
On-line Reorganization in Object Databases

Mohana K. Lakhamraju

University of California,

Berkeley CA

mohan@cs.berkeley.edu

Rajeev Rastogi, S. Seshadri

Bell Labs, Murray Hill, NJ

rastogi@research.bell-labs.com

seshadri@research.bell-labs.com

S. Sudarshan

Indian Institute of Technology,

Bombay, India

sudarsha@cse.iitb.ernet.in

Abstract

Reorganization of objects in an object databases is an important
component of several operations like compaction, clustering,
and schema evolution. The high availability requirements
(24 � 7 operation) of certain application domains requires
reorganization to be performed on-linewith minimal intereference
to concurrently executing transactions.
In this paper, we address the problem of on-line reorganization

in object databases, where a set of objects have to be migrated
from one location to another. Speci�cally, we consider the case
where objects in the database may contain physical references to
other objects. Relocating an object in this case involves �nding
the set of objects (parents) that refer to it, and modifying the
references in each parent. We propose an algorithm called the
Incremental Reorganization Algorithm (IRA) that achieves the
above task with minimal interference to concurrently executing
transactions. The IRA algorithm holds locks on at most two
distinct objects at any point of time. We have implemented
IRA on Brahma, a storage manager developed at IIT Bombay,
and conducted an extensive performance study. Our experiments
reveal that IRA makes on-line reorganization feasible, with very
little impact on the response times of concurrently executing
transactions and on overall system throughput. We also describe
how the IRA algorithm can handle system failures.

1 Introduction

Globalization requires that corporate information systems
be available twenty four hours a day, seven days a week
(24 � 7 operations). Very high availability of database
systems is also required for mission-critical applications
such as telecommunications, process monitoring systems etc.
For example, telecom switches typically have down time
requirements of atmost three minutes in a year. A major
technical challenge for architects of such highly available
systems is to devise and implement on-line utilties for
periodic and routine maintenance of the systems [ZS98,
Edi96].
In this paper, we consider the problem of on-line reorga-

nization in object databases, in which a set of objects have
to be migrated from one location to another with minimal
interference to concurrently executing transactions. On-line
reorganization is a fundamental component of many utility
operations such as:

Compaction: Continuous allocation and deallocation of

space for variable length objects can result in fragmenta-
tion. Compaction gets rid of fragmentation by migrating
objects to a di�erent location and packing them closely
[NOPH92].

Copying Garbage Collection: One approach to garbage
collection is to copy all the live objects from a given
region to a new region and then reclaim the given region
[NOPH92, YNY94].

Clustering and Partitioning: The clustering of related
objects within the same disk block or adjacent disk
blocks greatly improves the performance of a transaction
that accesses those set of objects within a small time
frame. The partitioning of objects across several disks
(also referred to as declustering) to enable concurrently
accessed objects to be fetched in parallel can also
enhance performance signi�cantly. Based on changes
in workload and updates to objects, new clustering
and partitioning decisions are made, which require the
system to migrate a set of objects from one location to
another [WMK94, TN91].

Schema Evolution: Schema Evolution could cause an
increase in object size. Such objects may have to be
moved since they no longer �t in their current location.
This requires reorganization of objects [BKKK87].

Performing the above operations in an online fashion
requires that object references be maintained consistently
while a set of objects are relocated from one place to
another. Object references could be logical or physical and
we consider the two cases in turn.
On-line reorganization is quite simple if the object

references are logical. In this case, migrating an object
O does not require the object references to O in other
objects to be modi�ed. Instead, it su�ces to update the
data structure that contains the mapping from the logical
reference of an object to the physical location of the object.
Thus, the objects can be migrated one at a time, with
minimal interference to concurrent transactions, by locking
out other concurrent transactions from the above mapping
for an object while it is being migrated.
However, logical references typically entail one extra level

of indirection for every access of the object. In disk resident
databases, this could result in an additional I/O for every
object access. In a memory resident database, this increases
the access path length to an object by a factor of two, and
may also increase main-memory requirements considerably.
These overheads are unacceptable in a number of scenarios
such as call setup in telecommunications, which require



response times to be in the order of tens of microseconds
[JLR+94].

On the other hand, if object references are physical, they
point to the actual disk or memory address of the object.
Consequently, since physical object references result in more
direct access to data and shorter access path lengths, main-
memory database systems like DataBlitz [JLR+94, BLR+97]
and TimesTen use physical instead of logical references
1. Physical object references, however, complicate object
migration since migrating an object O requires �nding the
set of referencers of O, RO, and updating the references in
each object in RO. To �nd the set RO, we could maintain
back pointers from every object in the database. However,
doing so increases storage overheads greatly, and causes lock
contention in back pointer lists of \popular" objects, which
are pointed to from many objects. Thus, maintaining back
pointers is unacceptable in many applications.

Another alternative for �nding RO is to traverse the
object graph, and �nd parents of objects that need to be
migrated. Performing a consistent traversal of the object
graph concurrently with ongoing transactions is a non-
trivial task. The naive way of doing so is to block out
all transactions and perform the traversal on a quiescent
database. Since this has been the only alternative available,
conventional wisdom says object migration can be very
disruptive to normal processing if physical references are
used. This is perhaps the most important reason for the use
of logical object identi�ers by some vendors.

In this paper, we address the problem of on-line reorgani-
zation using object graph traversals, in an object database
where references are physical2 . Prior work [KW93] on
on-line reorganization of an object-oriented database with
physical references requires an action-quiescent state and
some low level support from the hardware and the operat-
ing system. In addition, the proposed algorithms use for-
warding addresses and require use of a complicated fail-
ure recovery technique. The problem of reorganization
has been studied extensively in the context of relational
databases [ZS98, Edi96, ZS96a, SD92, Omi96, AON96]. Al-
though the references in a relational database are physical,
they are stored only in the index structures. Thus, dis-
covering the set of references to a record is a much sim-
pler task in relational databases. Research into reorga-
nization in relational databases has mainly concentrated
on minimizing the number of locks being held and the
amount of I/O necessary for reorganization. The work most
closely related to ours is work on on-line garbage collec-
tion [YNY94, AFG95, ARS+97]. Though not the subject
of this paper, our reorganization algorithm is also capable
of performing garbage collection using an approach similar
to that of a copying garbage collector [NOPH92, YNY94].
Thus, our algorithm can perform both garbage collection
and reorganization and yet allow references to be physical,
an ability that to the best of our knowledge, no previous
algorithm in the literature possesses. We explore this and
other relationships to related work in detail in Section 4.6
and Section 6.

1The original motivation for this work came from the mem-
ory fragmentation problem in the Dali Object Storage Manager
[BLR+97]. Dali is the research prototype for the DataBlitz main
memory database system.

2Note that the algorithms presented are applicable whereever a set
of objects have to be reorganized while being concurrently accessed,
e.g. a stable heap [KW93]

1.1 Our contribution

We present a novel algorithm, the Incremental Reorganiza-
tion Algorithm (IRA) which performs on-line reorganization
with minimal interference to concurrently executing trans-
actions. The crucial and complex part of IRA lies in how
it e�ciently determines the set of objects, RO, that refer-
ence an object O, with minimal interference to concurrent
transactions. IRA uses a single fuzzy traversal (which uses
only latches, and no locks) to determine an approximate RO

for all objects O being migrated; then for each O, one at a
time, an exact RO is found, locked, and the object is mi-
grated. Thereby, very few locks are held at any time by IRA,
thus minimizing interference with concurrent transactions.
Moreover, The IRA is tolerant to failures in the sense that
it tries to minimize the amount of wasted work.
For large databases, traversing the entire database in

order to carry out a reorganization could be very expensive.
IRA deals e�ectively with this problem by partitioning the
database. IRA can be run on one partition at a time,
thereby restricting traversal performed. Partitioning has
been used in the past for garbage collection in object-
oriented databases [YNY94, AFG95], and for reorganization
of relational databases [Edi96].
The basic version of IRA requires transactions to follow

strict two-phase locking (2PL), that is, all locks are held
until the end of the transaction. This may be too restrictive
in some high performance situations. We present two
extensions to IRA, which improve concurrency further:

1. The �rst extension relaxes the strict two-phase locking
requirement. Instead, transactions are only required
to hold short duration locks on objects while accessing
them.

