliedby default in conjunction with a selection-pushing rewriting.4.2 Decisions On Run-timeAlternativesIn addition to choosing rewriting techniques for material-ized evaluation, the optimizer makes a number of decisionsthat a�ect execution. The optimizer analyzes the (rewrit-ten) program, and identi�es some evaluation and optimiza-tion choices that appear appropriate.The default �xpoint evaluation strategy is called BasicSemi-Naive evaluation (BSN), but a variant, called PredicateSemi-Naive evaluation (PSN), which is better for programswith many mutually recursive predicates, is also available.With respect to semi-naive evaluation, the optimizer is re-sponsible for: (1) join order selection, (2) index selection,

(3) deciding whether to re�ne the basic nested-loops joinwith intelligent backtracking. These aspects are discussed indetail in [?].The optimizer also decides on the subsumption checks tobe carried out on each relation. The default is to do sub-sumption checks on all relations. A user can ask that a rela-tion be treated as a multiset, with as many copies of a tupleas there are derivations for it in the original program4. Thissemantics is supported by carrying out duplicate checks onlyon the `magic' predicates; some version of Magic Templatesmust used.5 Module Evaluation StrategiesThe evaluation of a declarative CORAL program is dividedinto a number of distinct sub-computations by expressingthe program as a collection of modules. Each module isa unit of compilation and its evaluation strategies are in-dependent of the rest of the program. Modules export thepredicates that they de�ne; a predicate exported from onemodule is visible to all other modules, and can be used bythem in rules. Since di�erent modules may have widely vary-ing evaluation strategies, some relatively high level interfaceis required for interaction between modules. The basic ap-proach used by CORAL is outlined here.During the evaluation of a rule r in module M , if we gen-erate a query on a predicate exported by module N , a callis set up on module N . The answers to this query are usediteratively in rule r; each time a new answer to the queryis required, rule r requests for a new tuple from the inter-face to module N . The interface to relations exported by amodule makes no assumptions about the evaluation of themodule. Module N may contain only base predicates, ormay have rules that are evaluated in any of several di�er-ent ways. The module may choose to cache answers betweencalls, or choose to recompute answers. All this is transparentto the calling module. Similarly, the evaluation of the calledmodule N makes no assumptions about the evaluation ofcalling module M . This orthogonality permits the free mix-ing of di�erent evaluation techniques in di�erent modules inCORAL and is central to how di�erent executions in di�er-ent modules are combined cleanly.Two basic evaluation approaches are supported, namelypipelining and materialization. Pipelining uses facts `on-the-
y' and does not store them, at the potential cost ofrecomputation. Materialization stores facts and looks themup to avoid recomputation. Several variants of material-ized evaluation are supported: Basic Semi-Naive, PredicateSemi-Naive [22], and Ordered Search [23].5.1 Module and Rule Data StructuresThe compilation of a materialized module generates an in-ternal module structure that consists of a list of structures4On non-recursive queries, this semantics is consistent withSQL when duplicate checks are omitted. Page 5

