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Database systems frequently have to execute a set of related queries,

which share several common subexpressions. Multi-query optimization ex-

ploits this, by finding evaluation plans that share common results. Current

approaches to multi-query optimization assume that common subexpres-

sions are materialized. Significant performance benefits can be had if com-

mon subexpressions are pipelined to their uses, without being materialized.

However, plans with pipelining may not always be realizable with limited

buffer space, as we show. We present a general model for schedules with

pipelining, and present a necessary and sufficient condition for determin-

ing validity of a schedule under our model. We show that finding a valid

schedule with minimum cost is NP-hard. We present a greedy heuristic

for finding good schedules. Finally, we present a performance study that

shows the benefit of our algorithms on batches of queries from the TPCD

benchmark.

1Work performed while at I.I.T., Bombay.
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1. INTRODUCTION
Database systems are facing an ever increasing demand for high performance.

They are often required to execute a batch of queries, which may contain several
common subexpressions. Traditionally, query optimizers like [7] optimize queries
one at a time and do not identify any commonalities in queries, resulting in re-
peated computations. As observed in [13, 17] exploiting common results can lead
to significant performance gains. This is known as multi-query optimization.

Existing techniques for multi-query optimization assume that all intermediate
results are materialized [4, 14, 19]. They assume that if a common subexpression is
to be shared, it will be materialized and read whenever it is required subsequently.
Current multi-query optimization techniques do not try to exploit pipelining of
results to all the users of the common subexpression. Using pipelining can result
in significant savings, as illustrated by the following example.

Example 1.1. Consider 2 queries, Q1 : (A 1 B) 1 C and Q2 : (A 1 B) 1 D.
Suppose we evaluate the 2 queries separately. In this case we pay the price of
recomputing A 1 B. If we materialize the result of A 1 B, although we do not
have to recompute the result, we have to bear the additional cost of writing and
reading the result of the shared expression. Thus, results would be shared only if the
cost of recomputation is higher than the cost of materialization and reading. While
materialization of results in memory would have a zero (or low) materialization
and read cost, it would not be possible to accomodate all shared results because of
the limited size of memory, and in particular results that are larger than memory
cannot be shared.

On the other hand, if we pipeline the results of A 1 B to both the queries,
we do not have to recompute the result of A 1 B and we also save the costs of
materializing and reading the common expression.

However, if all the operators are pipelined, then the schedule may not be realiz-
able. We will formalize this concept later by defining valid schedules. The following
example illustrates why every schedule may not be realizable.

Example 1.2. Consider the query execution plan shown in Figure 1. We assume
nodes A and B produce results sorted on the join attributes of A and B and
both joins are implemented using merge joins. Now, suppose all the operators are
pipelined and a pull model of execution (Section 4.1) is used. Also suppose MJ1
has not got any tuples from A due to low selectivity of the select predicate σA.x=v1.
Then, it may not pull any tuple from B. However, since MJ2 is getting tuples
from A, it will keep pulling tuples from B. Since MJ1 is not consuming the tuples
from B, B can not evict any tuple from its output buffer, which will become full.
Now MJ2 cannot consume any more A tuples, so the output buffer of A will also
become full. Once both output buffers are full, execution will deadlock. Hence, this
schedule may not be realizable. The same problems would also arise with a push
model for pipelining.
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FIG. 1. Unrealizable Schedule

The main contributions of this paper are as follows.

• We present a general model for pipeline schedules, where multiple uses of a
result can share a scan on the result of a subexpression; if all uses of an intermediate
result can share a single scan, the result need not be materialized.
• We then present an easy-to-check necessary and sufficient condition for stati-

cally determining validity (realizability) of a schedule under our model.
• We show that given a plan that includes sharing of subexpressions, finding a

valid schedule with minimum cost is NP-hard.
• We then present algorithms for finding valid pipelined schedules with low exe-

cution costs, for a given plan.
• Our overall approach to the query optimization process is then as follows: run

a multi-query optimizer, disregarding the issue of pipelining in the first phase,
and run our pipelining algorithms in the second phase. We have implemented our
algorithms, and present a performance study that illustrates the practical benefits
of our techniques, on a workload of queries taken from the TPCD benchmark.

The rest of the paper is organized as follows. Section 2 covers related work.
Section 3 gives an overview of the problem and our approach to solving it. Section
4 gives a model for pipelining in a DAG, as well as necessary and sufficient condition
for validity of a pipelined schedule. Section 5 shows that the problem of finding
the least cost pipeline schedule for a given DAG structured query plan is NP-hard.
We give heuristics for finding good pipeline schedules in Section 6. In Section 7, we
give a detailed performance study of our heuristics. Section 8 gives some extensions
and direction for future work and Section 9 concludes the paper.

2. RELATED WORK

Early work on multi-query optimization includes [5, 8, 12, 16, 17] and [18]. One
of the earliest results in this area is by Hall [8], who uses a two-phase approach: a
normal query optimizer is used to get an initial plan, common subexpressions in the
plan are detected, and an iterative greedy heuristic is used to select which common
subexpressions to materialize and share. At each iteration, the greedy heuristic
selects the subexpression that, if materialized in addition to the subexpressions
selected in the prior iterations, leads to the maximum decrease in the overall cost
of the consolidated plan.

The work in [12, 17, 18] describes exhaustive search algorithms and heuristic
search pruning techniques. However, these algorithms assume a simple model of
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queries having alternative plans, each with a set of tasks; the set of all plans of a
query is extremely large, and explicitly enumerating and searching across this space
makes the algorithms impractical.

More recently [14, 20] and [22] considered how to perform multi-query optimiza-
tion by selecting subexpressions for transient materialization. [20] concentrates on
finding expressions to share for a given plan. For the special case of OLAP queries
(aggregation on a join of fact table with dimension tables) Zhao et al. [22] consider
multiquery optimization to share scans and subexpressions. They do not consider
materialization of shared results, which is required to handle the more general class
of SQL queries, which we consider.

Roy et al. [14] study several approaches to multi-query optimization, and show
that to get the best benefit, the choice of query plans must be integrated with the
choice of what subexpressions are to be materialized and shared. The “post-pass”
approach of [8] and [20] are not as effective since they miss several opportunities
for sharing results. Roy et al. [14] also present implementation optimizations for
a greedy heuristic, and showed that, even without the use of pipelining to share
intermediate results, multiquery optimization using the greedy heuristic is practical
and can give significant performance benefits at acceptable cost.

None of the papers listed above addressed the issue of pipelining of results, and
the resultant problem of validity of schedules.

Chekuri et al. [1] and Hong [9] concentrated on finding pipeline schedules for
query plans which are trees. These algorithms try to find parallel schedules for query
plans and do not consider common subexpressions. Note that these algorithms
cannot be used in the context of multi-query optimization, where the plans are
DAGs.

Tan and Lu [21] try to exploit common subexpressions along with pipelining, but
their technique applies only to a very specific query processing mechanism: join
trees, broken into right deep segments where all the relations used in a segment fit in
memory. Pipelined evaluation is used for each right deep segment. Their optimiza-
tions lie in how to schedule different segments so that relations loaded in memory
for processing other segments can be reused, reducing overall cost. Database rela-
tions and shared intermediate results are assumed to fit in memory, which avoids
the problems of realizability which we deal with, but the assumption is unlikely
to hold for large databases. Further, they do not address general purpose pipeline
plans for joins, or any operations other than joins.

Graefe [6] describes a problem of deadlocks in parallel sorting, where multiple
producers working on partitions of a relation pipeline sorted results to multiple
consumers; the consumers merge the results in their input streams. This problem
is a special case of our problem: we can create a plan to model parallel sorting, and
apply our techniques to detect if a pipeline schedule for the plan is valid.

Several database systems have long implemented shared scans on database rela-
tions, which allows multiple queries to share the output of a scan. These systems
include Teradata and the RedBrick warehouse [2] (RedBrick is now a part of In-
formix, which is a part of IBM). Pipelining results of a common subexpression to
multiple uses is a generalization of this idea.

Since intermediate results are not shared, the only problem of realizability in the
context of shared scans of database relations arises when a database relation is used
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twice in the same query, or scans on more than one relation are shared by multiple
queries. We are not aware of any work describing how this problem is handled
in database systems . The techniques we describe in this paper can detect when
scans can be shared without any problem of realizability, but to our knowledge our
techniques have not been used earlier. A simple but restrictive solution for the
special case of shared scans on database relations is as follows: allow at most one
scan of a query to be a shared scan (This restriction prevents a query from sharing a
scan even with itself.) Such a restriction may be natural in data warehouse settings
with a star schema, where a query uses the fact table at most once, and only scans
on the fact table are worth sharing; however it would be undesirable in a more
general setting.

On the other hand, some systems, such as the RedBrick warehouse and the
Teradata database, have an out-of-order delivery mechanism whereby a relational
scan that is just started can use tuples being generated by an ongoing scan, and
later fetch tuples already generated by the earlier scan. We do not consider such
dynamic scheduling; our schedule is statically determined. (We discuss issues in
dynamic materialization in Section 8.)

O’Gorman et al. [10, 11] describe a technique of scheduling queries such that
queries that benefit from shared scans on database relations are scheduled at the
same time, as a “team”. Their technique works on query streams, but can equally
well be applied to batches of queries. They perform tests on a commercial database
system and show the benefits due to just scheduling, (without any other sharing of
common subexpressions) can be very significant.

3. PROBLEM AND SOLUTION OVERVIEW

The main objective of this paper is to incorporate pipelining in multi-query opti-
mization. We use a 2 phase optimization strategy. The first phase uses multi-query
optimization to choose a plan for a given set of queries, ignoring pipelining optimiza-
tions, as done in [14]. The second phase, which we cover in this paper, addresses
optimization of pipelining for a given plan. Single phase optimization, where the
multi-query optimizer takes pipelining into account while choosing a plan, is very
expensive, so we do not consider it here.

