10 Conclusion and Future Work

This paper has presented our algorithm for providing
recoverable, high-speed mutual exclusion without OS
intervention and the associated overhead. It requires
only a “lowest common denominator” atomic instruc-
tion, such as test-and-set or swap. Spin lock acquisi-
tion and release is very fast; with very high probability,
recovery of dead processes is also very fast.

Spin locks based on test-and-set may cause an in-
ordinate amount of bus activity in a shared-memory
multiprocessor since any change in a spin lock’s state
invalidates a cache entry for all processes waiting for
the spin lock. Recent research, notably [3] and [11],
has provided methods in which the atomic instruc-
tions are used to construct a queue of processes wait-
ing for the spin lock, and each process (and thus each
processor) may busy-wait on a variable that no other
processor is reading. We intend to develop a technique
analogous to the one presented in this paper to recover
these structures in case of process death.

Acknowledgements

We would like to thank Boris Lubachevsky and Mark
Dilman for pointing out an error in an earlier version
of the cleanup algorithm, and Phil Gibbons for dis-
cussions about consistency models, and for guiding us
to the right sources of information on the topic. We
would like to thank Lloyd Tucker for providing many
helpful comments on an earlier draft, and Robert Wil-
hite for producing timing numbers on the HP 9000.

References
[1] A. Silberschatz and P. Galvin, Operating System
Concepts. Addison-Wesley, 4 ed., 1993.

[2] T. E. Anderson, “The performance of spin lock
alternatives for shared-memory multiprocessors,”
IEFEE Transactions on Parallel and Distributed
Systems, vol. 1, pp. 6-16, Jan. 1990.

[3] J. M. Mellor-Crummey and M. L. Scott, “Al-
gorithms for scalable synchronization on shared-
memory multiprocessors,” ACM Transactions on
Computer Systems, vol. 9, pp. 21-65, Feb. 1991.

[4] H. Jagadish, D. Lieuwen, R. Rastogi, A. Sil-
berschatz, and S. Sudarshan, “Dali: A high
performance main-memory storage manager,” in
Proes. of the International Conf. on Very Large
Databases, 1994.

[5] P. Sindhu, J.-M. Frailong, and M. Cekleov, “For-
mal specification of memory models,” Tech. Rep.
CSL-91-11 [P91-00112], Xerox Corporation, Dec.
1991.

[6] D. E. Corporation, The Alpha Architecture Hand-
book, 1992.

[7] P. Bohannon, D. Lieuwen, A. Silberschatz, S. Su-
darshan, and J. Gava, “Recoverable user-level
mutual exclusion,” Tech. Rep. 950320-05, AT&T
Bell Laboratories, Mar. 1995.

[8] M. Dilman and B. Lubachevsky, “Personal com-
munication,” 1994.

[9] B. N. Bershad, D. D. Redell, and J. R. Ellis, “Fast
mutual exclusion for uniprocessors,” in Procs. of
the International. Conf. on Architectural Support
for Programming Languages and Operating Sys-
tems, pp. 223-233, Oct. 1992.

[10] G. Graunke and S. Thakkar, “Synchronization
algorithms for shared memory multiprocessors,”
IEEE Computer, vol. 23, pp. 60-69, June 1990.

[11] T.S. Craig, “Building FIFO and priority-queuing
spin locks from atomic swap,” Tech. Rep. 93-02-
02, University of Washington, Feb. 1993.

[12] S. Khanna, M. Sebree, and J. Zolnowsky, “Real-
time scheduling in SunOS 5.0,” in Winter Useniz
Conference 1992, 1992.

[13] M. A. Eisenberg and M. R. McGuire, “Further
comments on Dijkstra’s concurrent programming
control problem,” Communications of the ACM,
vol. 15, Nov. 1972.

[14] M. Sullivan and M. Stonebreaker, “Using write
protected data structures to improve software
fault tolerance in highly available database man-
agement systems,” in Procs. of the International
Conf. on Very Large Databases, pp. 171-179,
1991.

HP-UX Semaphores on HP9000 712/60 19,000
SunOS 5.3 Semaphores on Sun SS20/61 20,000
Safe Spin Lock on Sun SS20/61 526,000
Spin Lock on Sun SS20/61 2,128,000

Figure 7: Uncontested Acquire and Release per Sec-
ond

in a database scenario where the actions of the pro-
cess can be rolled back.) This removes the assump-
tion of progress from our claim that all processes will
eventually leave ViewWants, at the cost of possibly
killing a process which is making no progress in the
spin lock acquisition code, even though the process
may not hold the spin lock. It may be argued that
killing such a process is not a bad idea any way, since
it 1s not making progress.