2. The second extension does not require IRA to lock all
objects in RO simultaneously. Instead, it allows objects
in RO to be locked one at a time, while holding a lock on
O, the object being migrated. Thus, at most two locks
are held at any point in time by this extension.

We have implemented IRA and its extensions in Brahm�a,
a storage manager developed at IIT Bombay. We compare
the performance of IRA to that of a system not running
any reorganization. Our experiments demonstrate that
for a wide range of workloads, the response times and
throughput of the system while running IRA only degrade
marginally. The maximum degradation in the average
response time is around 5% while the maximum degradation
in throughput is about 10%. We also compare IRA with
a naive reorganization algorithm (which locks a signi�cant
portion of the database during reorganization). The average
response times of transactions with the naive reorganization
algorithm are signi�cantly higher, and the throughput is
correspondingly lower. More importantly, the variance in
response times is several orders of magnitude higher with the
naive algorithm, than with IRA. Thus, IRA is much better
than the naive algorithm in ensuring that transactions are
not adversely impacted by reorganization.
The rest of the paper is organized as follows: We outline

our system model and assumptions in Section 2. Section 3
discusses the IRA algorithm in detail. The extensions and
optimizations to IRA are discussed in Section 4. In the same
section, we also discuss the failure handling and garbage
collection aspects of our algorithm. We present the results of
our performance evaluation in Section 5. We survey related
work in Section 6 and present our conclusions and explore
future directions for research in Section 7.



2 System Model

In this section, we describe the system model on which our
on-line reorganization algorithm is based. The system model
is very similar to the one used by Amsaleg et. al. [AFG95]
and Roy et. al. [ARS+97] in their garbage collection work.

In our model, the objects in the database form a directed
graph called the object graph. The nodes of the graph are
the objects in the database, and an edge R! O exists in the
graph if and only if R contains a reference to O. We assume
that all references are physical. We use the term reference
to mean the object identi�er of an object, as well as to refer
to an edge in the object graph, i.e., a reference from some
object R to an object O. The intended usage will be clear
from the context.

We shall refer to the objects R that reference an object O
as the parents of O, and to O as a child of R. In our model,
there exists a special object called the persistent root3. All
objects in the object graph that are reachable either from
the persistent root, or from an object whose reference is in
the local memory of an active transaction are live objects;
the rest of the objects in the database are not reachable (i.e,
they are garbage). To traverse the entire graph, one can
start at the persistent root, and follow references from one
object to another.

We assume that the database is divided into units called
partitions. We also assume that given an object identi�er,
we can inexpensively �nd the partition to which the object
belongs4 . The idea of partitioning has also been used by
on-line garbage collection algorithms [YNY94, AFG95] and
reorganization algorithms in relational databases [Edi96], to
focus the problem on small units of the database.

The goal of partitioning is to be able to reorganize one
partition at a time, and in particular, to be able to avoid
traversing the entire database in order to �nd parents.
Speci�cally, we wish to traverse only the objects in a
partition, yet �nd all parents of objects that are to be
migrated.

In order to do so, each partition P contains an External

Reference Table (ERT), which stores all references R! O
such that O belongs to P and R does not belong to P.
Thus, the ERT for partition P stores back pointers for
references that come into P from other partitions. Objects
O belonging to P that are noted in the ERT are called
the referenced objects of the ERT. For simplicity, we assume
that the persistent root is in a separate partition of its own,
so that references from the persistent root to an object in
any partition, is in the corresponding partition's ERT. We
postpone for now the issue of how the ERT is maintained,
and return to it in Section 3.3.

In this paper, for concreteness, we focus on the following
speci�c reorganization problem: Given a partition P,
migrate all the objects in P to their speci�ed new locations.
This does not compromise the generality of our solutions;
they can easily be extended if i) objects from multiple
partitions have to be migrated and/or ii) only certain
speci�c objects in the partition need to be migrated. We
do not consider the problems of when to reorganize, which
partition to reorganize and where the objects of the partition
should be migrated. This is an orthogonal problem and the

3For ease of presentation, we assume there exists only one
persistent root. Our algorithms can handle multiple persistent roots
also.

4For example, the partition could be inferred from a �xed number
of left most bits of the object identi�er or some other hash function
on the object identi�er.

driving operation (e.g., compaction, clustering) makes these
decisions.
We assume that transactions follow strict 2PL, i.e., all

locks are held until the transaction commits or aborts
(the algorithm is extended to relax this assumption in
Section 4.1)5. A transaction can obtain a reference to
an object only by following a sequence of references from
the persistent root, unless it created the object. Once
a transaction has locked an object O (in the appropriate
mode), it can i) copy into its local memory any reference
out of O, ii) delete a reference out of O and iii) insert
a reference into O (i.e., store into O a reference to some
object), copying it from the transaction's local memory. In
all of the above, the transaction is not required to hold a
lock on the referenced object.
For clarity of presentation we assume that objects are

not created in the partition being reorganized after our
reorganization algorithm starts execution6 .
We assume that the transactions follow the Write Ahead

Logging Protocol WAL, i.e., they log the undo value before
actually performing an update, but the redo value may be
logged anytime before the lock on the object in question is
released.

3 The Incremental Reorganization

Algorithm (IRA)

In this section, we describe our Incremental Reorganization

Algorithm (IRA), for reorganizing a partition. Before
delving into the details of IRA, we outline a simple o�-line
algorithm for reorganizing a partition which assumes that
the database is quiescent.

3.1 Reorganizing A Quiescent Database

We �rst consider how to reorganize a quiescent database,
i.e., one on which no transactions are executing concurrently
with reorganization. Reorganizing a partition P involves
migrating each object O that belongs to P. The basic steps
in migrating an object O are i) �nd the parents of O, ii)
move O to the new location, and iii) update the references
to O in the parents of O.
In non-partitioned databases, �nding the parents of an

object requires a traversal of the object graph starting from
the persistent root. However, in the case of partitioned
databases, we do not have to traverse the entire graph;
rather, we only traverse objects in the partition P that is
being reorganized.
Traversal starts from all the objects that are referenced by

objects external to the partition | these are exactly those
objects referenced in the External Reference Table (ERT)
of the partition. Whenever we traverse an edge from R to
O, we add R to the list of parents of O. In addition to
the parents found by traversing edges within the partition,
we must add all parents from other partitions; these can be
found in the ERT of partition P.

5We do not require locks to be held for transaction duration on
schema level objects like index structures and collections. Updates
to references, due to object migration, within these objects can be
handled similar to relational databases.

6Our algorithms work correctly even if this assumption does not
hold except it will not migrate objects created after the reorganization
process starts execution. We outline how to extend our algorithm
to migrate all objects created until some point of time after the
reorganization process begins execution in [LRSS99]. Obviously
objects created after the reorganization process completes can not
be migrated.



Rather than performing a traversal of the partition once
for each object, a single traversal is used to �nd the parents
of all objects being migrated. As we perform the traversal,
we construct multiple parent lists, one for each object we
encounter in the course of traversal.
The assumption of the database being quiescent is

important for the above algorithm, since concurrently
executing transactions may update the object graph while
traversal is going on. This could lead to the traversal missing
some objects, or �nding edges that get deleted later.

