
Incremental Organization for Data Recording andWarehousingH. V. Jagadish1 P. P. S. Narayan2;4 S. Seshadri3 S. Sudarshan3;5Rama Kanneganti21AT&T Labs180 Park Avenue,Florham Park, NJ 07932-0636jag@research.att.com 2 Bell LaboratoriesMurray Hill, NJ 07974ppsn@research.bell-labs.comrama@emailbox.lucent.com 3Indian Institute of Technology,Mumbai 400 076, Indiafseshadri,sudarshag@cse.iitb.ernet.inAbstractData warehouses and recording systems typ-ically have a large continuous stream of in-coming data, that must be stored in a mannersuitable for future access. Access to storedrecords is usually based on a key. Organizingthe data on disk as the data arrives using stan-dard techniques would result in either (a) oneor more I/Os to store each incoming record (tokeep the data clustered by the key), which istoo expensive when data arrival rates are veryhigh, or (b) many I/Os to locate records for aparticular customer (if data is stored clusteredby arrival order).We study two techniques, inspired by exter-nal sorting algorithms, to store data incremen-tally as it arrives, simultaneously providinggood performance for recording and querying.We present concurrency control and recoveryschemes for both techniques. We show thebene�ts of our techniques both analyticallyand experimentally.1 IntroductionA fundamental characteristic of many data warehousesand data recording systems ([JMS95]) is that theyPermission to copy without fee all or part of this material isgranted provided that the copies are not made or distributed fordirect commercial advantage, the VLDB copyright notice andthe title of the publication and its date appear, and notice isgiven that copying is by permission of the Very Large Data BaseEndowment. To copy otherwise, or to republish, requires a feeand/or special permission from the Endowment.Proceedings of the 23rd VLDB ConferenceAthens, Greece, 1997

record data by appending new data observations toa database. Examples of such systems include point-of-sale data collection systems used in large retail busi-nesses, tracking and billing of telephone calls, collec-tion of stock trading data, and operational-data col-lection systems in factories and computer networks,which record data from a large number of sensors.A challenge for these systems is to support veryhigh recording rates (of the order of millions of record-ings an hour) while simultaneously providing e�cientaccess, based on a pre-speci�ed search key, to therecorded data. For instance, a system recording tele-phone calls must not only be able to record informationfast, but must also be able to e�ciently retrieve all callinformation for a speci�ed customer.There are two ways of organizing the records: clus-tered by search key, or clustered by arrival order. Clus-tering by arrival order results in records for a particu-lar search key being scattered at random locations ondisk, and therefore does not meet our requirements.The standard way to implement clustering by asearch key is to organize the records into a B+-tree�le (or hash �le) organization, with the search key at-tributes as the clustering/indexing attributes, and toinsert records into the tree (respectively, hash index)as they arrive. In the application domains mentionedabove, the values of the indexed attribute of the incom-ing records are typically randomly distributed over thepopulation. As a result, each successive record in theinput stream is likely to end up in a di�erent leaf ofthe B+-tree (di�erent hash bucket). Since bu�er spaceis likely to be much smaller than the size of the index,at least one I/O is needed for fetching the appropriateleaf node (hash bucket) for each incoming record, one4The work of this author was done while he was at the IndianInstitute of Technology, Mumbai5The work of this author was done partly while he was atwhat was then AT&T Bell Labs.

I/O for writing it back, and possibly more I/Os forinternal nodes. Performing disk I/O for each record inthe input stream is very costly, greatly reducing therate at which data can be recorded.A commonly used work-around in data warehousesis to collect the records and update the database onlyperiodically (such as each night) using bulk-load tech-niques. The obvious drawback is that the databaseis signi�cantly out-of-date. Further, bulk loading isdone o�-line, during which time the database is typi-cally unavailable.Our goal is to design a technique that supports bothinsertion and queries with reasonable e�ciency, andwithout the delays of periodic batch processing.In this paper we study two techniques, based on ex-ternal sorting algorithms, to achieve these objectives:1. The �rst technique stores the records lazily in aB+-tree �le organization (clustered by the speci-�ed key), and is based on external merge-sort. In-stead of inserting records into a B+-tree as theyarrive, they are organized in-memory into sortedruns. Runs are written to disk when memory isfull, and runs on disk are merged to get largerruns. After several levels of merging, when themerged runs have grown relatively large, they aremerged into the �nal B+-tree �le organization.This technique is based on the same idea as theLog-Structured Merge tree (LSM tree) proposedby O'Neil et al [OCGO96]. However there are sig-ni�cant di�erences, which we discuss in Section 8.2. The second technique stores records lazily in ahash �le organization, and is based on externaldistribution sort with several levels of partition-ing. The hashing based technique is conceptuallya dual of the merging based technique, but theimplementation details are very di�erent.As compared to direct insertion, both techniquesreduce the number of blocks of data that must be readfrom and written to disk for insertion and further, per-form mainly sequential I/O, rather than random I/O,thereby reducing seek costs as well.Although the techniques are based on well-knownexternal sorting algorithms, there are important dif-ferences from sorting:1. Unlike external sorting, where an entire �le issorted, records must be organized incrementally,as they arrive.2. Queries must be allowed on the records, and mustbe able to retrieve all relevant records that havealready been inserted.