Multi-query optimizers generate query execution plans with common subexpres-
sions used more than once, and thus nodes in the plan may have more than one
parent. We therefore assume the input to our pipelining algorithms is a DAG
structured query plan. We assume edges are directed from producers to consumers.
Henceforth, we will refer to the plan as the Plan-DAG.

3.1. Annotation of Plan-DAG
Given a Plan-DAG, the first step is to identify the edges that are pipelinable,

depending on the operator at each node. We say an edge is pipelinable if (a) the
operator at the output of the edge can produce tuples as it consumes input from
the edge, and (b) the operator reads its input only once. Otherwise the edge is
materialized.
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FIG. 2. Examples of Pipelinable Edges

The pipelinable edges for nested loop join and hash join operators are shown in
Figure 2. Solid edges signify pipelining while dashed edges signify materialization.3

Since the inner relation in nested loop join and the build relation in hash join have to
be read more than once and we assume limited buffers, they have to be materialized.
The inputs of select and project operators, without duplicate elimination, as well as
both inputs of merge join are pipelinable. For sort the input is not pipelinable since
the input has to be consumed completely before outputting any tuple. However,
the merge sort operation can be split into run generation and merge phases, with
the input pipelined to run generation, but the edges from run generation to merge
being materialized.

Thus finally we will have a set of pipelinable and materialized edges. We use
the word pipelinable instead of pipelined because all the edges marked so are only
potentially pipelinable. It may not be possible for all of them to be simultaneously
pipelined, as explained below.

3.2. Problems in Pipelining
A schedule in which the edges are labeled purely on the basis of the algorithm

used at that node may not be realizable using limited buffer space. Our basic
assumption is that any result pipelined to more than one place has to be pipelined
at the same rate to all uses. This is because of the limited buffer size. Any difference
in the rates of pipelining will lead to accumulation in the buffer and either the buffer
will eventually overflow, or the result would have to be materialized. We assume
intermediate results will not fit in memory4.

The following two examples illustrate schedules that may not be realizable with
limited buffer space.

• Consider the first schedule in Figure 3. The solid edges show pipelining and
dashed edges show materialization. The output of u is being pipelined to both m

and n. Also note that the output of m is pipelined to v at the same time but the
output of n is being materialized. Now v cannot consume its input coming from m

till it sees tuples from n. Thus it cannot consume the output of m. Thus, either the
buffer between v and m will overflow or the result of m will need to be materialized.
Thus, this schedule cannot be realized.

3We follow this convention throughout the paper.
4If some, but not all intermediate results fit in memory, we would have to choose which to keep

in memory. This choice is addressed by Tan and Lu [21] in their context, but is a topic of future
work in our context.
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FIG. 3. Problems in Pipelining

• There is one more context in which problems can occur. Consider the second
schedule in Figure 3. Suppose the operator at node a wants the rate of inputs in
some ratio Ra. Similarly, the operator b wants input rates in ratio Rb. The rates
of inputs in various edges are x,y,z and w as shown. However, as stated earlier,
we require x to be same as y and z to be same as w. This forces Ra and Rb to be
equal, which may not be always true. Moreover, the rates Ra and Rb may change
dynamically depending on the data. Thus, there may be data instances that result
in the buffers becoming full, preventing any further progress.

Thus, the above schedules cannot (always) be realized. We generalize these situa-
tions in Section 4.

3.3. Plan of Attack
To address the overall problem, in Section 4 we formally define the notion of

“valid schedules”, that is schedules that can be realized with limited buffer space,
and provide easy-to-check necessary and sufficient conditions for validity of a given
pipeline schedule. In Section 5 we define the problem of finding the least cost
(valid) pipeline schedule for a given Plan-DAG, and show that it is NP-hard. In
Section 6 we study heuristics for finding low cost pipeline schedules, and study their
performance in Section 7. We then consider some extensions in Section 8.

4. PIPELINE SCHEDULES

We now define a model for formally describing valid pipeline schedules, that is,
schedules that can be executed without materializing any edge marked as pipelined,
and using limited buffer space. To do so, we first define a general execution model,
and define the notion of bufferless schedules (a limiting case of schedules with
limited buffer space). We then add conditions on materialized edges to the notion
of bufferless schedules, to derive the notion of valid pipeline schedules. Later in the
section we provide necessary and sufficient conditions for validity, which are easy
to test.

Definition 4.1. (Pipeline Schedule) A pipeline schedule is a Plan-DAG with
each edge labeled either pipelined or materialized.
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4.1. Execution Model

Given a Plan-DAG, we exectute the plan in the following way. Each operator
having at least one outgoing pipelined edge is assigned a part of the memory, called
its output buffer, where it writes its output. If there is a materialized output edge
from the operator, it writes it to disk as well. We say an operator o is in ready
state if (i) each of the children of o that are connected to o by a materialized edge
have completed exectution and have written the results to the disk. (ii) each of
the pipelined children of o have, in their output buffer, the tuples required by o to
produce the next tuple. (iii) the output buffer of o is not full.

If every pipelined parent of an operator has read a tuple from its output buffer,
then the tuple is evicted from the buffer.

The execution of the plan is carried out as follows. Some operator that is in ready
state is selected. It produces the next tuple and writes the tuple to its output buffer
(if there is a pipelined outgoing edge) and to the disk (if there is a materialized
outgoing edge). Then all of its pipelined children check if any tuple can be evicted
from their output buffer.

An execution deadlocks if not all operators have finished and there is no operator
in the ready state. A plan can complete if there is a sequence in which operators
in ready state can be choosen so that each operator finishes execution.

As we will show later, if the schedule satisfies validity conditions that we define,
the order of selection of ready nodes is not relevant; i.e., any order of selecting ready
nodes will lead to the completion of the schedule.

The pull model is an instantiation of the general execution model. Under the
pull model, operators are implemented as iterators [6]. Each operator supports the
following functions: open(), which starts a scan on the result of the operator, next(),
which fetches the next tuple in the result, and close(), which is called when the scan
is complete. Consumers pull tuples from the producers whenever needed. Thus,
each operator pulls tuples from its inputs. For instance, the next() operation on a
select operation iterator would pull tuples from its input, until a tuple satisfying
the selection condition is found, and return that tuple (or an end of data indicator
if there are no more tuples). Operators such as nested loops join that scan an
input more than once would close and re-open the scan. Some operators pass
parameters to the open() call; for instance, the indexed nested loops join would
specify a selection value as a parameter to the open() call on its indexed input.

If there are multiple roots in a Plan-DAG, the iterators for all the roots in the
pull model start execution in parallel. For instance, in Example 1.1, the iterators
for Q1 and Q2 would execute in parallel, both pulling tuples from (A 1 B). A tuple
can be evicted from the output buffer of (A 1 B) only when it is consumed by both
Q1 and Q2. If one of the queries is slower in pulling tuples, the other is forced to
wait when the output buffer is full, and can proceed only when space is available
in the output buffer. Thus the rates of the two queries get adjusted dynamically.

The push model can be similarly defined; in this case, each operator runs parallel
with all others, generating results and pushing them to its consumers. It is even
possible to combine push and pull within a schedule, where some results are pushed
to their consumers, while others are pulled by the consumers.
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4.2. Bufferless Schedules
Given a particular database, and a query plan, we can give sequence numbers to

the tuples generated by each operator (including relation scan, at the lowest level).
We assume that the order in which tuples are generated by a particular operation,
is independent of the actual pipeline schedule used; this assumption is satisfied by
all standard database operations.

Given a pipelined edge e, incoming to node n, the function f(e, x) denotes the
maximum sequence number amongst the tuples from edge e that the operator at
node n needs to produce its xth output tuple. The function f(e, x) is independent
of the actual pipeline schedule used.

We also define two functions whose value determines an actual execution of a
pipelined schedule. We assume that time is broken into discrete units, and in each
unit an operator may consume 0 or 1 tuple from each of its inputs, and may produce
0 or 1 output tuple. The function P (e, t) denotes the sequence number of the last
tuple that is pipelined through edge e at or before time t. Similarly P (n, t) denotes
the sequence number of the last tuple the operator at node n produces at or before
time t. We also refer to the sequence number of the last tuple as the max tuple.

Definition 4.2. (Bufferless Pipeline Schedule) A pipeline schedule is said to be
bufferless, if, given a function f(e, x), defined for every pipelined edge e, there exists
a function P (e, t), non-decreasing w.r.t. t, such that for every node n, with outgoing
edges o1, o2, · · · ok, and incoming edges e1, e2, · · · ek, the following conditions are
satisfied.

(i) P (o1, t) = P (o2, t) · · · = P (ok, t) = P (n, t)
(ii) P (ei, t) = f(ei, P (n, t)), ∀ i.
(iii) ∃ T such that ∀ n, ∀t ≥ T , P (n, t) = CARD(n) where CARD(n) is the size

of the result produced by the operator at node n.

The first condition ensures that all the tuples generated at a node are passed
immediately to each of its parents, thereby avoiding the need to store the tuples in
a buffer. The second condition ensures that the tuple requirements of each operator
is simultaneously satisfied. The third condition ensures that the execution gets
completed.

4.3. Valid Pipeline Schedules

Definition 4.3. (Valid Pipeline Schedule) A pipeline schedule is said to be
valid if it is bufferless and if each node n in the Plan-DAG can be given an integer
S(n), referred to as the stage number, satisfying the following property: If n is
a node, with children a1, a2, · · · ak, and corresponding edges e1, e2, · · · ek following
conditions are satisfied:

(i) If ei is labeled materialized, then S(ai) < S(n)
(ii) If ei is labeled pipelined, then S(ai) = S(n)
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FIG. 4. The plan-DAG and the pipelining schedule for Example 4.1

The idea behind the stage number is that all the operators having the same stage
number will be executed simultaneously. Also, all operators having stage number
i− 1 will get completed before execution of operators in stage i starts.