It is fairly straightforward to extend the algorithms
described here to the case of multiple spin locks, since
each process can be altempling to acquire/release at
most one spin lock at a time, though it may hold many
at any given time.

8 Implementation

We have implemented whoOwns() in the context of
Dali, a main memory storage manager [4]. This allows
us to have “mostly trusted” processes which link with
storage manager code and access the database through
shared memory, yet which can die (for example be
killed) without necessitating a complete recovery of
the database.

An implementation of the code in C or C4++ re-
quires to use of volatile declarations to ensure that the
code optimizer does not attempt to optimize away ref-
erences to global variables. We also implement several
optimizations, including one suggested by Mark Dil-
man [8] where the acquisition code first checks if the
spin lock 1s busy and does not even raise the wants
flag if it is busy.

We tested the performance of our implementation
against operating system semaphores and against spin
locks without the recoverability features. The results
are shown in Figure 7. The timings are all in terms
of uncontested acquire-release pairs per second. Tim-
ings for contested acquisition/release would depend on
the backoff policy, which is needed for all spin locks
and 1is orthogonal to our techniques. The performance
benefits of our technique over system semaphores is
clear.

9 Related Work

Spin-locking implementations of mutual exclusion
have been extensively studied in the parallel compu-
tation and operating system communities. It is widely
recognized that spin locking (also referred to as busy
waiting) is much faster than operating system pro-
vided mutual exclusion for parallel computations in
shared memory multiprocessor systems [1]. Even in
uni-processors, spin locking (with back-off) is recog-
nized to be better than operating system spin locks in

many applications, especially when the level of con-
tention 1s low, which is borne out by the performance
numbers in Figure 7. The scheme of [9] for implement-
ing mutual exclusion is based on notifying the oper-
ating system that a particular section of code must
be restarted from the beginning if interrupted by a
context switch. Their scheme can be used to solve
our problem, but requires a modification to the OS,
and does not extend to multi-processors. Most recent
work in high-speed mutual exclusion has centered on
efficiency under various multiprocessor memory mod-
els 3], [10], [11].

Sun’s Solaris operating system uses spin lock mu-
tual exclusion within the kernel [12]. They track pro-
cess ownership in order to avoid priority inversion —
the current owner’s priority is temporarily raised to
that of the highest priority waiting thread, to allow it
to progress and release the spin lock so the higher pri-
ority thread can proceed. As the only synchronization
primitives on the SPARC architecture are a register
to memory swap and a test-and-set, they face a very
similar problem. Their solution is to reserve a hard-
ware register to indicate if a process is attempting to
acquire a spin lock. All interrupt handlers begin by
checking this register, and if the owner needs to be
filled in they fill it in before continuing with the inter-
rupt. Though this takes a register completely out of
use, 1t 1s quite fast; however, it is useless to us since
we do not want to modify the kernel.

Older, software-based approaches to mutual exclu-
sion that do not rely on atomic instructions are triv-
ially recoverable. For example, the standard starva-
tion free software mutual exclusion algorithm, [13],
uses an array of per-process state information, thus
the state of any process with respect to a given spin
lock can be determined immediately by inspecting
that variable.? Any interference with other processes
can be removed by resetting the state to “uninter-
ested.”

Why, then, do we not simply use one of these al-
gorithms? The primary reason is resources. All these
algorithms require at least time proportional to the
number of processes to acquire an uncontested spin
lock, while solutions based on synchronization hard-
ware, such as ours, typically require a small constant
number of accesses. Furthermore, these systems re-
quire space proportional to the number of processes
times the number of spin locks, as opposed to the sum
of the two, as with our algorithm.

Process failure is often caused by software bugs,
and is itself only one possible detrimental effect of
these bugs. Our method provides recovery from this
particular mode of failure, but is only one part of an
overall fault detection and tolerance strategy. For ex-
ample, unintended writes into shared memory can also
be caused by bugs; this issue is discussed in [14]. Pro-
tection from such errors is orthogonal to the focus of
our work.

4These algorithms were designed assuming a sequentially-
consistent memory, and may need to be redesigned (perhaps
by adding fence instructions) for a weakly-consistent memory
system.

who

CO:

Cl:
C2:
C3:
C4:
D1:

D2:

C5:
C6:

C7:

C8:

C9:
D3:

D4:

C10:

Owns (SafeSpinlock *L)

Set_0f ProcessID ViewWants;
ProcesgsID owner;

L—cleanup_in_progress = True;
(fence) /% TIME: tgiare */
ViewWants =
foreach process P do
(fence)
if LockAccess(P)—wants == L then
ViewWants = ViewWants + {P};
/% TIME: 1yiew */
while ViewWants '= ()
owner = L—owner;

1. Suppose the algorithm observes an “informative”
state of a spin lock (free or owned by some pro-
cess). If the lock is observed to be free, then this
represents an accurate state of the lock based on
the assumption that the spin lock itself works cor-
rectly. If it observes a registered owner which is
subsequently seen to be alive, then that owner
must have also been alive when 1t owned the lock,
and any observed owner was indeed an owner,
since this is an underestimation of ownership.
(Note that by the time the observed state is re-
ported, that state may no longer exist.)