3. Concurrency control and recovery must be han-dled e�ciently; neither of these is an issue forexternal sorting algorithms. We present e�-cient concurrency control and recovery schemesfor both our techniques.We compare our schemes with the standard schemeof directly inserting records into a B+-tree (respec-tively, hash �le) analytically, as well as empirically byimplementing our techniques in a relational storagemanager called Brahma developed at IIT Bombay.Our performance results show that, over a widerange of parameters, our techniques can signi�cantlyreduce the cost of insertion as compared to direct inser-tion, while not impacting queries unduly. The resultsalso show that the sorting-based technique outper-forms the hashing-based technique|a somewhat un-expected result. Both techniques are of greatest valuewhen the records are small compared to the page size;record sizes of tens to a few hundred bytes, with a pagesize of 4KB to 8KB, are typical examples.2 Stepped-Merge AlgorithmIncoming records are stored lazily in a relation whoserecords are organized in a B+-tree �le organization.We call the B+-tree in which the records must �nallyreside as the root B+-tree or more simply, the rootrelation. There are also several intermediate B+-trees,organized into multiple levels, as we will see below.2.1 InsertionThe insertion algorithm is shown below. The valuesK and N are parameters to the algorithm.Algorithm Stepped-Merge-Insertion1. Collect incoming data in memory in a current run,organized as an in-memory tree. When memory isfull, call it the previous run. Start a new run (initiallyempty) and make it the current run.Write out the previous run to disk, constructing aB+-tree on the run as it is written out. The B+-tree is constructed bottom up since the data issorted. Both the in-memory run and the one justconstructed are called Level 0 runs.2. When K Level i runs, for 0 � i < N � 1, accu-mulate on disk read back the sorted runs from disk,perform a (K-way) merge and write back a singlelarger sorted run to disk, calling it a Level i+1 run.Delete the old Level i runs. As before, the run isstored in a B+-tree �le organization.3. When K Level N �1 runs accumulate, merge them,but instead of writing them to a new run, insert the

entries into the root relation. The root relation isalso organized using a B+-tree �le organization.The rationale behind the above algorithm is thata large number of records are inserted at a time, insorted order, into the root B+-tree. As a result mul-tiple records would end up in each leaf, and the num-ber of I/O operations per record is reduced, at the(smaller) cost of increased I/O to create the interme-diate runs. A more detailed analysis is presented later.A run-index stores pointers to all the runs currentlyin existence, including the run currently being con-structed in memory. When K runs are merged to geta single run at a higher level, pointers to the K runs aredeleted from the run-index, and replaced by a pointerto the single higher-level run. And when a new runis created in memory, a pointer to it is added to therun-index. All the trees together with the run indexconstitute a multi-tree index.We now consider some simple optimizations. Whilecreating the Kth run of a Level i, instead of writingit out to disk and reading it back again for merging,it can be directly merged with the other Level i runs.As a result of recursively applying this optimization,runs of several di�erent levels may get merged simulta-neously. Applying the optimization to multiple levels,one in-memory run of level 0, and K � 1 runs of eachof levels 0 : : : i on disk, will get merged to form a sin-gle run of level i + 1 on disk. With K = 2, this willsave about half the I/O operations required otherwisefor merging. Furthermore, no level (except level 0)will have more than K � 1 runs at a time with thisoptimization.The average length of a Level 0 run in Stepped-Merge can be increased to double the size of memoryby using the run length doubling trick developed forexternal merge-sort (see, e.g., [Knu73]). All disk ac-cesses, except for the writes to the root relation, inStep 3, are sequential writes. If more than one run isallocated on the same disk, the disk arm may have tomove to fetch from or write to di�erent runs. This seekoverhead is easily reduced by using large disk bu�ers,and can be eliminated by using multiple disks, with acareful allocation of runs to di�erent disks. Furtherimplementation details are described in the full versionof this paper.The idea of having intermediate levels of B+-treesand merging them is the same as that used in theLSM tree [OCGO96]. However, Stepped-Merge andthe LSM tree di�er in signi�cant details; Section 8 de-scribes the di�erences.2.2 QueriesQueries can be executed even as data is being orga-nized into runs. In general, there are up to K�1 runs