Note that the tuple requirements of the operators are dynamic and are not known
a priori. But with limited buffers, the rates will get adjusted dynamically in an
actual evaluation. Valid schedules will complete execution regardless of the order of
selection of ready nodes; a detailed proof is given in Section 4.4. Invalid schedules,
on the other hand, may deadlock with buffers getting full; execution can then
proceed only if some tuples are materialized.

Example 4.1. Consider the Plan-DAG given in Figure 4. The dashed edges are
materialized while the rest are pipelined. The pipeline schedule is valid, because
we can have S(C), S(D) and S(F ) as 0, with the other stage numbers as 1, and
functions can be assigned to all pipelined edges such that the conditions for the
schedule to be bufferless are satisfied. At stage number 0, we would have computed
C, D and F . At stage number 1, we would compute the results of the remaining
nodes. Also note that the constraints on e1 and e3, placed by the operator at G,
can be satisfied by reading the results of F and passing to G at the required rate.
The rates of consumption of E at G and H would get adjusted dynamically: if the
output buffer of E fills up, the faster of G or H will wait for the other to catch up.
The case with e2 and e4 is similar.

4.4. Validity Criterion
As we have seen earlier, not all potentially pipelinable edges of the Plan-DAG

can be simultaneously pipelined. We now give a necessary and sufficient condition
for a schedule to be valid. But before that, we need to define some terminology.

Definition 4.4. (C-cycle) A set of edges in the Plan-DAG is said to form a
C-cycle, if the edges in this set, when the Plan-DAG is considered as undirected,
form a simple cycle.
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Definition 4.5. (Opposite edges) Two edges in a C-cycle are said to be op-
posite, if these edges, when traversing along the C-cycle, are traversed in opposite
directions.

In the previous example, the edges e1, e2, e3 and e4 form a C-cycle. In it, e1 and
e2 are opposite, so are e1 and e3, e3 and e4, and e2 and e4.

Definition 4.6. (Constraint DAG) The equivalence relation ∼ on the ver-
tex set of Plan-DAG is defined as follows: v1 ∼ v2 if there exists vertices v1 =
a1, a2, · · · an = v2 such that there is a pipelined edge between ai and ai+1 for each
1 ≤ i < n.

Let Eq = C1, C2 . . . Ck be the set of equivalence classes of ∼. We define a directed
graph, referred to as the Constraint DAG, on Eq by the following rule: draw an
edge from Ci to Cj if there exists vertices vi and vj such that vi ∈ Ci, vj ∈ Cj and
there is a path from vi to vj .

In the proof of Theorem 4.1, we show that the graph defined above is a DAG.
The following theorem provides a necessary and sufficient condition for deter-

mining the validity of a pipeline schedule.

Theorem 4.1. Given a Plan-DAG, a pipeline schedule is valid iff every C-cycle
satisfies the following condition: there exist two edges in the C-cycle both of which
are labeled materialized, and are opposite.

Proof. We will prove that the criterion is necessary and sufficient in two parts.

Part (I): First we prove that if a pipeline schedule is valid, then any C-cycle will
have at least two materialized edges which are opposite. On the contrary, assume
that there exists a C-cycle such that all materialized edges are in the same direc-
tion. We consider two cases:

Case (i): There is at least one materialized edge in the C-cycle.
Let the C-cycle be a1, a2, · · · an. Since, no two opposite edges in this C-cycle are
both materialized, when we traverse through this cycle, all materialized edges are
traversed in the same direction. Across pipelined edges aiaj , S(ai) and S(aj) val-
ues remain same, while across materialized edges from ai to aj , S values strictly
increase. Hence we have,

S(a1) ≤ S(a2) ≤ S(a3) · · · ≤ S(an) ≤ S(a1) (1)

Since we know that at least one of the edges is materialized, one of the inequalities
in equation 1 becomes strict and we get S(a1) < S(a1), leading to a contradiction.

Case (ii): Now suppose there is a C-cycle C with no materialized edges.
Suppose the cycle is A1, A2 · · ·An. Without loss of generality, we can assume that
the edge between A1 and A2 is from A1 to A2. Let Ai1 , Ai2 , · · ·Ai2k be the vertices
of this C-cycle such that between Aik and Aik+1 all edges have the same direction
and that the direction of edges changes across these vertices, as shown in Figure 5.



12 DALVI ET AL.

A A A

AAA

i i i

i i i

1

42

3

(2k)

(2k−1)

FIG. 5. C-cycle without materialized edges

Let fj be the cascade of all functions f(e, x) over all edges e in the path from
Ai2j−1 to Ai2j , i.e., if e1, e2 . . . ek are the edges in the path, then we have

fj(x) = f(e1, f(e2, · · · f(ek, x)))

The function gives the max tuple the operator at node Ai2j needs from the operator
at Ai2j−1 to produce the xth tuple. Similarly, let gj be the cascade of all functions
f(e, x) over all edges e in the path from Ai2j−1 to Ai2j−2 .

Then, we have the following set of equations

f1(P (Ai2 , t)) = g1(P (Ai2k , t))

f2(P (Ai4 , t)) = g2(P (Ai2 , t))

f3(P (Ai6 , t)) = g3(P (Ai4 , t))

· · ·
fk(P (Ai2k , t)) = gk(P (Ai2k−2 , t))

Let f−1(e, x) denote the max tuple the operator at node n can produce given
the xth tuple from the edge e, where edge e is an incoming edge into node n. Let
g−1
j be the cascade of the functions f−1(e, x) over all edges in the path from Ai2j−2

to Ai2j−1 . It denotes the max tuple the operator at node Ai2j−2 can produce given
the tuple from Ai2j−1 . We see that g−1

j ◦ gj(P (Ai2j−2 , t)) = P (Ai2j−2 , t). This is
because P (x, t) is the max tuple that can be produced at time t by the operator at
node x.

If we denote g−1
j ◦ fj by hj , from the above equations we get h1 ◦ h2 ◦ · · · ◦

hk(P (Ai2k , t)) = P (Ai2k , t)
We thus see that there is a constraint on these functions, and given an arbitrary

set of functions {fj} and {gj}, this constraint may not be satisfied. For instance,
if we take gj(x) = x and fj(x) = 2x then we will get P (Ai2k , t) = 0, which will
violate the requirement that P (n, t) = CARD(n) at some t. Hence the pipeline
schedule is not bufferless, and hence not valid.

Thus, we have proved that if there is a valid pipeline schedule, then any C-cycle
has at least two materialized edges which are opposite.

Part (II): Now, we prove that if any C-cycle has at least two materialized edges
which are opposite then there exists a valid pipeline schedule.
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FIG. 6. The set of equivalence classes

Now let Eq = C1, C2 . . . Ck be the set of equivalence classes of ∼ defined in Defini-
tion 4.6. It can be shown that the subgraph induced by the vertices in Ci doesn’t
contain any materialized edge. On the contrary, assume that there is a materialized
edge between two vertices. Since there exists a path between the 2 vertices con-
sisting only of pipelined edges we see that there exists a C-cycle in the Plan-DAG
which doesn’t contain 2 materialized edges, which is a contradiction. Now, it is
easy to see that none of the Ci contains any C-cycle. If there existed one, it would
contain only pipelined edges which is not possible. Thus, each Ci is a tree.

Now, consider the graph on Eq as defined in Definition 4.6. We claim that it is
a DAG. This is so because, if there is a cycle in this graph, say C1, C2, . . . , Cm, C1,
then we will have vertices a1, b1, a2, b2, . . . am, bm such that ai, bi ∈ Ci and there will
be paths (in directed sense) from bi to ai+1 and bm to a1, because Ci is connected to
Ci+1 and Cm to C1, and only these paths can have materialized edges. The graph is
shown in Figure 6, where equivalence classes are represented as triangles. The solid
lines represent that the path contains only pipelined edges where as dashed lines
indicate the presence of materialized edges. Also there exist paths (in undirected
sense) between ai and bi. Thus we will have a C-cycle from a1 to b1 to a2 to . . .
bm and finally back to a1 which contains materialized edges in only one direction.
Hence there is a contradiction. Thus the graph is a DAG.

Now, let Ci1 , Ci2 , · · ·Cik be a topological ordering on this DAG. Now for all
vertices v ∈ Cij we assign the stage label S(v) = j. To prove that the schedule is
valid we have to show that for each Ci, given any set of function {f(e, x)}, each
edge in Ci can be assigned valid function P (e, t).

We construct the function P for each t serially. We will construct P in such a
way that it will always satisfy the first two conditions needed for schedule to be
bufferless. Also, we will make sure that at each stage, at least one operator is making
progress, which will ensure that all the operators eventually complete execution.
So suppose we have constructed P (e, t) for each edge in Ci for 1 ≤ t ≤ T . We then
construct P for t = T + 1. We show that at least one operator can make progress,
while the first two conditions are satisfied.

We say that an operator is blocked if it can neither consume nor produce any tuple.
Further, an operator is said to be blocked on its output if it is able to produce a
tuple but one or more of its parents are not able to consume it. The operator is
blocked on its input if there is at least one child from which it needs to get a tuple
but the child is itself blocked. Note that the first condition of Definition 4.2 ensures
that if an operator produces a tuple it has to pass it to all the parents. So, even if
one of the parents is not accepting tuples, the operator gets blocked on its output.



14 DALVI ET AL.

Also, if an operator does not get required tuples from its children in accordance
with second condition of Definition 4.2, then operator gets blocked on its input.