2. Once the barricade, L—cleanup_in_progress has
been raised, no process not in ViewWants can get
the spin lock This eliminates scenarios involving
an infinite stream of processes.

3. ViewWants is finite, and any process which makes
progress or dies will leave the set. Since the al-
gorithm can make a decision when ViewWants
is empty, our assumption of progress guarantees
that the algorithm will terminate.

If the algorithm doesn’t terminate until ViewWants
is empty, and the spin lock is still held, then it must

if owner != NO_PROCESS be held by a dead process, since all the potential live
and not IsDead(owner) then owners were members of ViewWants. Further, if the
status = (HELD, owner, ALIVE); registered owner 18 NO_PROCESS, the dead process
goto DONE; either just acquired the spin lock and did not update
if L—lock == 0 then any structures, or had finished its updates (if any) and
status = (FREE, NO_PROCESS,.); was on the verge of releasing it. In either case it is safe
goto DONE; to free the spin lock.
T /* Code for slow processes goes here */ Also, Boris Lubachevsky and Mark Dilman have
sleep(ASHORT WHILE); used a verification tool to generate an independent,
foreach P in ViewWants mechanized proof of correctness for the case where
if LockAccess(P)—wants != L only two processes are attempting to acquire the spin
or IsDead(P) then lock [8].
ViewWants = ViewWants - {P;; .
endwhile (P} 7 Extensions

(fence) /* Time: tempty */
owner = L->owner;

The correctness of our algorithm depends on an a lim-
ited assumption of progress on the part of processes. It

/* Status of L now static. May be NO_PROCESS #Js conceivable that this will not be the case, and some

if (L->lock == 1) then

status = (HELD, owner, DEAD);
else

status = (FREE, NO_PROCESS, _);
DONE:
L —cleanup_-in_progress = False;
(fence)/* TIME: ffing) */
return status;

end whoOwns

Figure 6: The whoOwns() Procedure

process will not make progress during this system pro-
vided code, yet will not die and be cleaned up either.
For example, the process could be getting no CPU
time due to operating system scheduling policies, or
perhaps it was transferred to a user interrupt handler
with an infinite loop. We argue that it is reasonable
to kill such a process and, in our case, roll back its
transaction, as some mechanism would be required in
any event to deal with loss of a resource for “an unrea-
sonable amount of time”. Note that processes waiting
for a different lock (if multiple locks are allowed) will
trivially not be part of ViewWants, as they will want
a different lock.

To implement this in our algorithm, a timer
must be introduced which is set upon creation of
ViewWants, and reset whenever a process is removed
from ViewWants. (The timer value itself should be a
tunable parameter.) Code introduced at location j of
whoOwns should, upon expiration of the timer, sim-
ply pick a member of ViewWants, and kill that pro-
cess. (This may seem drastic, but is quite reasonable

Lock is Free

L-.>
lock owner
Plwants=L (G1) 0 ?
P1 finds barricade down (G2) 0 ?
P1 ge\L Spin Lock (G10) 1 ?
P1 registers ownership (G11) 1 P1
P1 us\is resource (User Code) 1 P1
P1 djregisters ownership (R1) 1 ?
P1 releases Spin Lock (R2) 0 ?
P1.wants = NULL (R3) 0 ?

Lock is Busy

L->
lock owner
1 P2

Plwants=L (G1)

P1 finds barricade down (G2)
P1 doesn’t get Spin Lock (G10)
Pl.wants = NULL (G12)

P1 sleeps for a while

Figure 5: Normal Operation of Spin Lock Acquisition and Release Code

(b) ViewWants is empty, i.e., no live process re-
mains that could possibly own the spin lock.

If (a) occurs, a decision can be made immediately
and an appropriate status returned. Otherwise,
the cleanup routine waits a little, and retries af-
ter eliminating some candidates from ViewWants
using simple tests. If (a) does not occur, (b) even-
tually occurs (based on our limited assumption of
progress, see Section 3). Once the second condi-
tion occurs, if the spin lock 1s held, it must be
held by a dead process. The ownership may or
may not be determined at this point, and the pro-
cedure returns an appropriate status.

The driver code of whoOwns takes appropriate ac-
tion based on the return status, and is discussed in
Section 6.1.