at each level 0 � i < N . Further, there is newly in-serted data in memory that has not yet been insertedinto a run. We store the data in memory indexed bythe speci�ed key; for simplicity, we assume it is indexedby a B+-tree, although this is not essential and otherin-memory tree structures or hash structures may beused.Instead of looking up a single relation, queries haveto (a) lookup the root relation and (b) search the run-index to �nd (up to) K�1 runs at each of the N levels(including the current in-memory run), and performa lookup on each of these runs. (Assuming that theoptimization of merging runs from multiple levels atonce is used.) This is an acceptable price if (K�1) �Nis not too large, and lookups are relatively infrequent.2.3 DeletionAged records must be deleted from a data warehouse(and possibly archived). Fortunately in most such ap-plications, deletion can be done lazily, and does nothave an impact on correctness { either the applicationsthemselves may ensure that logically deleted recordsare not accessed, or a view mechanism may be usedto �lter out these records from the applications. Ei-ther way, applications do not query data that is old,and could have been deleted. In such an environmentdeletion can be done e�ciently in the background bya batch process that sequentially scans the root rela-tion. If user transactions perform deletions, the idea ofhaving special records to indicate deletions describedin [OCGO96] could be used.2.4 AnalysisWe derive an estimate of the number of I/Os incurredfor each insertion by the Algorithm Stepped-Merge.Table 1 lists the parameters we use in estimating theI/O costs of various operations. We assume that theroot relation is large enough that we can assume itsheight remains constant during one round of the algo-rithm. We have the following theorem:Theorem 2.1 The total I/O cost of AlgorithmStepped-Merge for inserting S pages-full records into aB+-tree of (�nal) height h, with L pages and a fanoutof d, with s being the size of the �nal level run and Nthe number of levels of runs before insertion into theroot relation, is(2 + 1d) �N � S � Tt + (Ch + hXi=1 Ci) � (S=s) � (Ts + Tt)where Ci denotes the number of node I/Os from leveli of the root B+-tree, and is obtained asCi = d Ldh�i e � (1� (1� 1d Ldh�i e)m)

Independent Parameters (Both Algorithms)M Size of memory in pagesr Number of records per pageTs Time to seek to a speci�ed (random) lo-cation on diskTt Time to transfer one page to/from diskS Size of input stream, in pages (in the pe-riod of interest)N Maximum levels before records are in-serted into root relationIndependent Parameters (Stepped-Merge)K Maximum number of runs at a leveld Average fanout of internal nodes of B+-treeh Height of the root relationDependent Parameters (Stepped-Merge)Pi Size (in pages) of a run at level i(P0 =M ; Pi+1 = K �Pi ; So Pi = KiM)s Size in pages of �nal level runs insertedinto root relation (s = KN �M)Independent Parameters (Stepped-Hash)K Maximum number of disk blocks for ahash bucketR Number of memory pages reserved forbucket partitioningDependent Parameters (Stepped-Hash)M0 Number of memory pages available formanaging insertions (M0 =M �R)X Number of ways �nal level bucket is par-titioned when inserted into root relation(X = Number of buckets in the root rela-tion / (M0KN))Table 1: Parameters Used in Analysiswhere m is the number of distinct keys in the s pagesof records inserted at a time into the root relation. 2The �rst term in the formula measures the cost ofinsertion of a record into the various intermediate runs.The second termmeasures the cost of insertion into theroot relation. Details of the derivations are presentedin the full version of the paper.Consider now the cost of direct insertion of recordsinto a B+-tree, without using Algorithm Stepped-Merge. Since the order of insertion of records is ran-dom, and the �nal B+-tree is likely to be much largerthan memory, the probability of �nding a page inmemory is very small. However, to be conservativein our comparison, we will assume that the root nodeof the B+-tree as well as the next level node are inmemory; the rest must be read from disk, and coupledwith a write of the leaf page, the cost of inserting Spages worth of records directly into a B+-tree of heighth is S � r � (h� 1) � (Ts + Tt).

Numerical comparisons of the two costs will quicklydemonstrate the bene�t of Stepped-Merge over directinsertion, for a wide range of parameter values. This isborne out by experiment as we will discuss in Section 7.2.5 Cost of Look-UpNow let us consider the I/O cost of looking up recordswhen using algorithm Stepped-Merge. Instead of look-ing up a single relation, queries have to look up theroot relation and up to K runs at each level. (This isconservative; (K � 1)=2 is a better average-case esti-mate.) We assume for simplicity that the index oneach run has the same height as the root B+-tree,the root node of each is in memory, and records withthe speci�ed key value �t into a single leaf page ineach tree. Thus the total cost of a single lookup is(K �N + 1) � (h� 1) � (Ts + Tt).Contrast this with the cost of (h � 1) � (Ts + Tt)in a single B+-tree index. For a �xed value of s,N depends on K, and it can be shown that K � N =K �dlogK (s=M)e, which is an increasing function ofK,for K � 2. Therefore, it is minimumat K = 2. This isexperimentally con�rmed by our performance analysisin Section 7, which also shows that the actual increasein cost with a small number of levels is quite low.3 Concurrency Control and Recoveryin Stepped-MergeTo implement the Stepped-Merge algorithm in adatabase system, the transactional issues of concur-rency control and recovery must be handled. We dealwith these issues in the next two subsections.3.1 Concurrency ControlThere are two aspects to concurrency control forStepped-Merge | that between normal transactions(by which we mean inserts and queries), and betweennormal transactions and reorganization.Concurrency control between insertions and queriescan be handled in the traditional manner, throughkey-value locking or interval locking, with a few mi-nor caveats.For example, some techniques, such as next-keylocking [Moh90], are not e�cient in our context, sincethey require inserters to traverse a B+-tree, which in-curs I/O that we are trying to avoid.Alternatively multi-version 2PL can be used to en-sure that reads do not interfere with updates (seedatabase textbooks, such as [SKS96], for details). Ver-sioning is particularly simpli�ed because update trans-actions in our environment merely append new recordsand thus there exists only one version for each record.