Note that by definition, if an operator o1 is blocked on its child o2 then o2 cannot
be blocked on its output o1. Let us associate the edge between o1 and o2 with o1

if o1 is blocked by o2, or it is associated with o2 if o2 is blocked by o1. Thus, every
edge can be associated with atmost one blocked node. Also, every blocked node
must have an edge associated with it. But since Ci is a tree, the number of nodes
are greater than the number of edges. So, there must be at least one node which
is not blocked. Hence, we can construct P (e, T + 1) so that the unblocked node
progresses. Also, whenever an operator completes its execution, we can delete it
from the tree and we get a set of smaller trees, on which we proceed similarly till
every operator completes execution.

Thus each Ci is a bufferless pipeline schedule. Hence the whole schedule is a
valid pipeline schedule.

Part (II) of the preceding proof leads directly to the following corrollary.

Corollary 4.1. An execution of a valid schedule can be completed regardless of
the order in which ready (unblocked) operators are chosen.

Thus, if a schedule is valid, a pull execution, for example, will complete execu-
tion.

4.5. Testing for Validity
Now, we show that given a schedule we can test whether it is valid or not in

polynomial time. First, we construct the equivalence classes C1, C2, · · · , Cm as
described in the previous section. We then check that each of the subgraphs induced
by the Ci is a tree, which is a necessary condition as shown in the proof of Theorem
4.1. Finally we construct the graph on these equivalence classes and check that it
is a DAG, which is also a necessary condition as shown in the proof of Theorem
4.1. As shown in the same proof, if all the above conditions are satisfied then the
schedule is valid, otherwise it isn’t. All the above steps can be easily executed in
polynomial time and hence we have the following theorem:

Theorem 4.2. Validity of a pipeline schedule for a Plan-DAG can be checked in
polynomial time.

5. LEAST COST PIPELINE SCHEDULE

In the previous section we considered the problem of checking the validity of a
pipeline schedule. Now, we come to the problem of finding the least cost pipeline
schedule, given an input Plan-DAG. Before that we describe the cost model which
forms the basis of the cost calculations.

5.1. Cost Formulation
The cost of a query execution plan can be broken up as the total of the execution

costs of the operations in the schedule and the costs of reading data from and
materializing (writing) results to disk. The execution costs of operations in a given
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schedule do not depend on which edges are pipelined, so we ignore them here; we
only pay attention to the costs of materializing and reading data.

Given a pipeline schedule S, its materialization and reading cost MC(S) is given
by the following formula.

MC(S) =
∑

n∈V (S)

(WC(n) +Matdeg(n) ∗RC(n))

where V (S) is the set of all materialized nodes of S, i.e., all nodes having at least
one outgoing materialized edge, Matdeg(n) is the number of materialized edges
coming out of n, and WC(n), RC(n) are the read and the write costs of n.

Since each materialized node is written one time and read Matdeg(n) times, we
get the above expression for the cost.

5.2. Shared-read Optimization
The cost formulation assumes a read cost for every use of a materialized result

along a materialized edge. Further, each scan of a database relation (i.e., a relation
present in the database) has been assumed to pay a read cost. We can further
reduce costs by optimizing the multiple reads of materialized nodes and database
relations. The following example illustrates this point.

Example 5.1. Consider the query with a section of Plan-DAG given in Figure
7(a). Assume that the node B is either materialized or a database relation, and
both the operators m and n have to read the node. The reading is shown by dashed
lines. Now, we can execute the whole query by reading the node B just once, as
shown in the Plan-DAG in Figure 7(b).

However, not all scans of a relation can be shared. For example, if the two nodes
reading a relation are connected by a directed path containing a materialized edge,
then they cannot share the read. This is because sharing a read will force both
of them to be computed together, but the materialized edge in the directed path
connecting them forces one to be completed before the other starts execution.

The criterion for checking the validity of a pipeline schedule can be used here
for checking whether a set of reads of a materialized node can be shared. This
can be done by transforming the Plan-DAG as shown in Figure 7. An extra node
corresponding to a scan operator is added to the Plan-DAG, a materialized edge
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is added from the database relation/materialized node to the scan operator, and
then pipelined edges are added from the scan node to each of the nodes sharing the
read. The cost formula given earlier can be applied on this modified Plan-DAG,
where sharing of reads is explicit.

5.3. NP-Completeness
In this section, we prove the NP-hardness of the problem of finding least cost

schedules, as stated in Theorem 5.1. Clearly the corresponding decision problem
belongs to the class NP , since by Theorem 4.2, the validity of a schedule can be
checked in polynomial time.

Theorem 5.1. Given a Plan-DAG, the problem of finding the least cost set
of materialized edges, such that in any C-cycle there exists two edges which are
materialized and are opposite, is NP-hard.

The proof of this theorem is given in the Appendix.

6. FINDING LEAST COST SCHEDULES
In this section, we present algorithms for finding the least cost pipeline schedule.

We present an algorithm which performs an exhaustive search. We then describe a
polynomial time greedy algorithm. Finally, we describe an extension for incorpo-
rating shared-read optimization. But before that, we describe a merge operation
on the Plan-DAG, which is the basis for the algorithms.

6.1. Merge operation
Given a Plan-DAG, and two nodes n1 and n2 belonging to the Plan-DAG, we

define Merge(n1, n2) as follows: If there is no edge from n1 to n2, then Merge

is unsuccessful. If there is at least one edge, and after removing it, there is still
a directed path from n1 to n2, again Merge is unsuccessful. Otherwise, Merge

combines n1 and n2 into a single node. The Merge operation on a Plan-DAG has
some special properties, as described in the following theorem.

Theorem 6.1. If in any Plan-DAG, there is an edge e from n1 to n2, then the
following hold:

1.Edge e can be pipelined in a valid schedule only if the operation Merge(n1, n2)
is successful.

2.A valid pipeline schedule of the Plan-DAG formed after merging, together with
pipelining e, gives a valid pipeline schedule for the original Plan-DAG.

3.Any valid pipeline schedule for the original Plan-DAG can be achieved through
a sequence of merge operations.

Proof. (i) If Merge is not successful, then there is a path P from n1 to n2,
which together with e forms a C-cycle. In this C-cycle all edges in P are in one
direction which is opposite to that of e. Since any pair of opposite edges in this C-
cycle necessarily contains e, it must be materialized, and hence cannot be pipelined.

(ii) Now suppose this edge is merged, and consider any valid pipeline schedule
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in the new Plan-DAG. We have to show that this pipeline schedule, together with
pipelined e, is valid. So consider any C-cycle K in the old Plan-DAG. If it does
not contain e, it is also there in the new Plan-DAG, and hence must contain two
materialized edges in opposite direction. If it contains e, then the C-cycle formed
by collapsing e is present in the new Plan-DAG, and therefore contains two materi-
alized edges which are opposite. Since they will still be opposite in K, the condition
is satisfied, and hence the pipeline schedule is valid.

(iii) Given a valid pipeline schedule, collapse all the edges (by merging the required
nodes) that are pipelined. If we are able to do so then we are through; otherwise,
suppose we are not able to collapse some pipelined edge, e joining two nodes n1 and
n2. This implies that there exists a path between these two vertices in the current
Plan-DAG. Hence, a path must have been there between these two vertices in the
original Plan-DAG, since a merge operation cannot induce a path between 2 discon-
nected components. The cycle containing e and the edges in this path then violate
the validity condition. This contradicts the validity of pipeline schedule . Hence

proved.

Example 6.1. Consider the Plan-DAG shown in Figure 4, and suppose all edges
are initially labeled as materialized. We can first apply the merge step to each of
edges AE, BE, CF , DF to get a graph with only nodes G, H, E (representing the
merged EAB) and F (representing the merged FCD). We can then merge G with
E. At this point we cannot merge FH since there would be another directed path
with edges FE and FH. Similarly we cannot merge FG, but we can merge EH.
This is exactly the pipeline schedule represented by Figure 4.

6.2. Exhaustive Algorithm
We saw that any valid pipeline schedule can be obtained from the Plan-DAG

by a sequence of Merge operations. Therefore, we can get the optimal solution
by considering all the possible sequences, and choosing the one with most benefit.
Such a naive algorithm is however exponential in the number of edges. Note that we
are working on a combined plan of a set of queries and hence the number of edges
will depend on the number of queries, which may be quite large. Although the
query optimization algorithms, such as System-R [15] and Volcano [7], also have an
exponential cost for join order optimization, their time complexities are exponential
in the size of a single query, which is generally assumed to be relatively small. But
the exhaustive algorithm discussed above has a time complexity exponential in the
sum of the sizes of all queries in a batch. For instance, a batch of 10 queries each
with 5 relations would have an exponent value of 50, which is impractically large.
Hence, we consider a lower cost greedy heuristic in the next section.

6.3. Greedy Merge Heuristic
Since the problem of finding the least cost pipeline schedule is NP-hard, we

present a greedy heuristic, shown in Algorithm 1. In each iteration, the Greedy
Merge heuristic chooses to Merge the edge that gives the maximum benefit.
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Algorithm 1 Greedy Merge heuristic

GreedyMerge(dag)
begin
E ← set of all edges of dag
Em ← φ

for e ∈ E do
if Merge(e) is possible then

Add e to set Em
end if

end for
if Em = φ then

return
end if
e← edge in Em with highest benefit
output e as pipelined
dag1← dag after Merge(e)
call GreedyMerge(dag1)

end

We take the benefit of an edge to be its read cost, if it is materialized. This
is done because if an edge is materialized it will incur a certain read cost, so we
select the edge with the highest read cost to be pipelined because we will save the
maximum read cost. Also, if the edge is the only edge originating from the node,
(or all the remaining edges are already merged), then its benefit is taken to be the
sum of read and write costs, because if such an edge becomes pipelined, we can
save a read and a write cost.

At each iteration, the Greedy Merge heuristic calls Merge for each of the edges
in the Plan-DAG. Each Merge operation requires O(m) time, and hence, each
iteration takes O(m2) time, where m is the number of edges in the Plan-DAG.