3.2 Outline of the IRA Algorithm

The above solution based on quiescing all database activity
is too stringent for many applications. In contrast, the IRA
algorithm allows transactions to execute on the partition all
times during reorganization.

Incremental Reorganization(P) f
(Objects, Parent Lists) =

Find Objects And Approx Parents(P)
For (each object Oold in the set Objects) do

Find Exact Parents(Oold, Parent Lists)
Move Object And Update References(Oold,

Parent Lists)
g

Figure 1: Incremental Reorganization Algorithm

We now outline how the IRA algorithm is able to allow
transactions to execute on the partition being reorganized.
Figure 1 outlines the top level idea underlying IRA. As
can be seen from Figure 1, the algorithm consists of two
broad steps. The �rst step, implemented by the function
Find Objects And Approx Parents �nds the set of objects
in the partition, and an approximation of the set of parents
of these objects, by performing a fuzzy traversal of the
partition. The objects, and the set of their corresponding
parent lists are returned by the above function.
The fuzzy traversal does not obtain locks on the objects

being traversed; instead, only a short term latch is obtained
on the object for the duration of examining the references
out of the object. The reason the traversal obtains only
an approximation of the set of parents of an object is that
parents of an object are constantly changing since other
transactions execute concurrently. This step is explained
in detail in Section 3.4.
The second step of IRA iterates over the set of objects

discovered in the �rst step, and for each object, i) �nds and
locks the exact parents and then, ii) moves the object to
its new location and updates references to the object. The
second step is explained in detail in Section 3.5.
To help �nd the exact set of parents of an object, we col-

lect all pointer inserts and deletes since the reorganization
process started, in a data structure called the Temporary
Reference Table (TRT). The TRT structure and its mainte-
nance are described in Section 3.3.

3.3 Temporary Reference Table (TRT)

The Temporary Reference Table (TRT) of a partition P, is a
transient data structure, in which the deletion and addition
of a reference to an object O in P are logged. The TRT
structure is similar to the TRT used in [AFG95, ARS+97].
The TRT contains tuples of the form (O, R, tid; action),

where R is the referencer (parent) from which a reference
to object O has been deleted or added by transaction tid;

Before Compaction During Compaction After Compaction

O

O2

O1 O3

O2

O

O3 O1O1

Figure 2: Motivating pointer delete logging in TRT

and action denotes whether the reference was inserted or
deleted. We will call O above as the referenced object of
the above tuple in the TRT, and the set of all such objects
as the referenced objects of the TRT. A pointer delete must
be noted in the TRT before the pointer is actually deleted
by the transaction. Pointer inserts can be noted after the
actual operation is done, but they should be made before
the lock on the object in question is released.
A simple mechanism to maintain the TRT and the ERT,

as pointers are updated, is to process the system logs (as
in [AFG95, ARS+97]) by a separate process called log
analyzer7 as soon as they are handed over to the logging
subsystem. The log analyzer updates the TRT/ERT if the
update log it is processing has caused a reference pointer
to be inserted or deleted. Updates to the TRT itself are
not logged, while updates to the ERT can be logged as
in [AFG95]. Alternately, if the logging overheads for the
ERT are perceived to be excessive, one can choose not to
log updates to the ERT; however, in this case, we would
then have to reconstruct the ERT at restart recovery.
We will now motivate the need for recording each of the

above actions based on the high level description of IRA
presented in Figure 1 and via the following examples:

Pointer Deletes: In the absence of the TRT, the following
scenario is possible: Before IRA begins, a transaction T

deletes a pointer from object O1 to an object O, but
retains the reference to O in its local memory. When
IRA runs, it would not �nd O1 to be a parent of O (and
not try to lock 01 either, as a result).

After IRA migrates O, T may insert back the reference
(either explicitly or due to an abort of T ) to O; however,
the reference would still point to the old location of O,
which is now garbage. This scenario is illustrated in
Figure 2. The TRT helps handle such cases by recording
that a reference to O has been cut; IRA will wait for T
(by attempting to lock O1 which is found by consulting
the TRT) to complete before migrating O.

Another reason for logging pointer deletes, is to ensure
that the fuzzy traversal does not miss out on some
live objects in the partition. For example, if the only
reference to O is deleted by a transaction T , O (and some
of its descendants) may never be encountered during the
fuzzy traversal. If T inserts a reference to O back after
the traversal, IRA may not migrate O, although O is a
valid object of the partition.

To �x this problem, IRA additionally performs a traver-
sal from all objects in the TRT to which a reference has
been deleted, as we will see. Thus, O (and all of its de-

7The TRT and ERT can also be maintained by other mechanisms
like modifying the functions that perform pointer updates etc. For
purposes of isolating this function, and to demonstrate that this kind
of analysis can be added very easily to an existing system without
disturbing existing user code, we have chosen to introduce a separate
process for the TRT/ERT maintenance. The actual mechanism for
maintaining the TRT/ERT is of no consequence to our algorithms.



scendants) will be encountered during the traversal, and
migrated.

Pointer Inserts: As we mentioned earlier, IRA performs
a fuzzy traversal and therefore may not encounter
some pointer inserts that take place while IRA is in
progress. However, these pointer inserts create new
parents. Before migrating an object O, IRA consults
the TRT to check if O has any new parents that IRA did
not encounter during the traversal.

3.4 Finding Objects and their Approximate Set
of Parents

As the �rst step towards reorganization of objects in a
partition, we identify the set of all live objects in the
partition, and for each object we identify an approximate
set of its parents (3). To do so we perform a fuzzy traversal
of objects in the partition, starting from objects referenced
from the ERT.

Find Objects And Approx Parents(P) f
/* Find the set of objects in the partition and their
approximate set of parents */
L1: (Traversed objects, Parent lists) =

Fuzzy Traversal(referenced objects in ERT of P)
L2: While (9 a referenced object O in the TRT

that is not in Traversed objects)
(Traversed objects, Parent lists) =
Fuzzy Traversal(fOg)

return (Traversed Objects, Parent Lists)
g

Figure 3: Find Objects and Approximate Parents

The fuzzy traversal of the object graph is performed by
Algorithm Fuzzy Traversal, the pseudo code for which is not
explicitly shown. Algorithm Fuzzy Traversal starts traversal
from the set of objects passed to it as its �rst argument
and restricts the traversal to objects of the partition being
reorganized. It adds the new set of objects encountered in
a particular call to Traversed Objects and adds the set of
parents of these objects encountered in a particular call to
Parent Lists.
During the traversal, locks are not acquired on the objects

encountered; instead, a latch is obtained to ensure physical
consistency of the object while it is being read. The latch
is released after the object has been read and all references
out of the object have been noted. Thereby, the traversal
is fuzzy, and does not return a transaction consistent view
of the object graph within the partition. Note that even
though not explicitly shown in the algorithm, latches on the
shared data structures, ERT and TRT, need to be obtained
whenever they are accessed. For clarity of presentation, we
have omitted the actual latching details but note that the
latch on TRT and ERT is not held while the Fuzzy Traversal
procedure executes.
The initial starting points for the traversal are the objects

in ERT. The loop at line L2 is required to guarantee that
no object in the partition is missed during the traversal.
We will illustrate this with an example. Suppose the only
reference to an object O is from R and this reference is cut
before R is encountered by the Fuzzy Traversal algorithm.
This would result in O not being visited by the traversal and
therefore not being recognised as a live object. Clearly, the
transaction that cut the reference to O could reinsert it.