Performance of the above code can be improved in
several ways. First, a test to determine if the owner
of the spin lock is known? should be done before exe-
cuting the main code of the function. Second, a check
could be added to perform a wait in line C5 only af-
ter eliminating candidates as in C6. We omit these
optimizations from the above code for simplicity of
exposition and proof.

6.1 Driver Code and O/S Interaction

To avoid any problems with multiple or concurrent
cleanup processes, we assume a single cleanup process
which calls whoOwns() on the death of a process P for
which LockAccess[P]—wants is non-null, or upon the

3This test must be done carefully since reading the “owner”
field and the call to IsDead() cannot be done as an atomic ac-
tion. This can be handled by a second reading of owner if
IsDead() returns True.

complaint of a process which has timed out attempting
to acquire a spin lock.

We assume that a normally exiting process deal-
locates 1ts lock access record at a point when it has
finished all spin lock accesses. The cleanup process
will eventually visit the lock access record of any dead
process, ensuring that every record is eventually deal-
located. For example, if one run of whoOwns() de-
cides the spin lock is alive because it is held by a pro-
cess which does not seem dead at D2, but has in fact
died 1mmediately after the cleanup process called Is-
Dead(), this access record will not be cleaned up until
the next run of the cleanup routine. We also assume
that no access records are reallocated during a run of
whoOwns(), though this restriction is not difficult to
remove.

The full version of the paper, [7], gives an exam-
ple of a loop which polls for dead processes, com-
bined with an example of how the information re-
turned by whoOwns() can be used to return data struc-
tures guarded by the spin lock to use.

6.2 Correctness

Given that the state of a lock held by a dead process
will not change, the following theorem allows useful
recovery routines to be built around whoOwns.

Theorem 6.1 Procedure whoOwns(L) terminates and
reports an ownership status of spin lock L which ac-
curately reflects the state of L at some point in time
after whoOwns is called. O

We present the proof in the full version of the paper
([7]), and merely present the intuition here.

The correctness of the cleanup algorithm follows
from three main points:

getLockAttempt (int myPid, SafeSpinlock *L)

Register R;
LockAccessRecord #ma = LockAccess(myPid);
Boolean cleanup;

Gl:ma—wants = L;
(fence)
G2:cleanup = L—cleanup_in progress;
G3:1if cleanup then
G4: ma—wantg = NULL;

G5 (fence)
G6: while L—cleanup_in_progress do
sleep a while;
endwhile;

G7: return BUSY;
G10R = test-and-set (L—lock);
if R == 0 then // We have the mutex

G11: L—owner = pid;

(fence)
return ACQUIRED;
else
G12: ma—wants = NULL;
(fence)

return BUSY;
end getLockAttempt

Figure 3: Spin Lock Acquisition Code

instructions denoted using (fence). These instructions
are not required if the architecture supports sequential
consistency, but are required under the weaker consis-
tency model that we assume.

A process sets its wants variable (ma—wants) to
indicate a spin lock that it wishes to acquire, checks
to make sure the barricade (L—cleanup_in_progress) is
down, and then tries to acquire the lock. If the at-
tempt is successful, the process records its new own-
ership (L—owner = pid) and returns. If it fails, the
process clears its wants variable, and returns to the en-
veloping routine getLock. If the barricade was found to
be up, then it waits until it is down, and again returns
failure to getlock. The routine getlLock (not shown)
repeatedly calls getLockAttempt() until 1t succeeds,
though it can easily be rewritten to time out and fail
after some number of attempts, or to implement a
backoff strategy. Similarly, getLockAttempt() may be
augmented with a finite inner loop which “spins” more
tightly than getlock, for multi-processor systems.

5.3 Spin Lock Release

The spin lock release code, given in Figure 4 is sim-
ple, and clearly demonstrates the underestimation
and overestimation of ownership by S—owner and
ma—wants respectively.

5.4 Example of Normal Operation

In Figure 5 we illustrate on the left the sequence of
actions a process will undertake while successfully ac-

releaselLock(LockAccessRecord *ma)
SafeSpinlock *L = ma—wants;

R1:L—owner = NO_PROCESS;
(fence)
R2:L—lock = 0;
(fence)
R3:ma—wants = NULL;
end releaselock

Figure 4: Spin Lock Release Code

quiring a spin lock, and on the right the sequence
involved in attempts which fail due to contention.
Shown in boxes are the associated changes in the state
of the lock itself.

On a successful acquisition, illustrated on the left,
the process begins by registering its interest in the
spin lock £ at point G1, and checking the status of the
barricade at G2. After the test-and-set at G10, it finds
that it has the spin lock, and it registers its ownership
by setting the owner value of the spin lock to its own
process id at G11. At that point, control is returned
to the user code, which may access the protected re-
source. Upon release, the reverse process is carried
out, deregistering ownership, followed by release of the
spin lock, followed by deregistering interest.