corresponding to the strongly connected components (SCCs)of the module5 , and each SCC structure contains struc-tures corresponding to semi-naive rewritten versions of rules.These semi-naive rule structures have �elds that specify theargument lists of each body literal, and the predicates thatthey correspond to. Each semi-naive rule also contains eval-uation order information, pre-computed backtrack points,and precomputed o�sets into a table of relations.A module to be evaluated using pipelining is stored asa list of predicates de�ned in the module. Associated witheach predicate is a list of rules de�ning it (in the order theyoccur in the module de�nition), each rule being representedusing structures like those used for semi-naive rules.5.2 PipeliningFor pipelining, which is essentially top-down evaluation, therule evaluation code is designed to work in a co-routiningfashion | when rule evaluation is invoked, using the get-next-tuple interface, it generates an answer (if there is one)and transfers control back to the consumer of answers (thecaller). Control is transferred back to the (suspended) ruleevaluation when more answers are desired.At module invocation, the �rst rule in the list associatedwith the queried predicate is evaluated. This could involverecursive calls on other rules within the module (which arealso evaluated in a similar pipelined fashion). If the ruleevaluation of the queried predicate succeeds, the state of thecomputation is frozen, and the generated answer is returned.A subsequent request for the next answer tuple results inthe reactivation of the frozen computation, and processingcontinues until the next answer is returned. At any stage, ifa rule fails to produce an answer, the next rule in the rule listfor the head predicate is tried. When there are no more rulesto try, the query on the predicate fails. When the topmostquery fails, no further answers can be generated, and thepipelined module execution is terminated.There are three important points to note. Firstly, theimplementation of pipelining, which is a radically di�erentevaluation technique from bottom-up �xpoint evaluation,demonstrates the modularity of the CORAL implementa-tion. Secondly, from a language point of view, it demon-strates that the module mechanism allows a user to e�ec-tively combine bottom-up and top-down evaluation tech-niques in a single program. (Indeed, our implementationof pipelining could be replaced by an interface to a Prologsystem.) Thirdly, pipelining guarantees a particular evalua-tion strategy, and order of execution. While the program isno longer truly `declarative', programmers can exploit thisguarantee and use predicates like updates that involve side-e�ects.5An SCC is a maximal set of mutually recursive predicates.

5.3 MaterializationThe variants of materialization are all bottom-up �xpointevaluation methods. Bottom-up evaluation iterates on aset of rules, repeatedly evaluating them until a �xpoint isreached. In order to perform incremental evaluation of rulesacross multiple iterations, CORAL uses the semi-naive eval-uation technique [2, 1, 22]. This technique consists of a rulerewriting part performed at compile time, which creates ver-sions of rules with delta relations, and an evaluation part.(The delta relations contain changes in relations since thelast iteration.) The evaluation part evaluates each rewrittenrule once in each iteration, and performs some updates tothe delta relations at the end of the iteration. An evaluationterminates when an iteration produces no new facts.The optimizer analyzes the semi-naive rewritten rules andgenerates annotations to create any indexes that may be use-ful during the evaluation phase6 . The basic join mechanismin CORAL is nested-loops with indexing. In a manner simi-lar to Prolog, CORAL maintains a trail of variable bindingswhen a rule is evaluated; this is used to undo variable bind-ings when the nested-loops join considers the next tuple inany loop.5.4 Module Level Control ChoicesAt the level of the module, a number of choices exist withrespect to the evaluation strategy for the module, and thespeci�c optimizations to be used. We describe the imple-mentation of some of these strategies.5.4.1 Ordered SearchOrdered Search is an evaluation mechanism that orders theuse of generated subgoals in a program and thereby providesan important strategy for handling programs with negation,set-grouping and aggregation, that are left-to-right modu-larly strati�ed. Full details of Ordered Search are not pre-sented here, but the reader is referred to [23]. The principleof Ordered Search is that the computation is ordered by`hiding' subgoals. This is achieved by maintaining a `con-text' that stores subgoals in an ordered fashion, and thatdecides at each stage in the evaluation, which subgoal tomake available for use next. The order in which generatedsubgoals are made available for use is somewhat similar toa top-down evaluation.From an implementation perspective, in addition to main-taining the context, two changes have to be made. First, therewriting phase, which must use a version of Magic in con-junction with Ordered Search �xpoint evaluation, must bemodi�ed to introduce `done' literals guarding negated liter-als and rules that have grouping and aggregation. Second,the evaluation must add a goal (`magic' fact) to the corre-sponding `done' predicate when (and only when) all answersto it have been generated. (The context mechanism is used6Index generation also occurs for pipelined modules, but atthe level of the original rules. Page 6