Example 6.2. Consider again Example 6.1, using the Plan-DAG in Figure 4.
Suppose the edges EG and EH had the highest benefit. Then these would be
merged first, and would prevent the merging of FG and FH. However, if FG and
FH had a higher benefit they would get merged first. The merging of AE, BE, CF
and DF can be done successfuly since there are no paths that prevent the merging.

6.4. Shared-read Optimization
In Section 5.2, we discussed the shared read optimization to reduce the number

of reads of materialized results. A specified sharing of reads can be represented
by means of a scan operator and pipelining, as outlined in that section. However,
we cannot represent the space of shared read alternatives in this fashion. We now
consider how to choose which reads to share, in order to minimize cost.

We first consider, in Section 6.4.1, the case where the pipeline schedule has
already been selected (say using the Greedy Merge heuristic), and the problem is
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FIG. 8. Transformation of Plan-DAG for shared-read optimization

to choose which relations scans to share using the shared read optimization. Thus
the shared read optimization runs as a post-pass to the Greedy Merge heuristic.

Sharing of scans by two operators (using the shared read optimization) has the
same effect as pipelining results from one operator to another, in that the rates of
execution of the two operators become interlinked. Indeed, the test applied by the
Greedy Merge heuristic when deciding whether to pipeline an edge between two
operators can be used unchanged when deciding whether to share a scan between
two operators. We use this intuition, in Section 6.4.2, to show how to integrate
the shared read optimization with the choice of edges to be pipelined. In our
performance study (Section 7), we found that the integrated algorithm performs
significantly better than the post-pass shared read optimization algorithm.

Before describing the algorithms, we note some necessary (but not sufficient)
conditions for sharing reads:

1. Sharing of a read can occur only between nodes of different equivalence classes.
2. Two nodes belonging to different equivalence classes can share a scan only if

they are not constrained to run at different stages due to materialization edges.
3. Two equivalence classes having the same stage number cannot share more than

one read.

The proofs of these easily follow from the criterion for valid schedule given in
Section 4.4 by applying the transformation described in Section 5.2.

6.4.1. Post-pass Shared Read Optimization
We now consider shared read optimization on a given pipeline schedule. We

construct a graph with vertices as the set of equivalence classes. First, we add
edges present in the Constraint DAG, defined in Section 4.4. These edges are all
directed. Let this set of directed edges be denoted by Ed.

Next, for each pair of equivalence classes such that both read data via non-
pipelined edges from some node, say n, we add an undirected edge between the two
equivalence classes; the edge is labelled by the node name n. We set the weight of
the edge to the read cost of node n. Note that there can be multiple edges between
two classes, corresponding to different nodes. We call the edges as sibling edges,
and call the set of sibling edges as Eu.

Theorem 6.2. Let S be any subset of Eu. Then, the reads denoted by the edges in
S can be shared by the corresponding equivalence classes if and only if the subgraph
formed by S ∪ Ed does not contain any cycle.
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Proof. A cycle in this graph corresponds to a C-cycle in the transformed Plan-
DAG. This is because every undirected sibling edge in this graph will be replaced
by two pipelined edges in the transformed Plan-DAG, as shown in Figure 8. Also
the directed edges will appear as it is in the transformed Plan-DAG and will be
in the same direction in the C-cycle. Thus if there is a cycle in this graph there
will be a C-cycle in the Plan-DAG with all the materialized edges in same direc-
tion. Also if no cycle exists in this graph, then any C-cycle in the Plan-DAG will

have materialized edges in opposite directions. The theorem then easily follows.

So, now the problem is to find the optimal set S, that is the set with largest total
weight where no cycle is formed. The following greedy heuristic can be used for
this problem.5 The input is the initial Constraint DAG and the set of candidate
sibling edges Eu.

1. Set the initial graph to the Constraint DAG
2. Sort all the sibling edges in Eu in decreasing order of weight
3. Step through the edges in decreasing order, and add an edge to S and to the

graph, provided it does not result in a cycle in the graph.

Note that the graph is directed, so the addition of an sibling edge is actually im-
plemented by adding two directed edges in opposite directions.

4. Return S

We call the above heuristic as the Postpass Greedy Shared Read heuristic.
The heuristic is modeled after Kruskal’s minimum spanning tree algorithm [3],

but unlike Kruskal’s algorithm, it is not guaranteed to give the optimal set S. For
instance, given a graph with directed edges A → B and C → D, and the set Eu
consisting of D−B with weight 3, A−C with weight 3 and B −C with weight 5.
Then the above heuristic would add only edge B−C to S, giving a total weight of
5, whereas the optimal set is {A− C,D −B} with total weight 6.

6.4.2. Integrated Shared Read Selection
One problem with performing the shared read optimization after the choice of

pipelined edges is that it is possible for edges with a small benefit to get pipelined,
and as a result prevent sharing of reads on a large database relation that could have
provided a much larger benefit. Thus, although we get the best sharing of reads
for the given pipeline schedule, a different pipeline schedule could have resulted in
a much lower cost with the shared read optimization.

In this section we describe how to integrate the choice of pipelining and shared
reads into a single heuristic, instead of splitting it into two phases.

A simple heuristic, which we call the Greedy-Integrated-Naive, for integrating the
choices is as follows:

1. Modify the Plan-DAG as follows: for each database relation with more than
one read, replace all the reads by an edge from a new single scan operation node
reading from the base relation; the scan operation thus passes the output to all the

5We conjecture that the problem is NP hard.
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nodes that originally read the base relation, as shown in Figure 7. All the edges
out of the scan operation are potentially pipelinable.

2. Run the Greedy Merge heuristic, which considers each of these edges for
pipelining. As a result of greedy selection of edges for pipeling, reads of a large
database relation would get selected for pipelining ahead of pipelining of small in-
termediate results. Unlike other operations that have to pay a materialization cost
in case some outgoing edge is not pipelined, we set the materialization cost to 0 for
this special scan operation, since the relation is already materialized on disk.

Note that the above heuristic does not allow situations such as the following:
uses A and B share a read, and independently uses C and D share a read. The
heuristic only permits some set of uses to share a single read, and all the other
uses are forced to read the relation independently. Shared reads of intermediate
materialized results are also not considered, but can be handled by running the
Greedy Shared Read algorithm as a post-pass to the above algorithm.

A better option for selecting pipelined edges and shared reads in an integrated
manner, which we call Greedy-Integrated, is as follows.

1. Introduce undirected edges in the Plan-DAG for every pair of nodes reading
from the same database relation. As before, we refer to these edges as sibling edges,
and the edges are labelled by the relation name. Note that this is done only for
database relations, and before running the Greedy Merge heuristic.

The sibling edges above correspond to the sigling edges introduced between equiv-
alence classes in the Constraint DAG (Section 6.4.1); the difference is that they are
introduced in the Plan DAG, before pipelining decisions are taken.

2. Execute the Greedy Merge heuristic. The heuristic can choose to merge sibling
edges in addition to pipelineable edges, based on their benefit. The test for whether
Merge can be applied to an edge remains the same as before, with sibling edges
being treated in the same way as pipelined edges. The benefit of pipeling a sibling
edge is the read cost of the relation whose read is being shared.

Unlike the Greedy-Integrated-Naive algorithm, this algorithm allows the creation
of multiple different shared reads on the same relation, and is therefore, superior.
As in the case of the Greedy-Integrated-Naive heuristic, reads of intermediate ma-
terialized results are also not considered, but can be handled by running the Greedy
Shared Read algorithm as a post-pass to the above algorithm. The correctness of
this algorithm follows from Theorem 6.3.

Theorem 6.3. The Greedy-Integrated algorithm produces a valid pipeline sched-
ule.

Proof. Consider the final schedule produced by the algorithm, after applying the
shared-read transformations. (i.e. for every set of nodes sharing a read on a base
relation, we create a new node scanning the base relation and pipelining it to all the
nodes in that set). We have to show that this pipeline schedule does not contain any
C-cycle with all materialized edges in the same direction. Assume, on the contrary,
that it does contain a such a C-cycle. We know that pipelined edges in the pipeline
schedule are those edges which were merged (the two pipelined edges coming out
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from a shared scan node correspond to the merging of a single sibling node). Now,
since this C-cycle have all materialized edges in same direction, it will correspond
to a cycle in the merged graph. However, merge operations cannot result in the cre-
ation of a cycle, which leads to a contradiction. Thus, the resulting pipeline schedule

is valid.

6.5. Generating a Good Initial Plan-DAG
Our overall algorithm is a 2-phase algorithm, with the first phase using any multi-

query optimizer, and our heuristics for pipelining and shared read optimization
forming the second phase. However, the best plan of the first phase may not result
in the best Plan-DAG with pipelining. As a heuristic we consider the following two
approaches for generating the initial Plan-DAG.

• Pessimistic Approach: In the pessimistic approach, the optimizer in the
first phase assumes all materialized expressions will incur a write cost once, and a
read cost whenever they are read.
• Optimistic Approach: In the optimistic approach the optimizer in the first

phase is modified to assume that all the materialized expressions will get pipelined
in the second phase and will not incur any materialization (read or write) cost.

The optimistic approach can give plans with schedules that are not realizable, but
our pipelining technique is used to get realizable schedules. The resultant schedules
may be better than pessimistic in some cases, but can potentially be worse than
even not using multi-query optimization. Therefore it makes sense to run both
optimistic and pessimistic, find the minimum cost realizable schedule in each case,
and choose the cheaper one.

6.6. Optimization Alternatives
Multiquery optimization, pipelining and shared read optimization are three ways

of optimizing a query, and it is possible to use different combinations of these. To
study the benefits of these techniques, we consider the following alternatives.