The following lemma states that all live objects are en-
countered by Find Objects And Approx Parents. This also
enables IRA to detect and delete garbage objects (objects
that are not live) simultaneously with reorganization. We
will explore this connection in detail in Section 6.

Lemma 3.1 When Algorithm Find Objects And Approx Pare-

nts completes, all live objects in the partition P are in Tra-
versed Objects.

See [LRSS99] for the proof; due to space constraints, we
omit it here.
An alternative to traversal from the ERT is to use object

allocation information to �nd all objects in the partition,
and visit all of them during traversal; doing so would not
enable us to detect garbage objects, but would be otherwise
the same.

3.5 Finding the Exact Set of Parents and
Migrating an Object

We now explain the second step of the incremental reorga-
nization algorithm. In this step, for each live object in the
partition, we obtain the exact set of parents and then mi-
grate the object. As we mentioned before, the set of parents
of an object identi�ed by the fuzzy traversal need not be ex-
act. Function Find Exact Parents (pseudo code presented
in Figure 4) makes this exact.

Find Exact Parents(Oold, Parent Lists) f
S1: Get Write Locks on all the objects in the parent

list of Oold

For each object R in the parent list of Oold

If R is not a parent of Oold

Unlock R, and remove R from
parent list of Oold

S2: While (9 a tuple t in the TRT which has Oold

as the referenced object)
Write lock the parent object R of Oold in t

Delete t from TRT
If R is a parent of Oold

Add R to the parent list of Oold

else Unlock R

g

Figure 4: Find Exact Parents

Find Exact Parents �rst obtains locks on the approximate
parents of Oold, identi�ed by the fuzzy traversal. If an object
R is not a parent of Oold any longer (the reference was
deleted after R was encountered during the fuzzy traversal),
then R can be unlocked and removed from the parent list
of Oold. Find Exact Parent next checks the TRT for the
existence of a tuple containing Oold as the referenced object.
If a tuple exists, then a reference to Oold from an object
R has either been added or deleted. If a reference from
R to Oold has been deleted, the transaction that deleted
the reference has completed when IRA obtains a lock on R
(by strict 2PL). Therefore, that transaction can no longer
introduce a reference to Oold (any references introduced by
it already will be in the TRT). If a reference from R to Oold

has been added and R still contains that reference after a
lock on R is obtained, then R is added to the parent list of
Oold.
The while loop in Find Exact Parents terminates when

there is no tuple in the TRT that contains Oold as the
referenced object. The following two lemmas together



guarantee that all parents of Oold have been locked and there
is no fear of a pointer to Oold reappearing in the database
after Oold has been migrated.
Note that there is no need to obtain a lock on Oold itself,

since the only way to access it is via a parent, and due to
the strict 2PL requirement, no transaction can have a lock
on Oold once all its parents are locked.

Lemma 3.2 All live objects that have a reference to Oold at
the time Find Exact Parents completes are locked by IRA.

Proof: We provide an proof sketch here. A more formal
proof can be found in [LRSS99]. Let t be the time instant
at which Find Exact Parents completes. Let us assume that
there exists a live object R containing a reference to Oold at
time t that has not been locked by IRA. We will consider
two cases:

Case 1: The reference was added before the reorganization
algorithm started

By Lemma 3.1, R would have been encountered by the
fuzzy traversal. Therefore, the reference also would have
been encountered at the time R was encountered and
therefore R is in the parent list of Oold at t. Therefore,
R would have been locked by IRA at statement S1 of
Find Exact Parents { a contradiction.

Case 2: The reference was added after the reorganization

algorithm started
Let T be the transaction that added the reference. If T
has completed at t, then the insertion would be logged
in the TRT and the loop at S2 would have caught this
and locked R. Therefore, T has still not completed at
t. Since, we do not allow creation of objects after the
reorganization process starts, T should have obtained a
reference to Oold from some other object. Let R0 be the
object in which T �rst found a reference to Oold. If the
reference from R0 to Oold is not present at time t, then T

must have deleted it, and by WAL, this deletion must be
in TRT at time t. Therefore, IRA must have obtained a
lock on R0 in the loop at S2, which is impossible since T
has a lock on R0 at t. Therefore, the reference from R0 to
Oold is present at time t. Without loss of generality, we
can assume IRA has a lock on R0 (otherwise we can keep
repeating the proof of this lemma for the reference from
R0 to Oold and this will push back the time of addition of
the reference being considered in the proof until the time
of addition of the reference satis�es Case 1). However,
T holds a lock on R0 at t { a contradiction.

Lemma 3.3 There does not exist an active transaction that
has a reference to Oold in its local memory at the time

Find Exact Parents completes.

The proof is similar to the proof of Lemma 3.2; see
[LRSS99] for details.
It now follows that no transaction in the future can obtain

a reference to Oold and so Oold can be safely moved. The
move is performed by Move Object And Update Ref, the
pseudo code for which is presented in Figure 5. This is
essentially a bookkeeping function that actually e�ects the
migration of Oold and ensures all references to the object
at the old location refer to the new location and that all
the ERTs are consistent with the migration. Onew is made
visible to other transactions after this function completes
since the locks on the parents of Oold are released at the end.
We treat the migration of each object as a transaction (see
section 4.3). In other words, the calls to Find Exact Parents
and Move Object and Update Refs for a particular object

Move Object And Update Refs(Oold, Parent Lists) f
Copy Oold to the new location, say Onew

For each parent R in the parent list of Oold

Change the reference in R to point to Onew

Update ERTs of the partitions where Oold

and Onew reside to re
ect the change
For each child C of Oold that is in the partition
being reorganized

If C is not yet migrated
Replace Oold by Onew in the parent list of C

For each child C of Onew

Update the ERT of the partition corresponding
to C to re
ect the migration

delete Oold

Unlock all the parents of Oold (Onew)
g

Figure 5: Move Object and Update References

Oold in Figure 1 are together executed in the context of a
transaction. As a result, system failures will not undo the
migration of objects, if the transaction in whose context
the object was migrated has completed. The migration of
an object which was in progress at the time of failure (if
any) will be undone. The reorganization process has to be
started afresh to migrate the objects yet to be migrated.
Alternatively, the reorganization process can log information
about its execution state, to ensure that it does not have to
be started afresh in case of a system failure. The impact of
failures is further explored in section 4.4.

4 Extensions and Optimizations

In this section, we consider two important extensions
to IRA. The �rst does away with the assumption that
transactions follow strict 2PL. The second reduces the
number of concurrent locks held by IRA. We then describe
how to aggressively reclaim space occupied by the TRT and
limit the amount of logging to the TRT.

4.1 Relaxing Strict 2PL Assumption

In this section, we show how the assumption that transac-
tions follow strict 2PL can be relaxed. We assume, however,
that before accessing an object, a short duration lock is ob-
tained; the lock may be released after the object has been
accessed.
For the reorganization process to work correctly when

transactions do not follow strict 2PL, we augment the lock
manager to keep track of which active transactions had
acquired short duration locks on which objects. Whenever
the IRA locks an object, it must additionally wait for all
active transactions that have ever acquired a lock on this
object to complete. Thus, the IRA waits for transactions
that may have copied a reference into its local memory but
may not currently hold a lock on the source of the reference.
This results in transactions behaving as though they were
following strict 2PL with respect to the reorganization
process.

4.2 Reducing the Number of Concurrent Locks

The algorithm proposed in the previous section requires all
parents of an object to be locked before it can be relocated.
However, for objects with a large number of parents, this
could prove to be restrictive since a substantial portion of
the database may end up getting locked.