to determine the point at which a goal is considered done.)These changes ensure that rules involving negation, for ex-ample, are not applied until enough facts have been com-puted to reduce the negation to a set-di�erence operation.5.4.2 The Save Module FacilityIn most cases, facts (other than answers to the query) com-puted during the evaluation of a module are best discardedto save space (since bottom-up evaluation stores many facts,space is generally at a premium). Module calls provide aconvenient unit for discarding intermediate answers. By de-fault, CORAL does precisely this | it discards all interme-diate facts and subgoals computed by a module at the end ofa call to the module. However, there are some cases wherethis leads to a signi�cant amount of recomputation. This isespecially so in cases where the same subgoal in a module isgenerated in many di�erent invocations of the module. Insuch cases, the user can tell the CORAL system to maintainthe state of the module (i.e., retain generated facts) in be-tween calls to the module, and thereby avoid recomputation;we call this facility the save module facility.In the interest of e�cient implementation, we have thefollowing restriction on the use of the save module feature:if a module uses the save module feature, it should not beinvoked recursively. We do not make any guarantees aboutcorrect evaluation, should this happen at run-time. (Notethat the predicates de�ned in the module can be recursive;this does not cause recursive invocations of the module).From an implementation point of view, the challenge is toensure that no derivations are repeated across multiple callsto the module. This requires signi�cant changes to semi-naive evaluation; while the details are omitted here for lackof space, they can be found in [25],5.4.3 Lazy EvaluationIn the traditional approach to bottom-up evaluation, all an-swers to a query are computed by iterating over rules tilla �xpoint is reached, and then returning all the answers.Lazy evaluation tries to return the answers at the end ofevery iteration, instead of at the end of computation. Lazyevaluation is implemented by storing the state of the compu-tation at the end of an iteration, and returning the answertuples generated in that iteration. The state is stored withthe iterator that is created for the query (recall the `get-next-tuple' iterative interface). The iterator then iteratesover the tuples returned, and when it has stepped throughall the tuples, it reactivates the `frozen' computation that ithas stored. This reactivation results in the execution of onemore iteration of the rules, and the whole process is repeateduntil an iteration over the rules produces no new tuples.5.5 Predicate Level ControlCORAL provides a variety of annotations at the level ofindividual predicates in a module. We discuss a couple ofthem in this section.

module s p.export s p(bfff; ffff).@aggregate selection p(X;Y; P;C) (X;Y) min(C).s p(X;Y; P;C) : � s p length(X;Y; C); p(X;Y; P;C):s p length(X;Y;min(< C >)) : � p(X;Y;P;C):p(X;Y; P1; C1) : � p(X;Z;P;C); edge(Z;Y; EC);append([edge(Z;Y)]; P; P1); C1 = C +EC:p(X;Y; [edge(X;Y)]; C) : � edge(X;Y;C):end module.Figure 3: Program Shortest Path5.5.1 Indexing RelationsAs mentioned in Section 3.3, CORAL supports two formsof indices: (1) argument form indices, and (2) pattern formindices. The �rst form creates an index on a subset of thearguments of a relation. The second form is more sophis-ticated, and creates an index on a speci�ed pattern thatcan contain variables. Suppose a relation emp had two ar-guments, the �rst a name and the second a complex termaddr(Street; City). The following declaration then createsa pattern form index that can e�ciently retrieve employeesnamed \John", who stay in \Madison", without knowingtheir street.@ make index emp(Name;addr(Street; City))(Name;City).The Magic Templates rewriting stage generates annota-tions to create all indices that are needed for e�cient eval-uation. The user is allowed to specify additional indices,which is particularly useful if the Magic Templates rewrit-ing stage is bypassed.5.5.2 Aggregate SelectionsConsider the shortest path program in Figure 3. To com-pute shortest paths between points, it su�ces to use only theshortest paths between pairs of points | path facts that donot correspond to shortest paths are irrelevant. CORAL per-mits the user to specify an aggregate selection on the predi-cate path in the manner shown. The system then checks (atrun-time) if a path fact is such that there is a path fact oflesser cost C with the same value for X;Y (i.e., between thesame pair of points), and if there is such a fact, the costlierpath fact is discarded. This aggregate selection is extremelyimportant for e�ciency | without it the program mayrun for ever, generating cyclic paths of increasing length.With this aggregate selection, along with the choice annota-tion @aggregate selection path(X;Y;P;C)(X;Y; C)any(P),a single source query on the program runs in time O(E �V),where there are E edge facts, and V nodes in the graph.CORAL's aggregate selection mechanism can also be usedto provide a version of the choice operator of LDL, but withaltogether di�erent semantics [20]. Page 7

