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Abstract

Deductive databases extend the power of traditional database query languages such as SQL by allowing
recursive definitions of predicates. Bottom-up query evaluation is an important query evaluation mechanism
for deductive databases and logic programs. In recent years, deductive databases have been extended by
allowing facts to contain complex terms that can possibly include variables, and by allowing the use of
aggregate operations on sets of answers. This thesis addresses optimization issues related to these extensions.

In the first part of the thesis we compare bottom-up and Prolog query evaluation. We show that using
existing techniques, bottom-up evaluation performs no more “actions” than (a model of) Prolog for a re-
stricted class of programs, but this does not hold for all programs. We develop rewrite-based optimization
techniques that help us extend the above results to all logic programs. We then develop novel techniques
for evaluating these rewritten programs. We compare bottom-up query evaluation (using our rewrite op-
timizations along with our evaluation optimization) with Prolog query evaluation, and show the following.
Suppose we are given a program; if (our model of) Prolog evaluation of a query takes time ¢ on a database,
bottom-up query evaluation on the database, without subsumption checking, takes time O(t - loglogt). For
a restricted class of programs, bottom-up query evaluation on the database, with subsumption checking,
takes time at worst O(¢). (In both cases, the time taken by bottom-up evaluation also depends on the size
of the program, which we assume to be small). On the other hand, for many programs, Prolog is arbitrarily
slower than bottom-up evaluation. Our optimization techniques are of importance in evaluating programs
that generate facts containing variables.

In the second part of the thesis, we develop optimizations related to the use of aggregate operations
such as min or max. We show how to view several such operations as “selections”, and how to propagate
these selections into programs. We demonstrate the power and utility of the optimization techniques, using

programs for problems such as computing shortest paths and critical paths.
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Chapter 1

Introduction

Deductive databases extend the power of traditional databases by allowing derived relations (views) to be
defined recursively using logic programs. In the area of query evaluation for logic programs, the de facto
standard is Prolog, which is a top-down evaluation strategy. Bottom-up query evaluation has advantages
over Prolog with respect to completeness! and 10 costs [BR86, UlI89b]. (In our model, bottom-up query
evaluation consists of Magic rewriting of the program and query [BMSU86, BR87b, Ram88] (see Section 2.2.1)
followed by fixpoint evaluation of the rewritten program [BR87a, Ban85] (see Section 2.2.3).)

In recent years, deductive databases have been extended by allowing facts to contain complex terms that
can possibly include variables, and by allowing the use of aggregate operations on sets of answers. This
thesis addresses optimization issues related to these extensions.

This thesis has two main parts. In the first part, we consider the question of time-complexity of bottom-up
evaluation vs. Prolog evaluation for logic programs that can generate complex terms that may contain vari-
ables. Motivated by this comparison, we develop several rewrite-based optimization techniques for bottom-up
evaluation. We summarize the contributions of this part of the thesis in Section 1.2. In the second part of the
thesis, we present optimization techniques for an extension of logic programs that allows the use of aggregate

operations on sets of facts. We summarize the contributions of this part of the thesis in Section 1.3.

1.1 Memoing vs. Non-Memoing Query Evaluation Techniques

A memoing evaluation technique for definite clause programs is one that stores subgoals and answers that
are generated during the evaluation. Bottom-up query evaluation is an example of a memoing evaluation
technique. The term top-down evaluation is used for evaluation techniques based on SLD resolution and
its variants (e.g. SLDNF, SLD-AL, OLDT, etc. — see, e.g., [L1o87, War92]).2 There are a number of

memoing top-down evaluation techniques such as the Query-Subquery (QSQ) approach and its extensions

ICompleteness of evaluation implies that given any answer to the query, there is a finite point of time at which evaluation
generates the answer; there may be an infinite number of answers, and evaluation may not terminate. Bottom-up evaluation is
complete for (finite) definite clause programs with a finite database.

2This definition is not very precise. Bottom-up evaluation using Magic rewriting can be viewed as a compiled form of OLDT
resolution, although there are some differences. However, the terms bottom-up and top-down have been used historically to
refer to these two categories of evaluation techniques.
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[Vie86, Vie88], and Extension Tables [Die87]. SLD-AL resolution, and OLDT resolution are theoretical
models of top-down evaluation techniques that perform memoing of facts.

The de facto standard for evaluating queries on logic programs is Prolog, and Prolog does not perform
memoing as part of the built-in evaluation mechanism. (However, ad hoc use of memoing is common in
programs written in Prolog.)

Natural questions that arise are (1) “how do memoing evaluation techniques compare with non-memoing
evaluation techniques?”, and (2) “how do bottom-up evaluation techniques compare with top-down evalua-
tion techniques?”, To make comparison (1) precise, we have to talk of a specific memoing evaluation technique
and a specific non-memoing evaluation technique. To make (2) precise, we have to talk of a specific top-down
evaluation technique, and a specific model for bottom-up evaluation.