In this section, we show how to reduce the number of
concurrent locks held by IRA. Rather than obtaining a lock
on all the parents of an object, and then migrating the object
and updating references in the parents, we lock the object
being migrated (in both the old and the new locations) and
then lock the parents one at a time, releasing the lock on
a parent before obtaining a lock on the next parent. The
reference in the parent is updated to the new location of the
object while the parent is locked. As a result, each parent
update is now done within the context of a transaction
as opposed to each object migration in a transaction as
described in section 3.5 (also see section 4.3). Please refer
to [LRSS99] for the pseudo code for this extension.
No transaction can obtain a lock on the object being

migrated since it is locked by the IRA while the object is
being migrated. Transactions can however copy references
to both Onew and Oold into other objects. We can
ignore new references to Onew since they are correct after
relocation. New references to Oold will be detected using the
TRT as described earlier. Thus, it is correct to obtain locks
on one parent at a time. This extension is a very powerful
optimization since locks are held on at most two distinct
objects at any point of time.
However, the algorithm can lead to the following situ-

ation: For an object O being migrated, there may exist a
parent R which references Oold and another parent R0 which
references Onew. This has the following repercussions:

� In the event of a system failure, after restart recovery, the
database may have two di�erent objects, one pointing
to Oold, and the other pointing to Onew. In this case,
both Oold and Onew need to be locked before allowing
transactions to start execution. The Reorganization
process can then be restarted.

� The references to O out of R and R0 do not match.
Therefore, any transaction that attempts to compare
references will obtain an erroneous result. Thus, this
optimization is valid only if either (1) transactions do
not compare references without obtaining locks on the
referenced objects, or (2) the comparison operation does
an additional check to see if the two referenced objects
are old and new versions of an object being migrated {
if so, the two references are considered to be equal.

Note that this optimization can be used in conjunction with
the extension of Section 4.2.

4.3 Transaction context for Object Migration

In section 3.5, we noted that each object migration is done
within the context of a transaction. In the extended version
of the algorithm in section 4.2, each parent update is done
in the context of a transaction. As mentioned earlier, this
will ensure that work completed once will not be lost on a
failure and will not have to be repeated upon recovery. To
keep the descriptions of the algorithms simple, we used a
seperate transaction for each object (or each parent in the
extension). In practice, this could impose a high logging and
IO overhead. To address this problem, we note that it is not
required for correctness that each operation be a seperate
transaction. Multiple object migrations can be grouped
into a transaction (similarly, multiple parent updates can be
grouped in the extension) to reduce the logging overhead.
The trade-o� here is between the size of the transaction
and the amount of work that may need to be repeated
after a failure. In the next section, we look at some other
optimizations related to failure handling.

4.4 Handling Failures

In this section, we consider the e�ect of failures on the ERT,
and on the two steps of the IRA algorithm, in turn.

1. If the ERT is to be persistent, the updates made by
the log analyzer to the ERT should also be logged.
This logging is performed as though these updates were
made by the original transaction whose log is being
analyzed. This ensures that aborts of transactions and
restart recovery do not have to do anything special to
keep the ERT consistent. This was the approach taken
in [AFG95].

Alternatively, if the logging overheads for the ERT
are perceived to be excessive, one can choose not to
log updates to ERT; however, in this case, we would
then have to reconstruct ERT at restart recovery,
which requires a complete scan of the database. An
intermediate solution is to checkpoint ERT periodically
and use the logs for pointer deletes and inserts during
restart recovery to bring the ERT up to date.

2. Algorithm Find Objects And Approx Parents which is
the �rst step of IRA does not obtain any locks.
Therefore, it can never be involved in a deadlock. A
system failure during Find Objects And Approx Pare-
nts would however result in the loss of the work
performed until the failure.

A simple solution to system failures during Find Obj-
ects And Approx Parents is to restart the IRA algorithm
on restart recovery. However, if the loss of work is
unacceptable, the data structures Traversed Objects and
Parent Lists can be checkpointed periodically. In the
event of a failure, the TRT is reconstructed on the basis
of the logs generated after the IRA started.

Optionally, the TRT could also be checkpointed and then
only the logs after the checkpoint need to be considered
during the TRT reconstruction. In any case, after
the TRT is reconstructed, the last checkpoint of the
data structures can then be used to reduce the work
of Find Objects And Approx Parents (by not traversing
parts of the graph which have already been traversed).

3. The second step of IRA is to invoke Find Exact Parents
and Migrate Object for each object in the partition { we
perform this within a transaction. Therefore, once a call
to these functions succeed for an object O, the migration
of O is complete.

Migrate Object does not obtain any locks and can not
be involved in a deadlock. Find Exact Parents has to be
reinvoked if it fails due to a deadlock.

After a system failure during the second step, the objects
that have not yet been migrated need to be migrated.
If Traversed Objects and Parents Lists are checkpointed
after the completion of the �rst step, then the TRT can
be reconstructed after a system failure by performing
a scan of the system logs and the second step (to
migrate remaining objects) can be started right away
after recovery from failure. If the work done in the �rst
step is lost during a system failure, IRA is started afresh
from the beginning for the objects yet to be migrated.

4.5 Minimizing Space and Time Overhead of
TRT

In this section, we describe methods to reduce the time
and space overheads of the TRT. First, note that the TRT



on a partition is required only if a reorganization process
is in progress and does not exist otherwise. Once the
reorganization process starts, the log analyzer starts noting
relevant updates in the TRT. The reorganization process
waits for all transactions that are active at the time it
started, to complete, before starting the fuzzy traversal.
This ensures that all relevant updates are indeed present
in the TRT.
If transactions follow strict 2PL, the tuples corresponding

to pointer deletes in the TRT can be deleted as soon
as the transaction that logged them completes (aborts or
commits). The main reason pointer deletes are logged
is to ensure that any reinsertion of the reference by
the transaction that deleted the pointer is seen by the
reorganization process. Since insertions of pointers are
logged separately in the TRT and pointers cannot be
cached (in local memory) across transaction boundaries, this
deletion of the tuple from the TRT does not compromise
correctness. We assume here that if the abort of a
transaction reintroduced a deleted reference, it is treated
as an insertion of a reference, so the insertion remains in the
TRT. Moreover, when a transaction that deleted a reference
from R to O commits, we can also delete any tuple (if it
exists) in the TRT that corresponds to the insertion of the
reference from R to O.
Note that if transactions do not follow strict 2PL, a

reference deleted by a transaction T may have been seen
by another transaction T 0 which may reinsert the reference
after T commits. Thus, for the non-2PL case, we do not
allow the TRT tuples corresponding to deleted pointers to
be purged after the transaction that deleted the pointer
completes.

4.6 Relationship to Garbage Collection

One of the advantages of performing a traversal of the
object graph is that the live objects of the partition can
be detected. If we were only performing garbage collection,
then a sweep through the partition would have identi�ed
the garbage objects. This is essentially the partitioned
Mark and Sweep algorithm [AFG95]. The other option for
garbage collection is to migrate all the live objects of a
partition to a new partition and reclaim the entire space
in the old partition. This is essentially the partitioned
copying collector algorithm [YNY94]. However, the copying
collector algorithm of [YNY94] assumes the object references
are logical. Migrating objects when references are physical
is hard { the focus of this paper is to attack this problem.
However, as a side e�ect, we also have a partitioned copying
collector algorithm even if the references are physical. The
authors in [YNY94], in fact, advocated this algorithm over
Mark and Sweep due to the ability of the algorithm to
recluster the database. Thus, a system that implements our
reorganization utility does not require a separate garbage
collection utility.