5.6 Inter-Module CallsThe interaction between modules merits some discussion.Suppose that p is a predicate that appears in the body of arule of module M2. Evaluation within a rule proceeds left-to-right7 and can be thought of as a nested-loops join. (Whilethis is not entirely accurate with respect to pipelined evalu-ation, it is an accurate enough description for our purposes.)When evaluation reaches the p literal, a scan is opened on p.A p tuple retrieved by the scan is used to instantiate the rule.When evaluation returns to the p literal on backtracking8 ,the scan on p is advanced to get the next p tuple.This `get-next-tuple' interface to a relation p via a scan isthe only interface presented to M2 by any relation, regardlessof the nature of the relation. If p is de�ned in module M1as a derived relation, the interface is still the same as ifp were a base relation. We emphasize that the user neednot be concerned about the details of how `get-next-tuple'requests are generated. This is just an abstraction of howthe evaluation proceeds, and is presented here for clarity ofexposition.An important consequence of this interface is that if M1 ismaterialized, then p is fully evaluated as evaluation repeat-edly reaches the p literal upon backtracking. (More precisely,the part of p that is relevant to this p literal is fully evalu-ated.) Thus, the following rule governs inter-module calls:The calling module will wait until the called modulereturns answers to the subquery. The called mod-ule presents a scan-like interface, and returns allanswers to the subquery upon repeated `get-next-tuple' requests.This is independent of the evaluation modes of the two mod-ules involved. The point at which the called module returnsanswers, however, depends on its evaluation mode.If the called module is pipelined, an answer is returned assoon as it is found, and the computation of the called moduleis suspended until another answer is requested by the caller.The use of certain features, such as `save module' and `ag-gregate selections' can result in all answers being computedbefore any answers are returned by the called module. Oth-erwise, answers are returned at the end of each �xpoint it-eration in the called module; further iterations are carriedout if more answers are requested by the calling module. Atthe level of the top-most query, this results in answers beingavailable at the end of each iteration.6 Interface with C++The CORAL system has been integrated with C++ in or-der to support a combination of imperative and declarativeprogramming styles. We have extended C++ by providinga collection of new classes (relations, tuples, args and scan7More generally, in a user speci�ed order.8Backtracking is only intra-rule unless evaluation in M2 ispipelined.

descriptors) and a suite of associated methods. In addition,there is a construct to embed CORAL commands in C++code. This extended C++ can be used in conjunction withthe declarative language features of CORAL in two distinctways:� Relations can be computed in a declarative style usingdeclarative modules, and then manipulated in imper-ative fashion in extended C++ without breaking therelation abstraction. In this mode of usage, typicallythere is a main program written in C++ that calls uponCORAL for the evaluation of some relations de�ned inCORAL modules. The main program is compiled (aftersome preprocessing) and executed from the operatingsystem command prompt; the CORAL interactive in-terface is not used.� New predicates can be de�ned using extended C++.These predicates can be used in declarative CORALcode and are incrementally loaded from the CORALinteractive command interface. There are, however,some restrictions on the types of arguments that canbe passed to the newly de�ned predicates.Thus, declarative code can call extended C++ code andvice-versa. The above two modes are further discussed inthe following sections.6.1 Extensions to C++C++ has been extended by adding a collection of classesand associated methods. The new classes are:Relation : This allows access to relations from C++. Re-lation values can be constructed through a series of ex-plicit inserts and deletes, or through a call to a declar-ative CORAL module. The associated methods al-low manipulation of relation values from C++ withoutbreaking the relation abstraction.Tuple : A relation is a collection | set or multiset | oftuples.Arg : A tuple, in turn, is a list of args (i.e., arguments). Anumber of methods are provided to construct and takeapart arguments and argument lists.C ScanDesc : This abstraction supports relational scansin C++ code. A C ScanDesc object is essentially acursor over a relation.In addition to the new classes, any sequence of commandsthat can be typed in at the CORAL interactive commandinterface can be embedded in C++ code, bracketed by spe-cial delimiters. A �le containing C++ code with embeddedCORAL code must �rst be passed through a CORAL pre-processor and then compiled using a standard C++ com-piler. One restriction in the current interface is that a verylimited abstraction of variables is presented to the user.Variables can be used as selections for a query (say, viarepeated variables) or in a scan, but variables cannot bereturned as answers (i.e., the presence of non-ground termsis hidden at the interface). Presenting the abstraction ofnon-ground terms would require that binding environmentsPage 8