1. MQO without pipelining: Multi-query optimization using the greedy MQO
heuristic of [14], without pipelining and shared-read optimizations; however, each
shared result is assumed to be pipelined to one of its uses. This alternative acts as
a base case,

2. GREEDY-BASIC: This is the basic Greedy Merge heuristic without shared
read optimization, applied on the result of MQO.

3. SHARED-READ: The greedy shared-read optimization technique is applied
directly on the Plan-DAG, without applying the Greedy Merge heuristic; no pipelin-
ing is used. This can be applied on the results of pessimistic and optimistic multi-
query optimization. We refer to this as MQO-SHARED-READ. The shared-read
technique can even be applied to the result of plain query optimization, without
multiquery optimization. We refer to this as NO-MQO+SHARED-READ.

4. GREEDY-POSTPASS: The Greedy Merge heuristic is used to get a pipeline
schedule, and the post-pass greedy shared-read technique is then applied to the
pipeline schedule.
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5. GREEDY-INTEGRATED: This is the Greedy-Integrated heuristic de-
scribed in Section 6.4.2, which integrates the selection of pipelined edges and shared
reads.

Since MQO can be performed using either the pessimistic approach or the optimistic
approach, each of the above alternatives actually has two versions, one with the
pessimistic approach and one with the optimistic approach.

7. PERFORMANCE STUDY

We now present the results of a preliminary performance study of our algorithms.
The algorithms described in the previous section were implemented by extending
and modifying the existing Volcano-based multi-query optimizer described in [14].

Through the experiments, we analyze the performance of the different algorithm
variants described in Section 6.6. We applied the alternatives on the Plan-DAGs
generated by the pessimistic and the optimistic approaches.

7.1. Experimental Setup
For experimental purposes, we use the multi-query optimizer algorithm described

in [14]. In all the experiments conducted, the time taken by the 2nd phase is only
a few milliseconds and is negligible as compared to the 1st phase. So we do not
report execution time details.

We present cost estimates instead of actual run times, since we currently do not
have an evaluation engine where we can control pipelining. All the cost estimate
calculations were with respect to the cost model described in Section 5.1 for mate-
rialization costs, in conjunction with the cost model from [14]. The cost model is
fairly accurate as shown in [14].

We use the TPCD database at scale factor 0.1 (i.e., 0.1 GB total data). The block
size was taken to be 4KB and the cost functions assume that 6MB is available to
each operator during its execution. Standard techniques were used for estimating
costs, using statistics about the base relations. The cost estimates contain an I/O
component and a CPU cost, with seek time as 10 m-sec, transfer time of 2 m-
sec/block for read (corresponding to a transfer rate of 2 MB/sec), 4 m-sec/block
for write, and CPU cost of 0.2 m-sec/block of data processed. The materialization
cost is the cost of writing out the result sequentially. We assume the system has a
single disk.

We ran two sets of experiments. In the first set, we assumed that no indices are
present. In the second set, we assumed clustered indices on the primary keys of all
relations.

We generate the input plans for our algorithm using the optimistic and the pes-
simistic approach. In each case, we evaluate the performance of MQO without
pipelining and shared-read optimizations, GREEDY-BASIC, GREEDY-POSTPASS,
MQO-SHARED-READ and GREEDY-INTEGRATED.

Our workload consists of batched TPCD queries. It models a system where sev-
eral TPCD queries are executed as a batch. The workload consists of subsequences
of the queries Q10, Q3, Q5, Q7 and Q9 from TPCD. (Some syntactic modifications
were performed on the queries to make them acceptable to our optimizer, which
handles only a subset of SQL.) These queries have common subexpressions be-
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FIG. 9. Results on batched TPCD queries with Pessimistic approach (No Index)
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FIG. 10. Results on batched TPCD queries with Pessimistic approach (With Indices)

tween themselves. The batch query BQi contains the first i queries from the above
sequence, together with a copy of each of them with different selection conditions.

7.2. MQO with Pessimistic Approach
The results for the batched TPCD workload (without indices) with pessimistic

plans are shown in Figure 9. The corresponding results for the case with indices
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are shown in Figure 10. The figure shows five bars for each query. The first bar
shows the cost of the query plan generated by the multi-query optimizer without
pipelining (however, one use of each shared result is assumed to be pipelined). The
other bars show the cost using GREEDY-BASIC, GREEDY-POSTPASS, MQO-
SHARED-READ and GREEDY-INTEGRATED, in that order.

We see that in on query sets BQ1, BQ2 and BQ3, GREEDY-BASIC and GREEDY-
POSTPASS perform roughly the same, meaning that there is no significant benefit
of shared-read optimization when applied after running the Greedy Merge algo-
rithm. The reason is as follows: in all the queries in these query sets, expressions
that involving scans on the large relations (LINEITEM and ORDERS) were de-
tected as common subexpressions are shared, resulting in these two relations being
scanned only once in the resultant plan (with one exception: LINEITEM had two
scans).

The LINEITEM relation was scanned twice, but the Greedy Merge algorithm,
which was run before the shared read optimization, produced a plan with several
internal edges pipelined, which prevented the sharing of of the reads on LINEITEM
(sharing the read would have violated the conditions of Theorem 4.1). Thus, for
these queries GREEDY-POSTPASS, which performs shared read optimization in
a post-pass, performed no better than GREEDY-BASIC, which does not perform
shared read optimization.

In many cases common subexpressions were created by subsumption derivations.
For example, given two different selections A = 7 and A = 10 on the same relation,
MQO may create an intermediate result with the selection (A = 7)∨ (A = 10), and
each of the original selections would be obtained by a selection on the intermediate
result; as a result, only one scan needs to be performed on the database relation.
Thus, the use of subsumption derivations with MQO provides an effect similar to
shared reads.

The graphs show that MQO-SHARED-READ performs quite well. This can be
explained by the fact that in almost all cases in our benchmark, the base relations
are the nodes with largest cardinality in the whole Plan-DAG. Also, base relations
cannot be pipelined, but they can have shared reads, which can produce large
benefits. MQO-SHARED-READ exploits these benefits.

However, as the graph shows, GREEDY-INTEGRATED performs the best; this
is because it exploits both shared reads on database relations, and common subex-
pressions, and chooses what reads to share and what results to pipeline in an
integrated manner. For example, unlike GREEDY-POSTPASS, shared reads on
LINEITEM were chosen preferentially to pipelining of some other smaller common
subexpressions which would have prevented the shared reads, reducing the overall
cost.

7.3. MQO with Optimistic Approach
The results for the batched TPCD workload with optimistic plans are shown

in Figure 11 (without indices) and Figure 12 (with indices). The plot contains
the same set of five values. However, notice that the bar labelled as “optimistic
plan” is not necessarily a valid plan, since it assumes that all shared expressions are
pipelined; this may not be possible since some of the subexpressions may have to
be materialized, increasing the cost. Thus the cost of the optimistic plan serves as
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FIG. 11. Results on batched TPCD queries with Optimistic approach (No Index)
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an absolute lower bound for any pipelining algorithm (however, this lower bound
does not take shared reads into account).

We can see that across all queries in the optimistic case, GREEDY-POSTPASS
performed no better than GREEDY-BASIC. As explained in the comparison of the
two for the pessimistic case in Section 7.2, this is partly due to the elimination of
shared reads and partly because pipelining of some common subexpressions prevents
the use of shared reads. The latter effect is more marked in the optimistic case,
since more subexpressions are shared.

Similar to the case of pessimistic plans, GREEDY-INTEGRATED performs the
best, since it makes the shared read and pipelining decisions in an integrated fash-
ion.

MQO-SHARED-READ performs significantly worse than GREEDY-BASIC in
the optimistic approach. Here, the first phase (plan generation using MQO) as-
sumes that all shared subexpressions will be pipelined, resulting in significantly
more subexpressions being shared. But with MQO-SHARED-READ, which does
not attempt to do any pipelining of shared expressions, these subexpressions do
not get pipelined at all; hence MQO-SHARED-READ performs poorly with the
optimistic approach.

7.4. Overall Comparison
To find the overall best approach, we need to consider the best pipelining/shared-

read technique for plans generated using the optimistic approach and the pessimistic
approach, and compare them with plans without using multi-query optimization.
For plans without multi-query optimization (NO-MQO), running our pipelining
algorithm does not make sense, as in the absense of sharing, everything that can be
pipelined is pipelined, which the cost model assumes anyway. However, these plans
can share the reads of base relations, and hence the shared-read technique can be
applied on them, shown in the bars labeled as NO-MQO+SHARED-READ. For
pessimistic and optimistic plans, GREEDY-INTEGRATED is the best candidate.
Thus, we compare GREEDY-INTEGRATED for the optimistic and pessimistic
cases with NO-MQO and NO-MQO+SHARED-READ. Figures 13 and 14 show
the comparision without indices, and with indices, respectively.

From the graphs we can see that for each query, one of the two variants of
GREEDY-INTEGRATED gives the best performance. For queries BQ1 and BQ4,
both give same results. For BQ2 and BQ5, pessimistic GREEDY-INTEGRATED
is better while for BQ3, optimistic is better. So there is no clear winner and it may
be a good idea to run the pipelining algorithm for both cases and take the best
plan.