If multi-versioning 2PL is used, records must con-tain a timestamp corresponding to the time when thetransaction that inserted them committed. Read-onlytransactions read the system timestamp as of whenthey start, and see all and only relevant records witha timestamp less than their start timestamp.Concurrency control between normal transactionsand index reorganization cannot be handled as eas-ily, since index reorganization is time consuming andpotentially involves large parts of the database. Wediscuss below the interaction between index reorgani-zation and normal transactions, �rst for updates, andthen for queries.The only type of update performed by normal trans-actions (in our model) is an insertion into the currentin-memory run. Before performing such an insert, theupdater �nds and shared-locks the pointer to the cur-rent in-memory run. The shared-lock is held untiltransaction commit. Reorganization acquires an ex-clusive lock on the pointer before transferring the con-tents of the run to disk; the lock can be released early,after creating an empty in-memory run and updatingthe pointer in the run-index to point to it.Queries access the run-index to �nd what runs theyhave to search, in addition to the root relation. Con-currency control on the run-index must ensure that:1. A transaction does not search a given run as wellas one of the runs that was merged to get the givenrun, since a record could then be found twice.2. A transaction does not miss data in a run be-cause the run got deleted, due to absorption in ahigher level run that was accessed by the transac-tion prior to the absorption.A naive solution is for query transactions to shared-lock the run-index, and reorganization to exclusive-lock the run-index so that no reorganizations can occurwhile a transaction is running. However this wouldresult in very poor concurrency since reorganizationstake time.A better alternative is to use versioning of the run-index. When runs are reorganized, instead of updat-ing the existing run-index, a new version is made andis updated. Thus each version of the run-index con-tains pointers to a consistent set of runs, which coverall data that has been inserted when the run-indexversion was created, and without any duplication ofrecords in two or more runs pointed to by the ver-sion. A pointer to the current run-index cur index isalso maintained. Versioning of the run-index, and canbe performed whether or not the data itself is beingversioned.Runs (including the current in-memory run) canbe deleted only after (a) all the records in them have

been inserted into later runs, (b) the current version ofthe run-index does not contain the run, (c) no furthertransactions will �nd the run, and (d) no transactionis using the run. Straightforward latching mechanismsare used to enforce these rules.Whereas versioning of the run-index ensures that aconsistent set of runs is accessed by a query, it doesnot ensure that the root relation is accessed in a stateconsistent with the runs | without additional mech-anisms, a query could �nd records in the root relationthat it saw earlier in some run. We have two alter-natives. The �rst solution is based on key-value lock-ing; the basic idea is that queries share-lock the rangeof key values accessed, while reorganization exclusivelocks them. However, this solution provides less con-currency. See the full version of the paper for details.The second solution, which we call epoch numbering,requires insertions into the root relation to be done asfollows: all records in some set of runs are inserted intothe root relation, and then the set of runs is deletedfrom (a new version of) the run-index. The epochnumber starts from 0, when the �rst run-index is cre-ated. The epoch number is incremented when a newversion of the run-index is created such that some setof �nal-level runs from the previous version have beendeleted (because all the records in the runs have beenadded to the root relation). Thus, multiple versions ofthe run-index may have the same epoch number.Further, the records inserted into the root relationhave an epoch number stored with them, which indi-cates the epoch during when they were inserted. The�rst version of the run-index where the runs have beendeleted will have an epoch number higher than theepoch number stored with these records.Given the above property, a lookup reads the epochnumber of its version of the run-index, and simply re-jects a record if its epoch is greater than or equal tothe epoch of run-index version; any such record wouldeither have been read from the runs in which theywere stored earlier, or would have been inserted af-ter the transaction started and due to the serializationrequirements they should not be retrieved.3.2 Recovery for Stepped-MergeWe assume that records are inserted by update trans-actions, which each insert one or more records. Theneach transaction merely inserts its records into thecurrent run transactionally. Logging of the insertionis straightforward. We assume that some recoverytechnique, such as Aries [MHL+92], is used. The in-memory run is reconstructed from the log records uponrecovery from a system crash.When a new run is created by either merging oldruns, or by copying an in-memory run to disk, logging