be provided as a basic abstraction, and this would make theinterface rather complex.6.2 De�ning New PredicatesAs we have already seen, predicates exported from oneCORAL module can be used freely in other modules. Some-times, it may be desirable to de�ne a predicate using ex-tended C++, rather than the declarative language sup-ported within CORAL modules. A coral export statementis used to declare the arguments of the predicate being de-�ned. The CORAL primitive types are the only types thatcan be used in a coral export declaration; user-de�ned typesare not allowed. It is important to note that the CORALpreprocessor currently does no type checking, or even at-tempt to check if the exported function is de�ned in the �le;it operates purely at a syntactic level.The export mechanism makes it easy to pass values ofthese limited types between CORAL and C++ code. Thepredicate de�nition can use all features of extended C++.The source �le is pre-processed into a C++ �le, and com-piled to produce a .o �le. If this �le was consulted from theCORAL prompt, then it is loaded into a newly allocated re-gion in the data area of the executing CORAL system.9 It isalso possible to directly consult a pre-processed .C �le or .o�le, and avoid repeating the pre-processing and compilationsteps.7 Extensibility in CORALThe implementation of the declarative language of CORALis designed to be extensible. The user can de�ne new ab-stract data types, new relation implementations, or new in-dexing methods, and use the query evaluation system withno (or in a few cases, minor) changes. The user's programwill, of course, have to be compiled and linked with the sys-tem code. We assume a set of standard operations on datatypes, and all abstract data types must provide these oper-ations (as C++ virtual methods).7.1 Extensibility of Data TypesThe type system in CORAL is designed to be extensible;the class mechanism and virtual methods provided by C++help make extensibility clean and local. `Locality' refers tothe ability to extend the type system by adding new code,without modifying existing system code | the changes arethus local to the code that is added. All abstract data typesshould have certain virtual methods de�ned in their inter-face, and all system code that manipulates objects operatesonly via this interface. This ensures that the query eval-uation system does not need to be modi�ed or recompiledwhen a new abstract data type is de�ned. The requiredmethods include the method equals that is used to check iftwo objects are equal, the method print for printing the ob-ject, the method construct that is used to create new objects9That is, the new code is incrementally loaded into CORAL.

from a list of arguments (used to re-create objects given aprinted representation), hash to return a hash value, andsome memory management functions. For a summary ofthe virtual methods that constitute the abstract data typeinterface, see [24, 21]. In addition to creating the abstractdata type, the user can de�ne predicates to manipulate (andpossibly display in novel ways) objects belonging to the ab-stract data types. These predicates must be registered withthe system; registration is accomplished by a single com-mand.7.2 Extensibilty of Access StructuresCORAL currently supports relations organized as linkedlists, relations organized as hash tables, relations de�ned byrules, and relations de�ned by C++ functions. The interfacecode to relations makes no assumptions about the structureof relations, and is designed to make the task of adding newrelation implementations easy. The `get-next-tuple' inter-face between the query evaluation system and a relation isthe basis for adding new relation implementations and indeximplementations in a clean fashion. The implementation ofpersistent relations using EXODUS illustrates the utility ofsuch extensibility (Section ??).8 Related SystemsThere are many similarities between CORAL and deductivedatabase systems such as Aditi [31], EKS-V1 [32], LDL [15,5], Glue-NAIL! [13, 17], Starburst SQL [14], DECLARE [11],ConceptBase [8] and LOLA [6]. However, there are severalimportant di�erences, and CORAL extends all the abovesystems in the following ways:1. CORAL supports a larger class of programs, includ-ing programs with non-ground facts and non-strati�ednegation and set-generation.2. CORAL supports a wide range of evaluation tech-niques, and gives the user considerable control over thechoice of techniques.3. CORAL is extensible | new data and relation typesand index implementations can be added without mod-ifying the rest of the system.EKS-V1 supports integrity constraint checking, hypothet-ical reasoning and provides some support for non-strati�edaggregation [12]. ConceptBase supports DATALOG, alongwith locally strati�ed negation (but no set-generation), sev-eral object-oriented features, integrity constraint checking,and provides a one-way interface to C/Prolog, i.e., the im-perative language can call ConceptBase, but not vice versa.LOLA supports strati�ed programs, integrity constraints,several join strategies, and some support for type informa-tion. The host language of LOLA is Lisp, and it is linkedto the TransBase relational database. Aditi gives primaryimportance to disk-resident data and supports several joinstrategies.Unlike Glue-NAIL! and LDL, where modules have only acompile-time meaning and no run-time meaning, modules inPage 9