The graphs also show that just applying shared reads without MQO also performs
very well. The main reason for this surprising effectiveness of NO-MQO+SHARED-
READ is that the cost of the plans is dominated by the cost of reading relations from
disk; the CPU component of the cost is relatively small in our cost model. MQO
achieves an effect similar to shared scans by means of subsumption derivations, as
mentioned in Section 7.2. Shared reads without MQO allow a single scan to be used
for both selections, providing the same benefits as subsumption derivations (avoid-
ing a second scan), but without the overheads of creating intermediate relations.
GREEDY-INTEGRATED still performs better since there are other opportunities
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FIG. 13. Comparision of Different Techniques (Without Indices)

������

������������ ������
���

������
���

������
������

������
������

	�		�	
	�		�	
	�	


�

�


�

�


�


������
������
������
���

������
������
������
���

E
st

im
at

ed
 C

os
ts

 (s
ec

s)

100

200

300

400

500

600

700

800

 

BQ1 BQ2 BQ3 BQ4 BQ5

NO−MQO

GREEDY−INTEGRATED on pessimistic plans
GREEDY−INTEGRATED on optimistic plans

NO−MQO+SHARED−READ 

FIG. 14. Comparision of Different Techniques (With Indices)
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FIG. 15. Comparision of Techniques (Without Indices) with Varying Sizes of LINEITEM

for sharing common subexpressions. (MQO-SHARED-READ, not shown in these
graphs but shown in earlier graphs does even worse since it does not allow the
intermediate result to be pipelined to its uses.)

One noticeable difference between the graphs in Figures 13 and 14 is that the
difference in performance between NO-MQO+SHARED-READ and GREEDY-
INTEGRATED is considerably less in the presence of indices (Figure 14). The
plans with indices actually use the fact that a clustered index ensures that the
relation is sorted on the indexing attribute, and thereby perform merge-join with-
out extra sorting. In the absence of indices, a (fairly expensive) sorting step is
required, and MQO allows the sorted result to be shared, which just shared reads
cannot achieve.

In the presence of indices, this sorting step is redundant. MQO is able to share
several join results, which NO-MQO+SHARED-READ cannot exploit, but the
benefits of sharing these join results is only the CPU cost, since the disk reads are
effectively free since they are shared. Thus the gap between NO-MQO+SHARED-
READ and GREEDY-INTEGRATED is greatly reduced in this case.

The LINEITEM relation is many times larger than the next largest database or
intermediate relation, and significant benefits can be obtained by sharing scans on
this relation. To check the effect of reducing the cost of reading data from disk,
we ran some experiments with varying sizes of the LINEITEM relation. Figure 15
shows how the shared read technique and the greedy integrated (with pessimistic
approach) technique compare with different sizes for the largest database relation,
LINEITEM. The sizes shown are relative to the size (S) of LINEITEM as defined
in the TPC-D benchmark. When the size of LINEITEM is increased substantially,
shared reads provide very large gains, and little additional gain is to be had from
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FIG. 16. Dynamic Materialization

MQO and pipelining. If the size of LINEITEM is reduced, this is no longer the
case and GREEDY-INTEGRATED (MQO with pipelining and shared reads) gives
good benefits over just shared reads.

In a recent work, O’Gorman et al. [10, 11] propose a technique of scheduling
queries in a query stream; in their queries that can benefit from a shared scan are
scheduled at the same time, as a “team”. They perform tests on a commercial
database system and show the benefits due to just scheduling, (without any other
sharing of common subexpressions) can be very significant, and can be greater than
the benefits reported for multi-query optimization without shared scans.

Our results are in line with their observations, and indicate that in cases where
computation is highly I/O bound, such as in the TPC-D benchmark (without disk
striping), shared reads play a major role in reducing query cost. Where computation
is more CPU bound, multi-query optimization with pipelining is likely to have a
more significant effect. In particular, data transfer rates from disks have been
increasing rapidly, and disk striping using RAID organizations increase transfer
rates even more, so the transfer (read) time per block is likely to be considerably
less than 2 m-sec/block which we have assumed. The increase in transfer rate would
have an effect similar to that of reducing the size of the LINEITEM table, shown
in Figure 15.

In summary, MQO with pipelining, and even just shared reads without MQO,
provide very significant benefits independently; using multiquery optimization com-
bined with pipelining and the shared read optimization together gives benefits over
using either independently, and the benefits can be quite significant.

8. EXTENSIONS AND FUTURE WORK

We now describe a dynamic materalization optimization that can be applied in a
limited special case, and discuss issues in incorporating an out-of-order shared read
optimization that is supported by some database systems.

8.1. Dynamic Materialization
It is possible to execute a schedule by dynamically materializing results when

buffer overflow happens. For example, consider the plan in Figure 16.
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Statically, we have to materialize a node each in paths P1 and P2. Dynamically,
we could materialize tuples whenever a buffer overflow occurs, and no progress can
be made. In other words, we use the disk to implement a buffer that will never
overflow (assuming sufficient disk space is available). Dynamic materialization can
provide significant benefits if the tuple requirements from the base operators by
both the paths are nearly the same, in which case the plan can complete execution
without the materializion of any tuples, or with materialization of a small number
of tuples.

However, in a naive implementation of dynamic materialization, it is possible that
overflows occur at nodes that have a high materialization cost, and this may result in
a high price for materialization. Thus, there are cases where static materialization
may be cheaper, and cases where some form of dynamic materialization may be
cheaper.

Developing a technique that guarantees the best of both worlds under all situ-
ations is a topic of future work. However, we present a dynamic materialization
technique that provides such a guarantee for a special case: when the plan is a
single C-cycle of the form given in Figure 16. The intuition is that in such a case
we do not need materialized edges in both the paths. We only need to have a ma-
terialized edge in the path in which the rate at which the tuples are read is slower.
The execution starts with no materialized node. When the rate of tuples required
by one of the operators, say o1, becomes slower than the other, we select the node
n1 in P1 which has the least materialization cost to be materialized. The operator
o1 will continue to be pipelined to n1.

When the output buffer of the operator at n1 is full, it outputs new tuples that
it generates to disk. When these are required by the parent (s) of n1, they are read
back from disk.

Here, the operator does not wait for its child to be completely materialized before
starting execution. This is because at that time, the rate at which the tuples are
read is slower than the rate at which the tuples are written to the disk. Thus,
the gap between the read and write pointers is increasing. So, the operator is
guaranteed that whatever it wants to read is already present on the disk.

However, it may happen that after some time, the rate of tuples required along
P1 increases. Now the rate at which tuples are required by o2 would be less than
the rate of o1. Then the gap between read and write heads will start reducing. If
both the heads meet, then n1 stops writing to the disk and we make its output
pipelined. Also, we select a node n2 along the other path with least materialization
cost and materialize it. Thus, we shift the node to be materialized dynamically.

Suppose N1 is the size of relation which n1 produces and N2 is the size of relation
of n2. In the static case, we necessarily materialize N1 +N2 tuples. In the dynamic
case, we materialize part of n1 and part of n2. In the best case we may not have to
materialize anything at all. Even in the worst case, we end up materializing only
max(N1, N2) tuples.

Implementing this optimization and studying its benefits are topics of future
work.
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8.2. Out-Of-Order Read Optimization
In this section, we consider another optimization which can be incorporated while

executing the plan. As discussed in Section 2, the RedBrick warehouse supports
out-of-order shared read execution, in which a relational scan that has just started
can use tuples being generated by an earlier ongoing scan of the same relation,
temporarily omitting tuples that have been generated already by the earlier scan,
and after the earlier scan finishes, the later scan can fetch tuples that it missed.
The same mechanism can also be applied to our case. For example, consider a
portion of a plan shown in Figure 17.

We see that the node n is materialized (may also be a base relation). There are
two operators o1 and o2 which are trying to read from this node. Note that we
cannot apply the shared-read optimization here, as a C-cycle is formed which does
not have any materialized edges on applying the transformation. Thus, normally
o1 and o2 will not be able to share a read. Assume that the order in which the
tuples are read from n by o1 and o2 is not important, for example the tuples in n

are not required to be in a sorted order.
Now, we can apply the out-of-order read optimization. We read the tuples from

n and pass it to both the operators o1 and o2. If the rates at which the tuples
are required by o1 and o2 is same, we go on passing at the required rate. When
the rate of tuples required by one of the operators, say o1, becomes less than that
of the other, the output buffer of n will start growing since it has to keep tuples
in buffer for o1 to read. All the tuples in the buffer will be those which o2 has
read but o1 is yet to read. If the buffer becomes full, flush all the tuples from the
buffer. Thus, some tuples will be lost for o1. Keep track of the blocks which o1 lost.
Finally o1 and o2 can separately read the blocks which they did not read before.
Implementing this optimization and studying its benefits are topics of future work.

9. CONCLUSIONS
In this paper, we studied the issue of pipelining and shared reads in DAG struc-

tured query plans generated by multi-query optimization. We began by motivat-
ing the need for pipelining and presented a model for a pipeline schedule in a
Plan-DAG. We outlined key properties of pipelining in a Plan-DAG and showed
NP-completeness of the problem of finding minimum cost pipeline schedules. We
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developed a greedy algorithm for scheduling the execution of a query DAG to reduce
the cost of reading and writing the intermediate results to the disk. We extended
the algorithm to handle the shared read optimization.

The implementation of our algorithm demonstrated that pipelining can be added
to existing multi-query optimizers without any increase in time complexity. Our
performance study, based on the TPCD benchmark, shows that pipelining and
shared reads can individually provide significant performance gains, and can provide
even better gains when used together.

There are several avenues for future work. We have assumed that executing
multiple operations in a pipeline does not affect the time taken for each operation.
Such operations run concurrently, and must compete for resources such as memory
and disk I/O. The amount of memory allocated to an operator may affect its cost
significantly, or if memory availability is very restricted, it may be impossible to
execute certain sets of operations concurrently. Our algorithms need to be extended
to handle such situations. Experiments with different benchmarks and with larger
sets of queries need to be performed. Optimized queries need to be executed on
on a query evaluation system that supports pipelining with multiple consumers, to
measure real benefits.

ACKNOWLEDGEMENT
This work was partly supported by a Govt. of India, Department of Science and

Technology grant. The work of Prasan Roy was supported by an IBM Research
Fellowship.