can be suppressed since a crash during the run creationwill not lead to information about the records gettinglost; on restart recovery, we can delete the partiallyconstructed run and restart the merge/copy. Hence,instead of logging the creation of the run, it is moree�cient to create the run without any logging, andush the run to disk to make it persistent.Finally, merging of runs into the root relation can beexecuted as a normal transaction, logging the changesto the root relation.All versions of the run-index must be recoverable,since (a) they may point to data that has not yet beenmoved to the root relation, and (b) they may point toruns that no other run-index points to. Hence updatesto the run-index must be logged in the usual fashion.Now consider the logging overhead for our tech-niques. Each record gets logged once when it is �rstinserted into the database, and once when it is insertedinto the root relation. Thus, the total logging overheadis about twice that of direct insertion into a relation.The I/O for logging is sequential, and only full blocksof data are written. Overall, the extra cost of loggingis not a big overhead.If records are transferred incrementally from a runto the root relation (using the key-value locking tech-nique) the deletion from the run has to be logged aswell, so that records get inserted into the root relationat most once.4 Stepped-Hash AlgorithmThe Stepped-Hash algorithm, presented in this sectionis the equivalent of Stepped-Merge algorithm for thecase when the �nal clustering of data is based on a hash�le organization. Data �nally resides in a root hashtable, which is also referred to as the root relation. Theinsertion algorithm is similar in spirit to an externaldistribution sort and is shown below.Algorithm Stepped-Hash-Insertion1. When a record is received, compute its hash valueh, and store it in an initial hash table, which we callthe Level 0 hash table. That is, add the record tobucket h mod M0 of the hash table.Each bucket consists of up to K blocks, the last ofwhich is in-memory. In-memory blocks are writtenout only when they are full, and the blocks for abucket on disk are kept doubly-linked.2. When a bucket Bi;j of Level i, where 0 � i < N �1 accumulates K full blocks of data, partition thebucket K ways into Level i + 1 buckets. A recordwith hash value h is added to bucket Bi+1;m wherem = h mod (M0 �Ki+1).

Each of the K buckets to which records in Bi;j maybe distributed has one block in the memory bu�er.After processing all records of Bi;j, all K in-memorybu�er blocks are ushed to disk, even if they arenot full. After records in bucket Bi;j have beenpartitioned, the blocks in Bi;j are freed.3. When a bucket at Level N�1, BN�1;j , accumulatesK blocks, the data is inserted into the root hashtable using a hash function h mod (M0 �KN �X),where X can be any value.X can be chosen such that each bucket in the roothash table does not have more than K blocks. Xcan be dynamically changed, for instance with ex-tensible hashing.Intuitively, the hash tables form a tree, where nodesare hash tables. During partitioning, records movefrom a node to its children; which child a record goesto is based on its hash value. Each �nal level bucketis partitioned X ways when inserting into the root re-lation. The number of buckets in the root relation isM0 �KN �X.An extra data structure, which we call the bucket-index, is used to keep track of the last block (on disk) ofeach bucket. Available memory (M pages) is dividedinto two parts: R pages are reserved for partitioningof buckets, and the remainingM0 =M �R pages areavailable to hold the Level 0 hash table.Queries calculate the hash value h for the lookupkey and search the appropriate hash buckets at eachlevel, before searching the root hash table. The bucket-index is used to �nd the hash buckets at each level.4.1 Cost of InsertionsTable 1 lists the parameters we use in the cost esti-mate for Stepped-Hash. For simplicity, we assume thatthe directory on each intermediate level has the sameheight as the directory for the root hash table, and theheight is represented by Hd for all the hash tables.Some of the blocks of a partition at level i+ 1 mayoverow as records are inserted into it during parti-tioning at Level i. The fraction of overow blocks toK is represented by the term �.Theorem 4.1 The total I/O cost of AlgorithmStepped-Hash for inserting S pages-full of records, intoa root hash table of directory height Hd is,S � (Ts + Tt)+ SK �(Ts+K �Tt+(K �(2+�)+Hd)�(Ts+Tt))�(N�1)+ SK � (Ts +K � Tt + (X � (2 + �) +Hd) � (Ts + Tt))where N is the number of levels before records are in-serted into the hash table and K is the maximum num-ber of disk blocks for a hash bucket. 2

The three components of the formula above respec-tively estimate costs for: (a) insertion into the Level0 hash table, (b) insertion into the intermediate hashtables, and (c) insertion into the root relation. Al-though the value of � is non-trivial to compute, we canoverestimate it as 1.Consider now the cost of direct insertion of recordsinto the root hash table without using AlgorithmStepped-Hash. The cost of inserting S pages worth ofrecords directly into a root hash table is S � r � (Hd +1) � (Ts + Tt).The analytical formulae here are even more involvedthan for Stepped-Merge, but once more through nu-merical substitution it is possible to convince oneselfof the bene�t of Stepped-Hash over direct insertion intoa hash table. This expectation is con�rmed by exper-iments we performed, as we will present in Section 7.4.2 Cost of Look-UpNow let us consider the I/O cost of looking up recordswhen using Stepped-Hash. Apart from looking up theroot relation, the hash tables on each of the interme-diate levels will also have to be looked up. Instead oflooking up a single relation, queries have to look upthe root relation and up to K blocks at each level. So,we get a total of K � (N + 1) operations to scan thebuckets and Hd � N to read the directories. (Level 0directory need not be read).Thus the total cost of a single lookup, assuming thatrecords with the speci�ed key value �t into a singlebucket and no partitioning is in progress is ((K+Hd) �N +K) � (Ts + Tt).5 Concurrency Control and Recoveryfor Stepped-HashAs in the case of Stepped-Merge, concurrency controlbetween transactions is straightforward, and is han-dled by conventional means such as key-value locking.Although concurrency control between normaltransactions and reorganization in the case of Stepped-Hash bears some similarity to the correspondingscheme for Stepped-Merge, the schemes are di�erentsince during reorganization records are inserted into ahash table that already contains other records. For thesame reason recovery is also a little more complicatedin the case of Stepped-Hash. For lack of space we donot describe either: see the full version of the paperfor details.6 DiscussionBloom �lters (bitmap �lters) can be used to avoidlooking up many of the runs that do not contain anyrecords for a query key, as is done in, e.g., [SL76].