In a failed attempt to get the lock, illustrated to
the right, it is important to note that a check of the
barricade at point G2 or G6 is always made after reg-
istering interest and before attempting to get the spin
lock. Also, note that the process deregisters its in-
terest in the mutex before sleeping, thus decreasing
the chance that 1t will need to be considered by the
cleanup routine.

6 The Cleanup Process

The cleanup process executes procedure whoOwns,
which is shown in detail in Figure 6, to determine own-
ership of a spin lock . At a high level, the procedure
whoOwns proceeds as follows.

1. Raise the L—cleanup_in_progress barricade, pre-
venting processes which don’t currently “want”
the spin lock from getting it while we are clean-
ing things up (C0).

2. Take an “overestimation snapshot” of processes
which could have, or could get, the spin lock
during the cleanup period. Call this snapshot
ViewWants (C1).

3. The main loop of the cleanup routine, C3-C7,
waits for one of two conditions:

(a) The state of the spin lock becomes observ-
able, either because no one has it, or because
a live owner is registered (D1-D2).

spin lock acquisition or release code, it receives some
CPU time to execute, and if interrupted, it returns to
the spin lock code within a finite amount of time.)

Since processes may violate this assumption, for ex-
ample by having a very low priority and getting no
CPU time from the operating system, we will present
a simple extension of our algorithm in Section 7 to kill
these processes if the fate of the spin lock cannot be
resolved in a “reasonable” amount of time.

4 Overview of Approach

Consider an atomic test-and-set based implementation
of a spin lock. The first and most obvious step in
tracking ownership of such a spin lock is to require
that a successful attempt to acquire the test-and-set
latch be immediately followed by a write which stores
the new owner’s identifier (process or thread identi-
fier, which we abbreviate to process id) in an “owner”
field associated with the spin lock. Clearly, if these
two steps were atomic, we could always find out which
process currently owns the spin lock. However, as dis-
cussed 1n Section 2, many common architectures can-
not implement these two steps atomicly.

As a first step toward solving this problem, we re-
quire that all processes that are trying to acquire the
spin lock note the name of the spin lock in which they
are interested in a per-process shared location. We call
this location the process’s “wants” field. The collec-
tion of all processes’ “wants” fields provides us with an
overestimate of the set of possible owners of the spin
lock (there are zero or one owners, but an arbitrary
number of “interested” parties). This helps establish
a set of all processes that might hold the spin lock.

The set of processes that want the spin lock may,
however, change even as the cleanup process attempts
to determine which processes have set their “wants”
field. To solve this problem, we introduce a flag asso-
ciated with the spin lock called “cleanup-in-progress,”
and require that processes do not attempt to get the
spin lock if this flag is set. This flag provides a bar-
rier which, when “raised”, prevents any new processes
from entering the set of potential owners deduced from
the “wants” field. The cleanup-in-progress flag for a
particular spin lock is set by the cleanup process while
it attempts to resolve the ownership of that spin lock.
Without this “barricade,” the (remote) possibility ex-
ists that one or more processes can repeatedly acquire
and release the spin lock, always leaving the spin lock
acquired but unregistered while its status is tested by
the cleanup process, declaring ownership only between
tests by the cleanup process. We cannot distinguish
between this case and the death of a single process
in an indeterminate state. (We explored the use of a
counter that is incremented on each spin lock acquisi-
tion to distinguish between the two cases. However it
complicated the proof of correctness considerably, and
we abandoned the approach.)

Given these additional tools, how do we determine
whether a dead process holds a spin lock? We start by
setting the cleanup-in-progress flag, then gathering a
list of potential owners from the “wants” information.
(We gather this list to avoid certain pathological sce-
narios with streams of new processes.) Now it becomes

struct SafeSpinlock {
int lock;
ProcesgsID owner;
int cleanup_in_progress;

}s

struct LockAccessRecord {
SafeSpinlock *wants;

Figure 2: System Data Structures

reasonable to wait until the situation resolves itself, as
we must only wait for a finite number of processes to
give up their interest in, or register their ownership
of, the lock. In all cases, a process must only advance
by a few instructions to either register ownership, or
notice that the cleanup-in-progress flag is set, and re-
linquish its interest in the spin lock. A method for
handling the case where these processes fail to make
progress is described in Section 7.

5 Acquisition and Release Protocol

After detailing shared data needed for our scheme,
the spin lock acquisition and release protocols are pre-
sented. The procedure for determining ownership in
case of failure is given in the Section 6.