We wish to thank A. A. Diwan, Dilys Thomas and Arvind Hulgeri for their
constructive feedback on the paper, and Ashish Gupta for discussions during his
Bachelor’s thesis on the topic of this paper. We would also like to thank all the
referees for their insightful reviews which helped us in improving the quality of the
paper.

REFERENCES

1. Chandra Chekuri, Waqar Hasan, and Rajeev Motwani. Scheduling problems in parallel query
optimization. In ACM Symp. on Principles of Database Systems, pages 255–265, 1995.

2. Latha Colby, Richard L. Cole, Edward Haslam, Nasi Jazayeri, Galt Johnson, William J.
McKenna, Lee Schumacher, and David Wilhite. Redbrick Vista: Aggregate computation and
management. In Intl. Conf. on Data Engineering, 1998.

3. Cormen, Lieserson, and Rivest. Introduction to Algorithms. Prentice-Hall, 1990.

4. Ahmet Cosar, Ee-Peng Lim, and Jaideep Srivastava. Multiple query optimization with depth-
first branch-and-bound and dynamic query ordering. In Intl. Conf. on Information and Knowl-
edge Management (CIKM), pages 433–438, 1993.

5. S. Finkelstein. Common expression analysis in database applications. In SIGMOD Intl. Conf.
on Management of Data, pages 235–245, Orlando,FL, 1982.

6. Goetz Graefe. Query evaluation techniques for large databases. ACM Computing Surveys,
25(2):73–170, 1993.

7. Goetz Graefe and William J. McKenna. Extensibility and Search Efficiency in the Volcano
Optimizer Generator. In Intl. Conf. on Data Engineering, 1993.

8. P. A. V. Hall. Optimization of single expressions in a relational data base system. IBM Journal
of Research and Development, 20(3), May 1976.

9. Wei Hong. Exploiting inter-operation parallelism in XPRS. In SIGMOD Intl. Conf. on Man-
agement of Data, pages 19–28, 1992.



34 DALVI ET AL.

10. Kevin O’Gorman. On Tuning and Optimization for Multiple Queries in Databases. PhD
thesis, Univ. California, Santa Barbara, September 2002.

11. Kevin O’Gorman, Divyakant Agrawal, and Amr El Abbadi. Multiple query optimization by
cache-aware middleware using query teamwork. In Intl. Conf. on Data Engineering, 2002.
(poster paper).

12. Jooseok Park and Arie Segev. Using common sub-expressions to optimize multiple queries. In
Intl. Conf. on Data Engineering, February 1988.

13. Arnon Rosenthal and Upen S. Chakravarthy. Anatomy of a modular multiple query optimizer.
In Intl. Conf. Very Large Databases, pages 230–239, 1988.

14. Prasan Roy, S. Seshadri, S. Sudarshan, and S. Bhobhe. Efficient and extensible algorithms for
multi-query optimization. In SIGMOD Intl. Conf. on Management of Data, 2000.

15. P. Griffiths Selinger, M. M. Astrahan, D. D. Chamberlin, R. A. Lorie, and T. G. Price.
Access path selection in a relational database management system. In Proceedings of the
ACM SIGMOD International Symposium on Management of Data, pages 23–34, 1979.

16. T. Sellis and S. Ghosh. On the multi query optimization problem. IEEE Transactions on
Knowledge and Data Engineering, pages 262–266, June 1990.

17. Timos K. Sellis. Multiple query optimization. ACM Transactions on Database Systems,
13(1):23–52, March 1988.

18. Kyuseok Shim, Timos Sellis, and Dana Nau. Improvements on a heuristic algorithm for
multiple-query optimization. Data and Knowledge Engineering, 12:197–222, 1994.

19. Amit Shukla, Prasad Deshpande, and Jeffrey F. Naughton. Materialized view selection for
multidimensional datasets. In Intl. Conf. Very Large Databases, pages 488–499, 1998.

20. Subbu N. Subramanian and Shivakumar Venkataraman. Cost based optimization of decision
support queries using transient views. In SIGMOD Intl. Conf. on Management of Data,
Seattle, WA, 1998.

21. K. Tan and H. Lu. Workload scheduling for multiple query processing. In Information Pro-
cessing Letters, volume 55, pages 251–257, 1995.

22. Y. Zhao, Prasad Deshpande, Jefrrey F. Naughton, and Amit Shukla. Simultaneous optimiza-
tion and evaluation of multiple dimensional queries. In SIGMOD Intl. Conf. on Management
of Data, Seattle, WA, 1998.

APPENDIX: PROOF OF THEOREM 5.1
THEOREM 5.1. Given a Plan-DAG, the problem of finding the least cost set

of materialized edges, such that in any C-cycle there exists two edges which are
materialized and are opposite, is NP-hard.

Proof. In order to prove the theorem we show in Theorem A.1 that a special case
of the problem is NP-hard, in which all the edges have equal weight and all the edges
are potentially pipelinable.

Theorem A.1. Given a Plan-DAG, the problem of finding the least number of
edges to be materialized such that any C-cycle contains at least two materialized
edges which are opposite, is NP-hard.

Proof. Consider the equivalence relation ∼ on the vertex set defined in the
Section 4.4. We have seen that it produces equivalence classes C1, C2 . . . Ck such
that each equivalence class, when considered as a subgraph, is a tree and contains
no materialized edge. Also, between vertices of two distinct equivalence classes,
there can only be materialized edges and that too, in the same direction.

Since each Ci is a tree, the number of edges in the subgraph formed by the
vertices of Ci will be |Ci| − 1, where |Ci| is the cardinality of Ci.
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Now, let n be the number of vertices in the Plan-DAG and e be the number of
edges, p be the number of pipelined edges and m be the number of materialized
edges. Then,

n =
∑

1≤i≤k

|Ci| (A.1)

p =
∑

1≤i≤k

(|Ci| − 1)

= n− k (A.2)

From the above equations, we get

m = e− p = e− n+ k

Thus, to materialize minimum number of edges we have to minimize k, i.e.,
divide the Plan-DAG into a minimum number of equivalence classes. In other
words, we have to divide the Plan-DAG into a minimum number of trees such
that all the edges between any two trees are in the same direction and the graph
defined by condensing each tree into a single node does not contain any cycle.
If the Plan-DAG itself is a tree, then only one equivalence class is acceptable.
Otherwise, at least two trees will be required. Lemma A.1 proves that the prob-
lem of deciding whether the division can be done with two trees is itself NP-

hard. Hence proving the NP-hardness of finding the minimum number of trees.

Lemma A.1. The problem of deciding whether a directed acyclic graph can be
broken into two trees with all the cross edges, from one tree to the other, in the
same direction is NP-hard.

Proof. We will prove the NP-hardness by giving a polynomial time reduction of
Exact Cover problem to this problem. The exact cover problem is as follows: given
a set S and a collection C of subsets do there exist sets in C which partition S.

We will assume that each element is present in at least two sets belonging to
C. Suppose there is an element which is there in only one set. Then we will have
to take that set in the cover and hence we can incrementally go on removing such
elements, and some sets will be forced into the cover and some will be forced out
of the cover. Finally, only elements which are present in at least 2 sets will remain.
Let the remaining subsets be S1, S2 . . . Sn and the elements be a1, a2 . . . an. We
consider the following graph G(V,E) on the above sets and elements.

(i) V = 0, 1 ∪ {ai} ∪ {Sj}
(ii) (1, 0) ∈ E
(iii) (Si, 0), (1, Si) ∈ E
(iv) (ai, Sj) ∈ E, if ai ∈ Sj

Refer ahead to Example A.1.
We now show that an exact cover exists if and only if G can be divided into two

trees with all the cross edges in the same direction.



36 DALVI ET AL.

1 0

S1 S2 S3 S4

a1 a2 a3 a4 a5

FIG. 1. The graph G for Example A.1 along with partition.

First, suppose there is a partition of the above graph into two trees such that the
edges between the two trees are in the same direction. We will show that an exact
cover exists.

We see that 0 and 1 cannot be in the same tree because if so, then if some Si
is there in the other tree then there will be 2 edges between the trees in opposite
directions and if some Si is there in the same tree then there will be a cycle 0-1-Si-0
(in the undirected sense) and hence it won’t be a tree. Thus 0 and 1 are in separate
trees.

Now let T0 and T1 be the trees containing 0 and 1 respectively. We show that
there cannot be any node corresponding to some element ai in T0. On the contrary,
suppose there is an element e in T0. Every element is there in at least two sets.
Also e is connected to at least one set node in T0. These together imply that either
there exists Si, Sj in T0 such that both are adjacent to e or there exists Si in T0

and Sj in T1 such that both are adjacent to e. In the first case there will be a
cycle (in the undirected sense) e, Si, 0, Sj , e in T0 and in the second case there will
be 2 edges (1, 0) and (e, Sj) in opposite directions, both of which are not possible.
Hence all the element nodes are in T1.

Now consider any element in T1. It cannot be adjacent to two vertices Si, Sj .
Also it should be adjacent to at least one vertex. Thus, if we take all the Si in T1,
they will, as a whole, cover each element once and exactly once. Hence if the graph
satisfies the property stated in the lemma, we see that there exists an exact cover.

It is also easy to see that if there is an exact cover then we can partition the
graph into two trees such that the required property is satisfied. Let T1 contain
the subgraph on the vertices 1, {ai} and {Sj |Sj ∈ Cover}, and let T0 contain the
remaining vertices and the subgraph formed. It is easy to see that both T0 and T1

are trees and all edges between T0 and T1 are from T0 to T1.
This completes the proof of the lemma.
The following example illustrates the reduction used in the proof of Lemma A.1.

Example A.1. Consider S = {a1, a2, a3, a4, a5}. Let C consist of S1, S2, S3

and S4, where S1 = {a1, a4, a5}, S2 = {a2, a3}, S3 = {a1, a2, a3} and {a2, a4, a5}.
The corresponding graph G is given in Figure 1.
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