The direct insert algorithm clearly bene�ts from aparallel disk system, since such a system supports alarger number of seeks per second. Parallel I/O canalso be used with our techniques. The output runs orbuckets can be striped across multiple disks, so thatthey transfer data out in parallel. Since I/O units arelarge (multiple pages) the main bene�t here is fromthe increased disk bandwidth due to striping, ratherthan the larger number of seeks that can be supported.Although our cost formulae give a single time esti-mate, they can be decomposed into the number of I/Ooperations (terms multiplied by Ts) and the amount ofdata transferred (terms multiplied by Tt). The compo-nents can then be used to derive time estimates for aparallel disk system, assuming requests are distributeduniformly across all disks.Both Algorithm Stepped-Merge and Stepped-Hashcan handle temporary periods of high insertion loadsvery well, by simply postponing the merging of runsor partitioning of buckets at intermediate levels. Insuch a situation inserters are favored at the expenseof queries, which have to perform more I/Os at inter-mediate levels. Conversely, at times when the insertload is less, the number of levels can be dynamicallyreduced, thereby making queries faster.Although our techniques are described for a pri-mary index organization which stores records, it canequally well be used for secondary indices, storing in-dex entries instead of records. If our techniques areused on a primary index of a relation, the entries ina secondary index should store the primary key of therecord rather than a disk pointer, since the disk loca-tion of the record keeps changing.It is possible to create a hybrid of the B+-tree andhash schemes: Attach one or more \bins" to the \in-ternal" nodes of a B+-tree, into which records could beinserted, rather than carrying them all the way to theleaves. When a bin gets full, distribute the contentsover the bins of the child nodes (as happens with hashbuckets between levels)1.7 Performance StudyIn order to measure the actual bene�ts of Stepped-Merge and Stepped-Hash, we implemented them on topof the Brahma database storage manager developedat IIT Bombay. We used the existing B+-tree im-plementation, which supports bottom-up building ofthe trees, for run creation. For Stepped-Hash, a sim-ple hash table implementation on top of the databasestorage manager was used.We have not yet implemented the concurrency con-trol schemes, but we ran insertions and lookups seri-1This enhancement was suggested by David Maier, to whomwe express our gratitude

ally, intermixed with each other. With multi-versionconcurrency control, queries will cause minimal inter-ference with on-going transactions, so there should beno signi�cant e�ects due to lock contention. We havenot yet implemented the recovery schemes. However,the logging overheads of our schemes are low, and witha separate disk for logs our performance results shouldnot be a�ected excessively.The datasets we used for the experiments compriseda sequence of 20-byte records, each with an eight byteprimary key consisting of a search key value and aunique identi�er to distinguish records with the samekey value. Insertions were generated using a uniformrandom distribution of key values. The page size was�xed at 4KB.The total bu�er memory was 328KB. In the caseof direct insert, all 328KB was used for the databasebu�er, while in the case of Stepped-Merge, 128KB wasused for in-memory runs. While the bu�er memorysize is a small number, it was purposely kept so, tostay in scale with the size of the datasets we have usedfor experimentation. In Stepped-Hash, M0 was �xed at32 buckets and the �nal hash table was �xed at 8192buckets.7.1 Cost of InsertionOur �rst set of experiments measured the cost of in-serting records. The cost of inserts was measuredat each stage as the root relation grew from 0 to 3.2million records during the course of the experiment.In Figures 1 and 2 we compare the total cost ofrecord insertion for Stepped-Merge and Stepped-Hash(with di�erent values for K and N) with direct inser-tion into a B+-tree and hash table respectively as thesize of the B+-tree/hash table grows. The costs areaverages of the insertion cost from the beginning upto the measurement point. The graphs show that theI/Os per record for direct inserts in both cases are sig-ni�cantly higher than the stepped algorithms. Observethat the I/Os per record for direct insertion starts o�at around 1 when the height of the root B+-tree isaround 1, and increases quickly to over 2.Although both the stepped algorithms are muchbetter than direct insert, the Stepped-Merge algorithmhad a signi�cantly lower number of I/Os per record,almost half the number of I/Os as Stepped-Hash in thecase ofK = 2,N = 2. The curve for the Stepped-Mergealgorithm shows a steady increase in the cost of insertsas the size of the root relation increases, whereas theStepped-Hash algorithm shows a near constant cost.This is mainly an artifact of our implementation ofhashing, where we start o� with a �xed number ofbuckets, which does not grow. The relevant numbersto study are towards the end of the curves, where the