5.1 System Data Structures

Our spin lock protocol involves additional information
associated with each process as well as additional in-
formation associated with each spin lock. The for-
mer is stored in a per-process “Lock Access Struc-
ture.” For process P, we refer to the structure as
LockAccess[P]. The latter is stored with the spin lock
itself.

Figure 2 1s an example declaration of these data
structures in a C-like syntax. In the structure Safe-
Spinlock, lock refers to the actual test-and-set tar-
get variable, while owner provides the “safe under-
estimate” of ownership. That is, owner is set by
a process to its own process id immediately after
it has gained access to the spin lock, and back to
NO_PROCESS immediately before releasing it. Fi-
nally, cleanup_in_progress is a special variable that is
written only by the cleanup process. It is used to
form the barricade against new processes as described
earlier.

As for LockAccessRecord, the only per-process in-
formation we require is the variable, wants, which 1s
set by a process to point to a spin lock before trying
to acquire 1t, and reset to NULL only after releasing
it, or after a failed attempt to acquire. Thus, it is a
“safe overestimate” of spin lock ownership.

5.2 Spin Lock Acquisition

The spin lock acquisition attempt routine getlockAt-
tempt(), is shown in pseudo-code in Figure 3. Inden-
tation indicates nesting. The labels at the left are for
ease of reference. Our code shows explicit use of fence

' ’ ‘ Processors
IoadStoreIoadStore |0ads‘tore
U U ST |Non-FIFO
! ! coo v Store Buffers
\ Memory
Single Port System
Memory

Figure 1: SPARC Memory Consistency Model

another processor. In a sequentially consistent sys-
tem, at least one of the two reads will return 1. With
weaker levels of consistency, it may be possible for
both reads to return 0 — they could have read locally
cached values for the variables, and the writes may
take some time to propagate to the other processor.
Systems providing weaker levels of consistency also
provide explicit synchronization instructions, for ex-
ample instructions that ensure that all pending writes
(or cache invalidate requests) are propagated to all
processors.

Our proofs of correctness are based on the Partial
Store Ordering model of memory used in the SPARC
architecture, which is shown in Figure 1 and described
below. Most current generation shared memory multi-
processor systems are built on roughly the same mem-
ory model. We believe that our algorithms work in
some weaker memory models as well, and will explore
the issue 1n the full version of this paper.

Figure 1, adapted from [5], illustrates several as-
pects of the SPARC memory model. There is a store
buffer for each processor, that buffers writes that have
been issued by the processor. The writes are prop-
agated to the memory one at a time (the memory
is treated as if it were single ported), but may be
propagated in a different order from the the order
in which they were issued by the processor (that is,
the store buffers are not FIFO). In addition to loads
and store, the model also supports swap instructions,
which atomically swap the values in a specified register
with a specified memory location.

Formally, the memory model can be defined in
terms of partial orderings of load, store and swap oper-
ations as described in [5]. There is a partial ordering of
memory operations generated by processor ¢ (denoted
by <), and a partial ordering of memory operations
executed at the memory (denoted by <). Informally,
the rules defining the partial store ordering model are
as follows.

Total order The store operations in memory are to-
tally ordered.

Atomic swap No other write to a memory location
is allowed between the load and store parts of a
swap.

Termination Buffered writes are eventually carried
out in memory.

Value The value returned by a load in processor ¢ is
the last in the < order of stores that are before
the load either in the < order or in <*.

Load ordering L% <' Op} = Li < Op} where Op
is any memory operation, and L! denotes a load
from location a by processor i.

Storage barrier Store operations from a processor
that are separated by a ‘storage barrier’ or ‘fence’
instruction (fence) appear in the same order in <.

Same-location ordering Writes to the same loca-
tion from the same processor are carried out in
the order in which they were generated (formally,

Sio< G = §1 < S where S% denotes a store
to location a from processor 7).

Note that in the above model, reading a word and
writing a word are each atomic. The swap instruction
casily simulates an atomic test-and-set instruction.?

We use the term fence to denote the generic stor-
age barrier instruction. All shared memory systems
with non sequential consistency that we are aware of
(e.g. the Alpha [6]) provide such storage barrier in-
structions. We use the term “integer” synonymously
with the term “word”.

Our entire description is in terms of processes, but
could equally well apply to threads or light-weight pro-
cesses. We assume that the identifier of a process is
a single word, so it can be written atomically. We
assume that processes are fail-safe, 1.e., they do not
modify spin lock control information except through
the provided interface code. We assume that our in-
terface code is able to maintain and manipulate shared
information other than the spin lock itself.