CORAL have important run-time semantics. in that severalrun-time optimizations are done at the module level. Mod-ules with run-time semantics are also available in severalproduction rule systems (for example, RDL1 [10]). LDL++,a successor to LDL under development at MCC Austin, isreportedly also moving in the direction taken by CORAL inmany respects. It will be partially interpreted, support ab-stract data types, and use a local semantics for choice (CarloZaniolo, personal communication). XSB is a system beingdeveloped at SUNY, Stony Brook. It will support severalfeatures similar to CORAL, such as non-ground terms andmodularly strati�ed set grouping and negation. Programevaluation in XSB will use OLDTNF, which has been imple-mented by modifying the WAM (David S. Warren, personalcommunication). DECLARE and SDS are early e�orts tocommercialize deductive database technology.In comparison to logic programming systems, such as var-ious implementations of Prolog, CORAL provides better in-dexing facilities and support for persistent data. Most im-portantly, the declarative intended model semantics is sup-ported (for all positive Horn clause programs, and a largeclass of programs with negation and aggregation as well).9 ConclusionsThe CORAL project is at a stage where one version of thesystem has been released in the public domain, and an en-hanced version will soon be released. The e�ects of severaldesign decisions are becoming increasingly evident. On thepositive side, most of the decisions we made seem to havepaid o� with respect to simplicity and ease of e�cient im-plementation.Modular Design : The concept of modules in CORALwas in many ways the key to the successful implemen-tation of the system. Given the ambitious goal of com-bining many evaluation strategies controlled by userhints in an orthogonal fashion, the module mechanismappears to have been the ideal approach.Annotations : It has been our experience in practice thatoften, the discerning user is able to determine good con-trol strategies that would be extremely di�cult, if notimpossible, for a system to do automatically. Hence thestrategy of allowing the users to express control choiceswas a convenient approach to solving an otherwise dif-�cult problem.Extensibility : The decision to design an extensible sys-tem seems to have helped greatly in keeping our codeclean and modular, in addition to its utility from anapplication development perspective.System Architecture : The architecture concentrated onthe design of a single user database system, leaving is-sues like transaction management, concurrency controland recovery to be handled by the EXODUS toolkit.Thus CORAL could build on these facilities that werealready available, and focus instead on the subtleties of