5 Performance Evaluation

In this section, we investigate the impact of IRA on the
performance of concurrent transactions. We consider the
following: (a) a system running the basic version of IRA
(without the extensions described in Section 4), (b) a sys-
tem that is not running a reorganization utility, henceforth
called NR, for No Reorganization, and (c) a system that runs
a reorganization utility which quiesces the entire partition
being reorganized (described in Section 5.1). The reorgani-
zation utilities were added to Brahm�a, a storage manager
developed at IIT Bombay. Brahm�a provides support for

the strict 2PL protocol and supports WAL through an im-
plementation of ARIES. Brahm�a also supports extendible
hash indices which were used to implement the TRT and
the ERT. A lock timeout mechanism was used to handle
deadlocks and was set to one second throughout the exper-
iments. Our experiments were conducted on a standalone
167 Mhz Sun UltraSparc-1 machine running Solaris 2.6 and
equipped with 128 MB of RAM.

5.1 Partition Quiesce Reorganization (PQR)

We now outline the Partition Quiesce Reorganization Algo-
rithm (PQR), which quiesces the partition being reorganized
before performing the reorganization. By quiescing a parti-
tion, we mean that no reference to an object in the partition
can be added or deleted. This is essentially a scaled down
version of the o�-line algorithm of Section 3.1.
However, while it is trivial to ensure no transaction is

active in the o�-line algorithm, it is bit more complex to
ensure the partition being reorganized is quiescent. To
quiesce a partition, we need to locks all objects not in the
partition, that have a reference to an object in the partition.
This ensures that no transaction can obtain a reference to
an object in the partition.
Like in the IRA a TRT is maintained to detect insertion

of new references while other parents are being locked.
The following pseudo code outlines how a partition is
quiesced. Once a partition is quiesced, reorganization is
straightforward.

Quiesce Partition(P)
while (9 a parent object R in ERT which is not locked)

Lock R

while (9 a parent object R in TRT which is not locked)
Lock R

Note that as in the case for IRA there is no need to
lock the objects in the partition, since any transaction
that accesses these objects must have come in through
some external parent (possibly the persistent root). The
external parent would be locked above, so with strict 2PL
no transaction could be accessing any object in the partition.

5.2 Workload

We now describe the workload we consider in our experi-
ments. This includes how the object graph is structured,
and the access pattern of transactions. Table 1 shows the
parameters used in the experiments.

Parameter Meaning Default

NUMPARTITIONS partitions in the database 10
NUMOBJS objects per partition 4080
MPL multi programming level 30
OPSPERTRANS length of random walk 8

per transaction
UPDATEPROB probability of exclusive access 0.5
GLUEFACTOR fraction of inter-partition references 0.05

Table 1: Parameters of the implementation

Object Graph Structure The object database is made of
NUMPARTITIONS number of partitions, each containing
NUMOBJS number of objects. In each partition, the objects
are organized into clusters, where each cluster is a tree
with 85 objects. The roots of these clusters are treated
as persistent roots. One edge from each node in the cluster
refers to a node in another cluster C; C is chosen to be



in another partition with probability GLUEFACTOR; thus
controlling the number of inter-partition references.

Transaction Access Pattern The multi programming level
(MPL) determines the number of concurrent transactions in
the system at any given time. The multi programming level
is �xed by spawning MPL threads that submit transactions
to the system. When a transaction submitted by a thread
completes, the thread submits the next transaction.
A typical transaction performs a random walk through

the object graph. All the transactions in a particular thread
start their random walk in a speci�c \home" partition and
the threads are uniformly assigned to all the partitions. For
the transactions in a particular thread, the starting points
of the random walks are chosen randomly from among the
persistent roots in the partition assigned to that thread.
The random walk chooses the next object to be accessed

randomly from the references out of the current object. The
number of objects accessed during the random walk is given
by the OPSPERTRANS parameter which is �xed at 8. At
each stage in the walk, the transaction may get a lock on the
next object in shared or exclusive mode. This is determined
by a parameter called the UPDATEPROBABILITY which
represents the probability that an access performed by the
transaction is an update access.

5.3 Results of Experiments

Previous studies [YNY94, AFG95, ARS+97] have studied
the I/O overhead of partition traversal and found it to be
reasonable. Therefore, we do not address this issue in our
experiments. They have also studied the impact on normal
processing of maintaining the TRT and ERT (and shown it
to be reasonable) and therefore we do not address that issue
either in this section.
In all our experiments, the database was kept memory

resident for two reasons: i) In many high performance sit-
uations like telecommunications applications which require
physical references, the database is indeed memory resident
and ii) The goal of the experiments were to stress on the
concurrency and data contention aspects of our algorithms,
and not the I/O aspects as we mentioned above. We plan
to investigate the performance in a disk-based setting in the
future.
We evaluated the algorithms based mainly on the two per-

formance metrics: i) Throughput and ii) Average Response
Time. Transactions were run until the reorganization oper-
ation completed in the case of IRA and the PQR algorithm.
In all cases, IRA takes longer to complete the reorganiza-
tion than the PQR algorithm. Measuring the throughput
and the response time of the transactions while reorganiza-
tion is being performed is a direct measure of the impact of
these algorithms on concurrent transactions. In the case of
the system where there was no compaction, we ran 10,000
transactions in each thread. Since our experiments were on a
real system, all times are measured as the wall clock elapsed
time.
In the following sections, we report the results of the

experiments in which we varied one parameter while others
were �xed at the default values shown in Table 1. All the
times are in milliseconds and throughput is measured in
transactions per second (tps) unless otherwise mentioned.

5.3.1 MPL

In this section, we evaluate the performance of the algo-
rithms as the MPL is varied. The purpose of these exper-
iments is to examine in detail the di�erence in throughput
for a range of system load.

Figure 6 shows the throughput of the algorithms as the
MPL is varied. The NR system has consistently the best
throughput as would be expected. The throughput of IRA
is very close to the NR system for all the MPL values, while
the throughput of the PQR algorithm is signi�cantly lower.
Note that the throughput of the NR system peaks around

an MPL of 5 since resource contention set in around that
value. Recall that the entire database is memory resident;
therefore CPU gets saturated very soon. The reason the
throughput does not peak at an MPL of one is that logs
have to be 
ushed to disk at commit time; therefore, there is
some CPU I/O parallelism to be exploited. The throughput
of IRA also peaks around the same value for similar reasons.
The throughput of the PQR algorithm peaks much

later, around an MPL value of 30. The reason PQR
algorithm peaks later is it causes severe data contention and
underutilizes the resources at low MPL values. In fact, at
some point of time during the reorganization, even at an
MPL of 30, all threads get blocked by the reorganization
process. To understand this, note that all the external
parents of the objects in the partition are locked. Clearly,
the threads that originate their walk in the partition being
reorganized (there are three of them at an MPL of 30 since
there are 10 partitions), cannot proceed since the persistent
roots of this partition are considered to be external to the
partition and therefore locked. Moreover, some transaction
in the other threads may eventually need to lock one of
the external parents (which could be in any partition).
Thus, over a period of time some transaction of each thread
ends up waiting for the reorganization process in the PQR
algorithm.
The above e�ect will get ampli�ed dramatically in a

system with plenty of resources like a multi-processor
environment. The throughput of NR and IRA would scale
with additional resources as we increase the MPL while the
throughput of PQR would stagnate due to the excessive data
contention which essentially locks out all transactions from
the system.
Figure 7 shows the average response times of the respec-

tive algorithms. The average response times re
ect the
throughput curves. We now analyze the response times of
transactions, at an MPL of 30, where the PQR algorithm
achieves its peak throughput, a bit more carefully.

