HOLISTIC OPTIMIZATION BY PREFETCHING QUERY RESULTS
Karthik Ramachandra & S. Sudarshan, IIT Bombay

N A

Database applications experience lot of latency due to
Network round trips to the database

Multiple queries could be 1ssued concurrently Inserts prefetches at earliest possible point in the
Disk 10 at the database Allows the database to share work across multiple queries program

Query = Application performs other processing while query executes Works 1n the presence of loops and interprocedural code

Dick IO and Significantly reduces the impact of latency No wasted prefetches except due to exceptions
ﬁ% & 0 query execution Code motion, chaining and rewriting to optimize prefetches
Avplication — 0 Network time Hard to identify earliest and safe points in the code to Applicable to JDBC, Hibernate, Web Services, and similar

Database perform prefetching data access APIs
Result 4 Complex interprocedural code with queries deep inside Being implemented in the DBridge Holistic optimization tool
\ Hard to manually maintain as code changes oceur J _ bttpi/fwww.cse.jith.ac.in/infolab/dbridge Y

a N
=)

void genAllReports()}{ ntix=...) n1:if() | void genAllReports(){ void genAllReports(){ executeQuery (): normal execute query
for (...){ submit(q,x) submit(q,x) for (...) { for (...) { submit(): non-blocking call that initiates
’ submit(q1, cld); query and returns immediately; once the
(v, / 4 results arrive, they are stored in a cache
genReport(custld, city); , g genReport(custld, city); genReport(custld, city); executeQuery(): checks the cache and
v | 4 \ 4 . :
} } (v [nq: executeQuery(q,x)] [ns] [ng: executeQuery(q,X)] \ } \ J blocks if results are not yet available
void genReport(int cld, String city) { void genReport(int cld, String city) { void genReport(int cld, String city) {
Data Dependence Control Dependence submit(q1, cld);
city = ... Barrier Barrier city = ... city = ...
submit(q2, city); submit(q2, city); v . : ..
while (...){ while (...} while (...} Kquivalence with original
All query parameters should be program 1s preserved
} CFG of method genReport() ava.ilable, with no intervening ! ! v'All existing statements
rs; = exec¢;teQue:y(q21, c_;:d); — al.a2) assignments rs1 = executeQuery(q1, cld); rs1 = executeQuery(q1, cld); remain unchanged
= : 1T vector = , . . = itv): = 1itv): .
rs2= executeQuery(q2, city); R agle ‘(lvahd) No intervening updates to the database rs2 = executeQuery(q2, city); rs2 = executeQuery(qz2, city); v Prefetch is not wasted
pab O Should be guaranteed that the query will
® = not anticipable (invalid)

\a } } - .
be executed subsequently

4 L. . R
Optimizing prefetches in presence of barriers
Using program and query transformations Output of a query forms a parameter to another — commonly encountered 10 o ins;gg' ime mmm | 0 Web Service: HTTP/JSON with
Preserving program equivalence Prefetch of query 2 can be 1ssued soon after results of query 1 are available. ol Program-with Prefetch = | Twitter4j client
K / > _ Web service: Twitter
void report(int cld,String city){ void rep?rt(lnt_cld,Strlng, city § | 2 6l | o Monitors 4 keywords for new tweets
submitChain({q1, 42'}, {{cld}, {}}); s | | .
= .| Interprocedural prefetching;
Control dependence barrier: Cc = executeQuery(q1, cld); c = executeQuery(q1, cld); E | | norewrite possible
- - 0 5
» Transform it into a data dependence barrier by rewriting it as a while (c.next()} | |:> while (c.next(1 | 21 | 079% 1mprovement at 4 threads
guarded statement accld = c.getString(“accld”); accld = c.getString(“accld”); | i oServer time constant; network overlap
d = executeQuery(q2, accld); 0

d = executeQuery(q2, accld); leads to significant gain

Data dependence barrier: Original 1 2 4 8 16

» Apply anticipability analysis on the barrier statements \ } } } Number of threads
» Move the barrier to its earliest point followed by the prefetch U
void genReport(int cld){ void genReport(int cld){ Chained SQL queries can be rewritten into one query using known techniques
intx=... intx= ... Reduces network round trips, aids in selection of set oriented query plans 300 | | | v
— . - - y B - - Original Program XXX
pooreand = x> 1 submitChain({“SELECT * FROM accounts WHERE custid=?", 0 - piepeestug e e == |l 1 oJavalJDBC application
_ It (b) submit(q1, cld): “SELECT * FROM transactions WHERE accld=:q1.accld”}, {{cld}, {}}); oo | Eninanced prefetch (Enhanced) mmmmms s I
while (... 1 while (...){ o <
@ £ 150 L . 9 | Intraprocedural: moderate gains
}] = X o I\ Interprocedural: substantial gains
if (x> 10 if SELECT » B o 1 25-30%
t{x>10) if (b) FROM (SELECT FROM accounts WHERE custld = ?) s (NS (25-30%) -
rs1 = executeQuery(qg1, cld); rs1 = executeQuery(qg1, cld); OUTER APPLY 50 |- N § N Enhanced (with rewrite): significant
} j (SELECT * FROM transactions Ly omen Hlom I . gain (50% over Interprocedural)
\ WHERE transactions.accld = account.accld) J \ 100 f:l)fmber of1ife?2tions °000 10000 J
Contact: karthiksr@cse.iitb.ac.in ACM SIGMOD 2012, Scottsdale, AZ This work supported by: Microsoft Research India PhD Fellowship and

Yahoo! Key Scientific Challenges Award 2011

http://www.cse.iitb.ac.in/infolab/dbridge
mailto:karthiksr@cse.iitb.ac.in