deductive databases and logic rules. The overall archi-tecture was reasonably successful in breaking the prob-lem of query processing into relatively orthogonal tasks.On the negative side, some poor decisions were made, andsome issues were not addressed adequately.Type Information : CORAL makes no e�ort to use typeinformation in its processing. No type checking or infer-encing is performed at compile-time, and errors due totype mismatches lead to subtle run-time errors. Typingis a desirable feature, especially if the language is to beused to develop large applications. This is one of the is-sues addressed by a proposed extension to CORAL [29].Memory Management : In an e�ort to make the sys-tem as e�cient as possible for main-memory operations,copying of data has largely been replaced by pointersharing. While this does make evaluation more e�-cient, it requires extensive memory management andgarbage collection. Also, pointer based copying is per-formed even for primitive data types such as integers.There are a number of directions in which CORAL couldbe, and in some cases needs to be, extended. These includebetter support for persistent data, improved memory man-agement, enhanced C++ interface features, object-orientedextensions and support for constraints. While performancemeasurements of a preliminary nature have been made, anextensive performance evaluation of CORAL, both to eval-uate various aspects of the system and to compare it withother systems also needs to be performed.AcknowledgementsWe would like to acknowledge our debt to Aditi, EKS-V1,LDL, NAIL!, SQL, Starburst, and various implementationsof Prolog from which we have borrowed numerous ideas. Wewould like to acknowledge the contributions of the follow-ing people to the CORAL system. Per Bothner, who waslargely responsible for the initial implementation of CORALthat served as the basis for subsequent development, wasa major early contributor. Joseph Albert worked on someaspects of the set-manipulation code; Tarun Arora imple-mented several utilities and built-in libraries; Tom Ball im-plemented an early prototype of the semi-naive evaluationsystem; Lai-chong Chan did the initial implementation ofexistential query optimization; Sumeer Goyal implementedembedded CORAL constructs in C++; Vish Karra imple-mented pipelining; Robert Netzer did the initial implemen-tation of Magic rewriting; and Bill Roth created test suites,implemented the Explanation tool along with Tarun, andadded user-interface features. Page 10

References[1] I. Balbin and K. Ramamohanarao. A generalization of thedi�erential approach to recursive query evaluation. Journalof Logic Programming, 4(3), September 1987.[2] F. Bancilhon. Naive evaluation of recursively de�ned rela-tions. In Brodie and Mylopoulos, editors, On KnowledgeBase Management Systems | Integrating Database and AISystems. Springer-Verlag, 1985.[3] C. Beeri and R. Ramakrishnan. On the power of Magic.In Proceedings of the ACM Symposium on Principles ofDatabase Systems, pages 269{283, San Diego, California,March 1987.[4] M. Carey, D. DeWitt, J. Richardson, and E. Shekita. Objectand �le management in the EXODUS extensible databasesystem. In Proceedings of the International Conference onVery Large Databases, Aug. 1986.[5] D. Chimenti, R. Gamboa, R. Krishnamurthy, S. Naqvi,S. Tsur, and C. Zaniolo. The LDL system prototype. IEEETransactions on Knowledge and Data Engineering, 2(1):76{90, 1990.[6] B. Freitag, H. Sch}utz, and G. Specht. LOLA - a logic lan-guage for deductive databases and its implementation. InProceedings of 2nd International Symposium on DatabaseSystems for Advanced Applications (DASFAA), 1991.[7] E. Goto. Monocopy and associative algorithms in an ex-tended lisp. Technical Report 74-03, Information ScienceLaboratory, Univ. of Tokyo, Tokyo, Japan, May 1974.[8] M. Jeusfeld and M. Staudt. Query optimization in deductiveobject bases. In G. J.C. Freytag, G. Vossen and D. Maier,editors, Query Processing for Advanced Database Applica-tions. Morgan-Kaufmann, 1993.[9] D. Kemp, K. Ramamohanarao, and Z. Somogyi. Right-, left-, and multi-linear rule transformations that maintain con-text information. In Proceedings of the International Con-ference on Very Large Databases, pages 380{391, Brisbane,Australia, 1990.[10] G. Kiernan, C. de Maindreville, and E. Simon. Making de-ductive database a practical technology: a step forward. InProceedings of the ACM SIGMOD Conference on Manage-ment of Data, 1990.[11] W. Kiessling. DECLARE and SDS: Early e�orts to com-mercialize deductive database technology. Submitted to theVLDB Journal., 1993.[12] A. Lefebvre. Towards an e�cient evaluation of recursive ag-gregates in deductive databases. In Proceedings of the In-ternational Conference on Fifth Generation Computer Sys-tems, June 1992.[13] K. Morris, J. D. Ullman, and A. Van Gelder. Design overviewof the NAIL! system. In Proceedings of the Third Interna-tional Conference on Logic Programming, 1986.[14] I. S. Mumick, H. Pirahesh, and R. Ramakrishnan. Dupli-cates and aggregates in deductive databases. In Proceed-ings of the Sixteenth International Conference on Very LargeDatabases, Aug. 1990.[15] S. Naqvi and S. Tsur. A Logical Language for Data andKnowledge Bases. Principles of Computer Science. Com-puter Science Press, New York, 1989.