Throughput Avg Resp. Max Resp. Std. Devn. of
Time (msec) Time (msec) Resp. Times

NR 35.0 819 1503 127
IRA 33.7 861 1935 135
PQR 28.0 1030 100040 4113

Table 2: Analysis of Response Times

Table 2, in addition to the throughput and the average
response time, shows the maximum8 of the response times of
the transactions and the standard deviation of the response
times of the transactions. The standard deviation and the
maximum of the response times of transactions in the NR
system and the system with IRA are very close. This is
a very desirable behavior of a utility, since this implies
that concurrent transactions in e�ect do not see the utility.
Predictability of response times is also very important in real
time systems and IRA scores on this count too. In contrast,
the PQR algorithm a�ects concurrent transactions severely,

8Though, we have shown only the maximum response time, the
trend remains the same even when we consider the 10 highest response
times or the average of the top 10 response times



0

5

10

15

20

25

30

35

40

45

0 10 20 30 40 50 60

T
hr

ou
gh

pu
t (

tp
s)

MPL

PQR
IRA
NR 

Figure 6: MPL scaleup - Throughput

0

500

1000

1500

2000

2500

3000

0 10 20 30 40 50 60

A
ve

ra
ge

 R
es

po
ns

e 
T

im
e 

(m
s)

MPL

PQR
IRA
NR 

Figure 7: MPL scaleup - ART

and in fact, brings the system to a grinding halt, eventually,
as explained above.

5.3.2 Number of Objects in a Partition

In this section, we compare the algorithms when the size
of the partitions is scaled up. Figures 8 and 9 show the
relative performance of the algorithms. As the partition size
increases, the number of objects that need to be relocated
and hence the number of parent pointers that need to be
updated and the number of locks that need to be obtained
increases. Because of this, the reorganization takes a longer
time as partition size increases.
First, we observe from Figure 8 that the throughput is

quite steady9 both in the IRA case and the NR case, as
the number of objects in the partition grows. On the
other hand, the throughput of the PQR algorithm drops
consistently as the number of objects in the partition is
increased. In locking the entire partition, for the duration
of the reorganization, which takes a longer time as partition
size increases, PQR blocks transactions for a longer time.
Thus, it monopolizes system resources for a longer time and
also causes greater wasted work due to aborts (as a result
of timeouts) of transactions.

Coming to the average response time, we can observe from
Figure 9 that the increase in case of PQR is much more
dramatic than that in case of IRA. This can be attributed
again to the increased amount of time transactions have to
wait for the reorganization process to complete.

5.3.3 Update Probability

Next, we studied the e�ects of varying the update probabil-
ity. Figures 10 and 11 show the throughput and the average
response time of transactions as the update probability is
varied. In fact, this experiment is the �nal con�rmation
that the default values chosen by us were more than fair to
the PQR algorithm. MPL values lower than 30 (running ex-
periments beyond an MPL of 30 is pointless since we are ex-
amining areas of very high contention which is not re
ective
of normal processing), partition sizes larger than 4080 (with
an average object size of 100 bytes a partition is around
400K which is very small), update probability smaller than
0.5 (which is much more normal) would only skew the results
even more in favor of IRA.

9There is a very small variation of less than 2% which is within
the experimental noise since we were measuring wall clock time on a
real system

The PQR algorithm is relatively less a�ected by an
increase in update probability since the data contention
is severe even at low update probability. Therefore, an
incremental increase in update probability has a much
higher impact on IRA and NR. The performance of PQR
algorithm still remains lower than IRA even for very high
update probability values.

5.3.4 Other Experiments

We also examined the performance of the algorithms as
the other performance metrics like the gluefactor, the
transaction path length and the number of partitions were
varied. Due to space constraints we skip the details of these
experiments and refer the reader to the full version of the
paper [LRSS99].
Finally, we repeated all our experiments while measuring

throughput and response time of the PQR algorithm for the
duration of IRA rather than just the duration of the PQR
algorithm. The motivation for this study is the following
observation: While it is true that the PQR algorithm
a�ects concurrent transactions severely for the duration
of reorganization, it brings back normalcy much faster.
Thus, for the extra duration that IRA requires to complete
reorganization, a system with PQR algorithm would have
throughput as though there were no reorganization. Thus,
a natural question is what is the loss in throughput of IRA
compared to PQR if throughput is measured for the duration
of IRA for both algorithms. We found the di�erence in
throughputs never exceeded 3%. Note that the throughput
of PQR can never exceed that of NR and since the di�erence
between IRA and NR was never big in the �rst place, the
di�erence between IRA and PQR could never have been big.

6 Related work

The only prior work [KW93] we know of for on-line
reorganization of objects with physical references requires
an action-quiescent state during which all objects that are
in the memory of active transactions and persistent roots
are copied into a new space. This could cause severe
intereference to concurrent transactions. Apart from the
above, their model is very di�erent from ours and requires
low level support from the hardware and the operating
system. For example, they require, that they be able
to change references in the registers and stacks of active
transactions and trap certain pointer dereferences using
memory protection. Finally, they use forwarding addresses,
which may cause an extra I/O and require complicated



20

22

24

26

28

30

32

34

36

1000 2000 3000 4000 5000 6000 7000 8000 9000

T
hr

ou
gh

pu
t (

tp
s)

Paritition Size (#objects)

PQR
IRA
NR

Figure 8: Partition size scaleup - Throughput

700

800

900

1000

1100

1200

1300

1400

1000 2000 3000 4000 5000 6000 7000 8000 9000

A
ve

ra
ge

 R
es

po
ns

e 
T

im
e 

(m
s)

Paritition Size (#objects)

PQR
IRA
NR

Figure 9: Partition size scaleup - ART

20

25

30

35

40

45

50

55

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

T
hr

ou
gh

pu
t (

tp
s)

Update Probability

PQR
IRA
NR

Figure 10: Update Probability - Throughput

500

600

700

800

900

1000

1100

1200

1300

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

A
ve

ra
ge

 R
es

po
ns

e 
T

im
e 

(m
s)

Update Probability

PQR
IRA
NR

Figure 11: Update Probability - ART

recovery mechanisms to ensure consistency of the disk
version of the database.
On-line reorganization is a well studied topic in relational

databases [AON96, Omi96, SD92, ZS96a, ZS96b, ZS98]. In
a relational database, references to a record are restricted to
be from the indexes on the table. Thus, discovering the set
of references to a record is a much simpler task in relational
databases. Research into reorganization in relational
databases has therefore concentrated on minimizing the
number of locks being held and the amount of I/O necessary
for reorganization.
The motivation for the problem of reorganization of

object-oriented databases when references are physical arises
from the fact that logical references impose an overhead on
every access of the object. In [EGK95], three alternatives
for the implementation of logical object identi�ers are
compared. The best technique based on direct mapping,
often requires one extra I/O per object access which is
unacceptable in situations where low response times are
desired. Moreover, the very motivation for the work
in [EGK95] is the inability to perform reorganization
e�ciently when references are physical which is exactly
the focus of this paper. Finally, while it is true that if
references are physical, quite a few object references have to
be changed during the reorganization, it is important to note
that reorganization is an infrequent occurrence, that can be
performed at lean times, whereas, using a logical identi�er
would mean the price of the extra level of indirection is paid
for every access.

There are several problems other than reorganization with
an on-line 
avor. On-line index construction algorithms
[SC92b, MN92] build an index on a relation while the
relation is being updated. The concurrent updates are
collected in a side �le and applied later. The entire relation
is locked for a very short duration to enable the on-line
operation to catch up. This idea was also extended to the
execution of large queries [SC92a].