The main example of this additional shared infor-
mation is a table with a slot allocated to each process
that may want to acquire a spin lock, where the slot
has space for a process to note what spin lock it is
currently trying to acquire. The allocation of a slot in
the table itself requires mutual exclusion on the table,
which would cause a circularity if handled using our
spin locks, so a more epxensive mechanism is required
for this once-per-process task.

For simplicity of presentation, we assume that a
process may hold only one spin lock at one time.
Our implementation, however, allows a process to hold
multiple spin locks.

Finally, we assume that processes make progress
while running spin lock acquisition and release code.
(We are not assuming that our concurrency mecha-
nism is starvation free, just that once a process enters

2The SPARC assembly language for the version of the archi-
tecture which we currently use provides a test-and-set instruc-
tion (ldstub), and a swap instruction which also acts as a fence
instruction.

which share data between processes.

Operating system semaphores maintain ownership
information, allowing one to find at any time which
process, if any, has acquired the semaphore and not
(vet) released it. The information can be used for re-
covery purposes in the case when software faults result
in a process failing (halting) after having acquired a
semaphore but before releasing it. Determining own-
ership of semaphores is the critical first step to recov-
ery from process failure. Given the knowledge that
a dead process holds the semaphore, the software ap-
plication could potentially use that information along
with other application specific information to carry
out appropriate recovery actions on resources guarded
by the semaphore, and then release the semaphore, al-
lowing other processes in the software application to
continue normal operation. Such recovery from pro-
cess failure is particularly important in systems with
high availability requirements, since the only alterna-
tive 1s to shut down all processes, restore to consis-
tency all shared resources that may be left in an in-
consistent state, reinitialize all semaphores, and then
restart the system. An example of a system that pro-
vides recovery from process failure is the Dali main-
memory storage manager system [4].

Unfortunately, it i1s difficult to determine owner-
ship of spin locks based on the commonly used atomic
test-and-set or atomic swap instructions. (See Sec-
tion 2.) Providing a correct and efficient mechanism
to determine ownership for spin locks is the central
issue addressed by this paper.

In this paper, we present a scheme for effectively
dealing with the ownership problem in an environ-
ment that supports the atomic test-and-set (or, equiv-
alently, atomic swap) instruction. We do so by record-
ing information in shared memory as part of the ac-
quisition and release code. In the case of an uncon-
tested acquisition, we add very little overhead to the
path length — two writes and a read.! However, our
implementation has the property that we can always
detect ownership of a spin lock. In very rare cases,
this may involve killing processes that fail to make
progress for a long time while executing semaphore
acquisition /release code.

The basic idea behind our algorithm is to take a
global picture rather than a local one — instead of just
examining a failed process, we examine all processes
that may have wanted to acquire a spin lock, which
gives us enough information to determine ownership
of a spin lock. This is the critical novel feature of
our algorithm. Several difficulties arise in the context
of a system where a new process may be spawned at
any time and subsequently attempt to acquire a spin
lock. Handling such situations constitutes the bulk of
the technical challenges in carrying out the basic idea.
Further complications are introduced by the weak-
memory-consistency models that most multi-processor
architectures today implement, and we prove our al-
gorithms works under the assumptions of a represen-

1On systems supporting only a weak consistency model,
these two writes also require the use of special synchronization
instructions with a somewhat higher overhead.

tative weak memory model.

The remainder of the paper is organized as follows.
Section 2 describes the basic problem, and drawbacks
of current solutions. Qur system model is presented
in Section 3, and an overview of our approach is pre-
sented in Section 4. Section b describes the system
control information used to support crash safety and
the spin lock acquisition and release protocols. Sec-
tion 6 presents our cleanup algorithm, along with some
intuition about the proof of correctness. Section 7
discusses extensions of our algorithm. Section 8 de-
scribes our implementation and presents some timing
numbers. Section 9 discusses related work.

2 Problem Definition

Determining the ownership of a spin lock requires that
the process that acquired a spin lock also register it-
self as the owner (by writing its process identifier to
a known location). Unfortunately, the act of acquir-
ing a spin lock using the basic hardware instruction
test-and-set (or atomic swap) cannot be used to also
atomically register ownership. At best, the atomic
instruction can be followed by a conditional branch
testing for a successful acquisition, which can be fol-
lowed by an instruction writing the process id of the
new owner. If the process that is trying to acquire a
spin lock is interrupted between the test-and-set and
the write, the ownership of a spin lock is left in doubt
until the process gets to execute the write. If the pro-
cess fails in this interval, the ownership of the spin
lock will never become clear. Worse still, it is impos-
sible to distinguish between a process that has failed
at this step and a process that has not failed, but
has not yet carried out the write, either because it is
servicing an interrupt, or because it has not been al-
located CPU cycles. A symmetric problem can also
arise when releasing the semaphore, since the deregis-
tration and release may have to be accomplished using
separate instructions (depending on the exact atomic
instruction used).