[16] J. F. Naughton, R. Ramakrishnan, Y. Sagiv, and J. D. Ull-man. Argument reduction through factoring. In Proceed-ings of the Fifteenth International Conference on Very LargeDatabases, pages 173{182, Amsterdam, The Netherlands,August 1989.[17] G. Phipps, M. A. Derr, and K. A. Ross. Glue-NAIL!: A de-ductive database system. In Proceedings of the ACM SIG-MOD Conference on Management of Data, pages 308{317,1991.[18] R. Ramakrishnan. Magic Templates: A spellbinding ap-proach to logic programs. In Proceedings of the InternationalConference on Logic Programming, pages 140{159, Seattle,Washington, August 1988.[19] R. Ramakrishnan, C. Beeri, and R. Krishnamurthy. Op-timizing existential Datalog queries. In Proceedings of theACM Symposium on Principles of Database Systems, pages89{102, Austin, Texas, March 1988.[20] R. Ramakrishnan, P. Bothner, D. Srivastava, and S. Su-darshan. CORAL: A database programming language. InJ. Chomicki, editor, Proceedings of the NACLP `90 Work-shop on Deductive Databases, October 1990. Available asReport TR-CS-90-14, Department of Computing and Infor-mation Sciences, Kansas State University.[21] R. Ramakrishnan, P. Seshadri, D. Srivastava, and S. Sudar-shan. The CORAL user manual: A tutorial introduction toCORAL. Manuscript, 1993.[22] R. Ramakrishnan, D. Srivastava, and S. Sudarshan. Ruleordering in bottom-up �xpoint evaluation of logic programs.IEEE Transactions on Knowledge and Data Engineering (toappear). A shorter version appeared in VLDB, 1990.[23] R. Ramakrishnan,D. Srivastava, and S. Sudarshan. Control-ling the search in bottom-up evaluation. In Proceedings ofthe Joint International Conference and Symposium on LogicProgramming, 1992.[24] R. Ramakrishnan, D. Srivastava, and S. Sudarshan.CORAL: Control, Relations and Logic. In Proceedings of theInternational Conference on Very Large Databases, 1992.[25] R. Ramakrishnan, D. Srivastava, and S. Sudarshan. TheSave Module facility in CORAL. Manuscript, 1993.[26] R. Ramakrishnan and S. Sudarshan. Top-Down vs. Bottom-Up Revisited. In Proceedings of the International Logic Pro-gramming Symposium, 1991.[27] J. Rohmer, R. Lescoeur, and J. M. Kerisit. The Alexandermethod| a technique for the processing of recursive axiomsin deductive database queries. New Generation Computing,4:522{528, 1986.[28] H. Seki. On the power of Alexander templates. In Proc.of the ACM Symposium on Principles of Database Systems,pages 150{159, 1989.[29] D. Srivastava, R. Ramakrishnan, P. Seshadri, and S. Su-darshan. CORAL++: Adding object-orientation to a logicdatabase language. Submitted.[30] S. Tsur and C. Zaniolo. LDL: A logic-based data-language.In Proceedings of the Twelfth International Conference onVery Large Data Bases, pages 33{41, Kyoto, Japan, August1986.[31] J. Vaghani, K. Ramamohanarao, D. Kemp, Z. Somogyi, andP. Stuckey. The Aditi deductive database system. In Pro-ceedings of the NACLP'90 Workshop on Deductive DatabaseSystems, 1990. Page 11

[32] L. Vieille, P. Bayer, V. K�uchenho�, and A. Lefebvre. EKS-V1, a short overview. In AAAI-90 Workshop on KnowledgeBase Management Systems, 1990.

Page 12