The problem most related to on-line reorganization in
object-oriented databases is on-line garbage collection [YNY94,
AFG95, ARS+97] in object-oriented databases. The system
model is very similar in both the problems. There are two
broad classes of garbage collection algorithms. The �rst con-
sists of algorithms that migrate live objects elsewhere. The
partitioned copying collector algorithm of [YNY94], where
all the live objects of a partition are migrated out of the
partition, is an example. These algorithms however assume
object references are logical. Migrating objects when refer-
ences are physical is much more di�cult since it requires the
references in all parents to be updated correctly. The focus
of this paper is exactly on this problem. Since, our reorgani-
zation algorithm also detects all live objects in a partition,
it can easily be augmented to copy all objects out of the
partition, similar to the partitioned copying collector algo-
rithm. However, our reorganization algorithm works cor-
rectly even when references are physical. The second class
consists of algorithms that do not migrate live objects but
perform garbage collection in place. Reference Counting
and Mark and Sweep based algorithms belong to this class.



[AFG95] is a partitioned mark and sweep algorithm while
[ARS+97] is a combination of reference counting and mark
and sweep. These algorithms can handle physical references
but do not perform any reorganization. Therefore, they do
not perform the crucial step of �nding and locking all par-
ents of an object. In fact, our algorithm holds locks on
atmost two distinct objects at any point of time and in con-
trast to [YNY94, AFG95, ARS+97], does not require trans-
actions to follow strict 2PL. In summary, our algorithm can
perform garbage collection and reorganization and yet allow
references to be physical, an ability that to the best of our
knowledge, no previous algorithm in literature possesses.
The notion of TRT has been used in previous work on

garbage collection and reorganization in relational databases
(called side �les in this context). However, the space
optimization measures we present in Section 4.5 are novel
to this paper. The orthogonal issue of how to choose the
partition size to minimize the overhead of the partition
traversal has been addressed in [CWZ94].

7 Conclusions and Future Work

We have considered the problem of on-line reorganization
in an object oriented database where object references are
physical, and presented the IRA algorithm, and several
variants of it to improve concurrency. One of the variants
holds locks on only two distinct objects at any point of
time, and does not require transactions to follow strict
2PL. The experiments we conducted con�rmed that the IRA
algorithm interferes very little with concurrently executing
transactions. Thus, for database systems that employ
physical object references for higher performance (e.g.,
main-memory database systems), IRA ensures that they do
not pay a very high penalty during object reorganization.
In the future, we plan to address the issue of improving

the I/O e�ciency of the reorganization process. Even if
the partition being reorganized �ts in memory, the external
parents of the objects in the partition may not. An object
external to the partition being reorganized may have to be
fetched multiple times as it may be the parent of multiple
objects in the partition. A natural question that arises is
in what order to we migrate objects so that the number of
I/O's required is minimized. In a main memory database,
the same order could be relevant since it may minimize the
number of times locks have to be obtained on an external
object. In the near future, we plan to carry out a detailed
performance study of our algorithms in a disk-based setting.

References
[AFG95] L. Amsaleg, M. Franklin, and O. Gruber. E�cient

incremental garbage collection for client-server object
database systems. In Proceedings of the 21st VLDB

Conference, September 1995.

[AON96] K. Achyutuni, E. Omiecinski, and S. Navathe. Two tech-
niques for on-line index modi�cation in shared nothing
parallel databases. In Proceedings of ACM SIGMOD

Conference, pages 125{136, Montreal, June 1996.

[ARS+97] S. Ashwin, P. Roy, S. Seshadri, A. Silberschatz, and
S. Sudarshan. Garbage collection in object oriented
databases using transactional cyclic reference counting.
In Proceedings of the 23rd VLDB Conference, Athens,
Greece, August 1997.

[BKKK87] J. Banerjee, W. Kim, H. Kim, and H. F. Korth.
Semantics and implementation of schema evolution in
object-oriented databases. In Proceedings of ACM

SIGMOD Conference, pages 311{322, 1987.

[BLR+97] P. Bohannon, D. Lieuwen, R. Rastogi, S. Seshadri,
A. Silberschatz, and S. Sudarshan. The architecture of
the dali storage manager. Journal of Multi-Media Tools

and Applications, 4(2), March 1997.

[CWZ94] J.E. Cook, A.L. Wolf, and B.G. Zorn. Partition selection
policies in object database garbage collection. In Pro-

ceedings of ACM SIGMOD Conference, pages 371{382,
Minneapolis, USA, May 1994.

[Edi96] B. Salzberg (Special Issue Editor). Special issue on online
reorganization. IEEE Data Engineering Bulletin, 19(2),
June 1996.

[EGK95] A. Eickler, C. A. Gerlhof, and D. Kossman. A perfor-
mance evaluation of oid mapping techniques. In Proceed-
ings of the 21st VLDB Conference, September 1995.

[JLR+94] H.V. Jagadish, D. Lieuwen, R. Rastogi, A. Silberschatz,
and S. Sudarshan. Dali: A high performance main-
memory storage manager. In Proceedings of the 20th

VLDB Conference, 1994.

[KW93] E.K. Kolodner and W. E. Weihl. Atomic incremental
garbage collection and recovery of a large stable heap. In
Proceedings of ACM SIGMOD Conference, pages 177{
186, Washington, DC, May 1993.

[LRSS99] M.K. Lakhamraju, R. Rastogi, S. Seshadri, and S. Su-
darshan. On-line reorganization of objects. In Technical

Report, Bell-labs, February 1999.

[MN92] C. Mohan and I. Narang. Algorithms for creating very
large tables without quiescing updates. In Proceedings of
ACM SIGMOD Conference, pages 361{370, San Diego,
USA, May 1992.

[NOPH92] S. Nettles, J. O'Toole, D. Pierce, and N. Haines.
Replication-based incremental copying collection. In In-

ternational Workshop on Memory Management, pages
357{364, St. Malo, France, September 1992.

[Omi96] E. Omiecinski. Concurrent �le reorganization: Cluster-
ing, conversion and maintenance. IEEE Data Engineer-

ing Bulletin, 19(2), 1996.

[SC92a] V. Srinivasan and M. Carey. Compensation based on-
line query processing. In Proceedings of ACM SIGMOD

Conference, San Diego, CA, 1992.

[SC92b] V. Srinivasan and M. Carey. Performance of on-line
index construction algorithms. In 3rd International

Conferance on Extending Database Technology, pages
292{309, Vienna, Austria, March 1992.

[SD92] B. Salzberg and A. Dimock. Principles of transaction-
based on-line reorganization. In Proceedings of 18th

VLDB Conference, pages 511{520, 1992.

[TN91] M. M. Tsangaris and J. F. Naughton. A stochastic
approach for clustering in object bases. In Proceedings of
the ACM SIGMOD Conference, Denver, Colorado, May
1991.

[WMK94] Jr W.J. Mciver and R. King. Self-adaptive, on-line reclus-
tering of complex object data. In Proceedings of ACM

SIGMOD Conference, pages 407{418,Minneapolis, USA,
May 1994.

[YNY94] V. Yong, J. Naughton, and J. Yu. Storage reclama-
tion and reorganization in client-server persistent object
stores. In Proceedings of the Data Engineering Interna-
tional Conference, pages 120{133, February 1994.

[ZS96a] C. Zou and B. Salzberg. On-line reorganization of

sparesely-populated B+-trees. In Proceedings of ACM

SIGMOD Conference, pages 115{124, Montreal, June
1996.

[ZS96b] C. Zou and B. Salzberg. Towards e�cient online
database reorganization. IEEE Data Engineering Bul-

letin, 19(2):33{40, June 1996.

[ZS98] C. Zou and B. Salzberg. Safely and e�ciently updating
references during on-line reorganization. In Internation

Conference on Very Large Databases, New York, USA,
August 1998.