number of leaves in the B+-tree is roughly the same asthe number of blocks in the hash table.As N , the number of intermediate levels, and K,the fanout/fanin increase, the I/Os per record decreasesigni�cantly with both the stepped algorithms.Figures 3 and 4 highlight the cost of inserting intothe root relation, ignoring the cost of creating of theintermediate levels, for Stepped-Merge and Stepped-Hash respectively. (Unlike the previous two graphs,the values in these are not averages from the begin-ning but are costs at the measurement point.) It canbe seen that these costs are just a little over 1 evenat a ratio of 122 of root relation size to �nal run size(for K = 2,N = 2), for Stepped-Merge. The costs arelower for smaller ratios (that is, with higher K and N).The results are similar for Stepped-Hash. In contrast,the cost is about 2 for direct insert even at fairly smallsizes of the root relation.7.2 Cost of QueryingThe next set of experiments were designed to �ndthe overhead of querying data using our technique.Batches of 20 record lookups (with records presentin the data set) were repeatedly performed as morerecords were inserted. As a result, for AlgorithmStepped-Merge queries were forced to look up interme-diate runs. For the case of Algorithm Stepped-Hash,queries were forced to look up buckets being parti-tioned.Twenty queries were run after every 16000 recordswere inserted, and this was repeated until an addi-tional 1,600,000 records had been inserted into an ex-isting root relation of 3.2 million records. For K = 2and 3, the value of N was varied such that the size ofthe �nal run went from 250 pages to 8000 pages. ForK = 4 it is not possible to get such an N , so we havepoints at 128 and 512 pages. The Bloom �lters useda bitmap per run with 4 times as many bits as recordsin the �rst level run.The results in Figure 5 show that the number ofI/Os with our Stepped-Merge technique, especiallywith the Bloom �lter optimization, are within reason-able distance of the number of I/Os with a single B+-tree lookup for smaller K and N . The number ofI/Os for K = 2, N = 3 without Bloom �lters worksout to a little over four I/Os per look up, but reducedto 3.125 with Bloom �lters, which is about one I/Omore than the cost with a single B+-tree. Comparingthe results in Figure 5 and Figure 6 clearly show thatStepped-Hash performs signi�cantly worse on lookupsthan Stepped-Merge.

0.0

0.5

1.0

1.5

2.0

2.5

 0 500 1000 1500 2000 2500 3000 3500

T
ot

al
 I/

O
s

pe
r

R
ec

or
d

Number of Records in the Root Relation (in 1000s)

"direct"
"btree N=1 K=2"
"btree N=2 K=2"
"btree N=2 K=3"
"btree N=4 K=2"
"btree N=4 K=3"

Figure 1: Stepped-Merge: Total Insertion Cost 0.0

0.5

1.0

1.5

2.0

2.5

 0 500 1000 1500 2000 2500 3000 3500

T
ot

al
 I/

O
s

pe
r

R
ec

or
d

Number of Records in the Root Relation (in 1000s)

"direct"
"hash N=1 K=2"
"hash N=2 K=2"
"hash N=2 K=3"
"hash N=4 K=2"
"hash N=4 K=3"

Figure 2: Stepped-Hash: Total Insertion Cost
0.0

0.5

1.0

1.5

2.0

2.5

 0 500 1000 1500 2000 2500 3000 3500

I/O
s

pe
r

F
in

al
 R

un
 R

ec
or

d
In

se
rt

io
n

Number of Records in the Root Relation (in 1000s)

"direct"
"btree N=1 K=2"
"btree N=2 K=2"
"btree N=2 K=3"
"btree N=4 K=2"
"btree N=4 K=3"

Figure 3: Stepped-Merge: Cost of Insertion into RootRelation 0.0

0.5

1.0

1.5

2.0

2.5

 0 500 1000 1500 2000 2500 3000 3500

I/O
s

pe
r

F
in

al
 R

un
 R

ec
or

d
In

se
rt

io
n

Number of Records in the Root Relation (in 1000s)

"direct"
"hash N=1 K=2"
"hash N=2 K=2"
"hash N=2 K=3"
"hash N=4 K=2"
"hash N=4 K=3"

Figure 4: Stepped-Hash: Cost of Insertion into RootRelation7.3 Sensitivity to Record SizeThe �nal set of experiments were designed to study thesensitivity of insertion costs to the size of the records.As expected, the bene�t of our techniques decreasesas the number of records that �t in a page decreases.But even with as few as 16 records per page, Stepped-Merge continues to outperform direct insertion; forStepped-Hash, the crossover point is around 45 recordsper page. For lack of space we omit details.In summary, our experimental results demonstratethat Stepped-Merge and Stepped-Hash provide a signif-icant win with respect to insertion costs over the cor-responding direct insertion algorithms, in return fora small increase in look-up cost. Stepped-Merge has aslight edge in terms of insertion cost over Stepped-Hashand a considerable bene�t in terms of look-up cost.8 Related WorkThe idea of maintaining a log of recent changes sep-arately from the main data �le is quite old; see forexample [SL76], which discusses di�erential �les. Theidea of using Bloom �lters has also been explored in[SL76]. However, their goal was not to save I/O as
compared to standard structures like B+-trees, but toavoid changing the main �le. They do not considerissues of multi-level organization of di�erentials, andconcurrency control and recovery issues.Lists of updates-to-be-applied are maintained byonline index construction/reorganization techniques(e.g., [SC91]). These, however, are temporary struc-tures, existing only while the index is being con-structed/reorganized, and are not used by queries; im-proving insert speeds is not a goal.The work that is most closely related to ours is theLSM-tree, described by O'Neil et al [OCGO96]. Our�rst technique, Stepped-Merge, although developed in-dependently, can be seen as a variant of the LSM tree:both are based on the same core idea of a multi-levelorganization of B+-trees. Our hash-based algorithmis, however, novel.An important di�erence is that the LSM tree hasa single B+-tree at each level whereas Stepped-Mergehas up to K B+-trees at each level. The LSM tree istherefore better for queries, since only one tree needbe looked up at each level whereas K trees may needto be looked up in Stepped-Merge. However, the LSMtree is likely to be costlier for inserts since data may