3 System Model

We first present our hardware model. We assume
one or more processors sharing memory. In multi-
processor systems, read and write requests may origi-
nate from different processors, and the memory system
processes the requests. Memory systems used in ear-
lier generations of multi-processor systems provided a
sequential consistency model. Under this model, all
the reads and writes handled by the memory system
can be ordered in such a fashion that the values re-
turned by a read on a memory location is exactly the
last value written to the memory location, and the
operations generated by each processor appear in the
same order in which they were generated.

However, current generation multi-processor sys-
tems prov1de weaker levels of memory consistency, in
order to improve the speed of memory accesses and
allow more efficient caching of data in each processor.
In particular, suppose A and B were initially 0, and we
have the requests Write(A, 1), Read(B) from one pro-
cessor, and the requests Write(B, 1), Read(A4) from

Recoverable User-Level Mutual Exclusion

Philip Bohannon*

Daniel Lieuwen

Avi Silberschatz
S. Sudarshan

Jacques Gava

AT&T Bell Laboratories
600 Mountain Avenue

Murray Hill, NJ 07974

Abstract

Mutual exclusion primitives based on user-level atomic
instructions (often called spin locks) have proven o be
much more efficient than operating-system semaphores
wn sttuations where the contention on the semaphore
1s low. However, many of these spin lock schemes
do not permit registration of ownership to be carried
out atomically with acquisition, potentially leaving the
ownership undetermined if a process dies (or makes
very slow progress) at a critical point in the registra-
tion code. We present an algorithm which can ensure
the successful registration of ownership of a spin lock,
regardless of where processes fail. Thus, our spin lock
implementation is ‘recoverable’. The determination of
a spin lock’s ownership can potentially be used to re-
store resources protected by the spin lock to consistency
and then release the spin lock. Other processes using
the lock can then continue to function normally, im-
proving fault resiliency for the application. Our algo-
rithm provides very fast lock acquisition when the ac-
quisttion is uncontested (compamble i speed to a stm-
ple test-and-set based spin lock), and we prove it works
even on the weak memory consistency models itmple-
mented by many modern multiprocessor computer sys-
tems. Other implementations of a recoverable user-
level mutual exclusion primitive are either dependent
on special instructions such as compare-and-swap that
are not supported on many architectures, or are im-
plemented using (variants of) the Baker’s Algorithm,
which s quite costly even in the case of uncontested
acquisition.

1 Introduction

Current day computing environments provide support
for concurrent accesses to shared memory by multi-
ple processes (threads), possibly running on multiple
processors. Such systems (hardware and/or operat-
ing system) must provide synchronization constructs
to allow processes to access shared data in a mutu-

*A Ph.D. candidate in the Department of Computer Science
at Rutgers University.

ally exclusive manner. One mechanism for achieving
this goal is the use of semaphores (see, e.g., [1]). In
a traditional semaphore implementation, as provided
on Unix systems, semaphore operations (wait and sig-
nal) are implemented as operating system kernel calls,
which allows the system to take the operations into
consideration for CPU scheduling. However, system
calls require a context switch, which is usually quite
expensive (equivalent to thousands of instructions) on
current generation processors.

In a situation where contention for a shared re-
source seldom occurs, one would like to avoid the
cost of context switching for the purpose of provid-
ing mutual exclusive access to data. This can be done
through the use of binary semaphores implemented
as spin locks (see e.g. [2, 3]). When requesting a
spin lock, a process uses an atomic read-and-update
hardware instruction (e.g. test-and-set or register-
memory-swap), to perform the following operations
as a single unit: check if the semaphore is free, and
update its status to not-free. If the semaphore was
free, the process has now acquired the semaphore;
the acquisition cost is very low — a single instruc-
tion — compared to a kernel call. If the semaphore
was busy, the process retries the acquisition repeat-
edly until the semaphore is acquired. In a unipro-
cessor, between acquisition attempts, the process in-
dicates to the operating system that another process
may be scheduled on the CPU, typically by executing
a sleep operation. On a multiprocessor system, if the
semaphore is held by a process on a different proces-
sor, the acquisition code may not even need to perform
the sleep operation, but simply keep trying the acqui-
sition until 1t succeeds. This activity is called “busy
waiting” or “spinning.” For semaphores with a low
degree of contention, spin locks have been shown to
offer significant performance benefits over operating
system semaphores. (A semaphore acquisition is “un-
contested” if, during the acquisition attempt, no other
process holds or tries to acquire the semaphore.) Low
contention semaphores which are repeatedly acquired
and released are common in many software systems