0

2

4

6

8

10

12

14

16

18

 0 1 2 3 4 5 6 7 8

Q
ue

ry
 R

ea
ds

/P
er

 L
oo

ku
p

Number of Intermediate Levels (N)

"direct"
"K=4"

"Bloom K=4"
"K=3"

"Bloom K=3"
"K=2"

"Bloom K=2"

Figure 5: Stepped-Merge: Cost of Lookups 0

2

4

6

8

10

12

14

16

18

 0 1 2 3 4 5 6 7 8

Q
ue

ry
 R

ea
ds

/P
er

 L
oo

ku
p

Number of Intermediate Levels (N)

"direct"
"K=4"
"K=3"
"K=2"

Figure 6: Stepped-Hash: Cost of Lookupsbe read and written back up to K times at each level.[OCGO96] studies issues of how much memory andhow many disks should be used to support a givenload at the cheapest cost; we do not consider this is-sue, and measure instead the number of I/O operationsand data volume to be transferred. The analytical for-mulae for Stepped-Merge and the LSM tree thereforemeasure di�erent quantities, and cannot be compareddirectly.The LSM tree handles updates, whereas we havenot addressed updates so far. Conversely, we havedescribed a concurrency control scheme, whereas[OCGO96] does not | it only outlines features thata concurrency control scheme must have. Transfer ofdata from one level to another is more incremental forthe LSM tree but the price paid is that concurrencycontrol is more complicated. We believe our recoverytechnique makes fewer changes to standard recoverytechniques and should be easier to implement.Unlike [OCGO96], we have presented a performancestudy of our techniques based on an actual implemen-tation. Future work includes implementing the LSMtree in our system and empirically comparing its per-formance with Stepped-Merge.9 Conclusions and Future WorkWe studied two techniques to cluster data incremen-tally as it arrives, one based on sort-merge and theother on hashing. We have presented e�cient con-currency control and recovery schemes for both tech-niques. We have demonstrated the bene�ts of ourtechniques both analytically and through an empiri-cal performance study of an actual implementation.One contribution of this paper has been to show thata well-designed sort-merge based scheme performs bet-ter than hashing.We believe it should be reasonably easy to integrateour techniques into an existing database system. Fu-ture work includes extending our techniques beyondinsert-only environments, to allow updates of existing

data. We believe our techniques will play an impor-tant role in the design of data recording systems anddata warehouses in the future.References[JMS95] H.V. Jagadish, Inderpal Singh Mumick, andAbraham Silberschatz. The chronicle data model. InProcs. of the ACM Symp. on Principles of DatabaseSystems, 1995.[Knu73] D.E. Knuth. The Art of Computer Program-ming, Vol.3 | Sorting and Searching. Addison-Wesley (Reading MA), 722pp., 1973.[Moh90] C. Mohan. ARIES/KVL: A key-value lockingmethod for concurrency control of multiaction trans-actions operating on B-tree indexes. In IBM AlmadenRes.Ctr, Res.R. No.RJ7008, 27pp., March 1990.[MHL+92] C. Mohan, D. Haderle, Bruce Lindsay, HamidPirahesh, and P. Schwarz. ARIES: A TransactionRecovery Method Supporting Fine-Granularity Lock-ing and Partial Rollbacks Using Write-Ahead Log-ging. ACM Transactions on Database Systems, 17(1),March 1992.[OCGO96]Patrick O'Neil, Edward Cheng, Dieter Gawlick, andElizabeth J. O'Neil. The Log-Structured Merge-Tree.Acta Informatica, 33:351-385, 1996.[OW93] Patrick O'Neil and Gerhard Weikum. A Log-Structured History Data Access Method (LHAM).High-Performance Transaction Systems Workshop(HPTS) 1993.[SKS96] A. Silberschatz, H. Korth and S. SudarshanDatabase System Concepts. McGraw Hill, 3 edition,1997.[SL76] D.G. Severance and G.M Lohman. Di�erential�les: Their applications to the maintenance of largedatabases. ACM Transactions on Database Systems,1(3):256{367, September 1976.[SC91] V. Srinivasan and M. J. Carey. On-line index con-struction algorithms. Proc. High Performance Trans-action Systems Workshop, Sep. 1991.