Initial comparisons of bottom-up evaluation and memoing top-down evaluation techniques were based
on the number of distinct facts derived by the different techniques. Thus, Ramakrishnan [Ram88, Ram90]
presents a class of evaluations and shows that within this class bottom-up fixpoint evaluation of a program
rewritten using Magic Templates computes an optimal number of facts. Seki [Sek89] presents a direct
comparison between the set of facts computed using Alexander Templates rewriting, and using SLD-AL
resolution. Bry [Bry90] shows that several top-down and bottom-up evaluation techniques can be viewed
as specializations of a technique called the Backward Fixpoint Procedure; all these techniques essentially
compute the same set of facts and generate the same subgoals. These results ignore the number of times
facts are generated, ignore the actual time cost of evaluation, and ignore optimizations such as tail-recursion
optimization (Section 2.3) that are routinely performed by Prolog systems.

There is a considerable amount of similarity between memoing top-down evaluation techniques and
bottom-up evaluation; we do not explore the differences in this thesis. We concentrate instead on the
differences between memoing and non-memoing evaluation techniques. We use bottom-up evaluation as the
canonical memoing evaluation technique in this thesis. We also use Prolog as the canonical non-memoing
evaluation technique.

Bottom-up query evaluation using Magic rewriting (as also several of the memoing top-down evaluation
techniques mentioned above) has three significant advantages over non-memoing techniques such as Prolog:
(1) Bottom-up evaluation using Magic Templates rewriting is complete for definite clause programs, and
the declarative least Herbrand model semantics is always enumerated for definite clause programs. (2)
Redundant derivations are avoided through memoing, leading to significant improvements in time complexity
for programs in which goals or facts can be derived in many ways. (3) As a consequence of (1), no operational
guarantees need be made, thereby making possible a number of semantic optimizations. The reader is referred
to [RSS92c¢] for a brief survey of several such semantic optimization techniques.

On the other hand, some operations may be cheaper if facts are not memoed. Therefore, it is important
to perform a comparison of bottom-up and non-memoing top-down evaluation techniques in terms of the
cost of evaluation.

Ullman ([Ul189a, Ull89b]) has compared bottom-up evaluation with top-down evaluation for the class of
range-restricted Datalog programs (programs that generate only ground facts (i.e., facts that do not contain
variables) and do not use function symbols). His results show that bottom-up evaluation using Magic Sets

along with rectification (MSR) rewriting (BU-MSR evaluation for short) has time complexity (i.e., ignoring



constant costs) less than or equal to Queue-based Rule Goal Tree (QRGT) evaluation (a top-down query
evaluation strategy).

There are several limitations to Ullman’s result. First, the comparison is only for range-restricted Datalog.
Some of the assumptions made in the comparison do not hold if non-ground facts (i.e., facts that contain
variables) are generated. Second, Ullman’s comparison ignores optimizations that are routinely performed
on Prolog programs such as tail-recursion optimization (Section 2.3). Third, the comparison is with respect
to a particular top-down evaluation technique, and does not extend to Prolog, which is the de facto standard
for evaluating logic programs. Fourth, the comparisons assume that all answers are required, and do not
provide insight for the case that only one answer is required (although there is no change in the worst case
comparison).

In this thesis, we address the first three problems above. We compare bottom-up evaluation with Prolog
evaluation, in terms of time complexity of query evaluation, for the class of all definite clause programs
(which can possibly generate non-ground facts).

The fourth problem, namely the case that only one answer is required, is harder. In particular, the
depth-first search strategy used by Prolog has advantages over the breadth-first search strategy used by
bottom-up evaluation with Magic rewriting in some contexts where not all answers to a query are desired.
There have been some attempts to provide the benefits of depth-first search in the context of bottom-up

evaluation; we mention these, and discuss open problems in Chapter 7.

1.2 Bottom-Up vs. Prolog

An important question in the area of logic programming and deductive databases is “How does bottom-up
query evaluation compare with Prolog query evaluation in terms of time complexity?”.

There are programs for which bottom-up query evaluation is considerably faster than Prolog. As an
example, consider the path program with a query, shown below. We assume we are given a finite set of facts
for edge, although we do not show them below. On this program Prolog loops for ever if the edge relation

has a cycle, whereas bottom-up evaluation terminates, generating all answers.

path(X,Y) : — edge(X,Y).
path(X,Y) : — edge(X, Z),path(Z,Y).
Query: 7-path(X,Y).

However, there are programs for which the time complexity of Prolog evaluation is considerably less than
that of bottom-up evaluation using current techniques. In the first part of the thesis, we discuss the reasons
for the inefficiency, and present optimization techniques that help us show that bottom-up evaluation can
be made almost as fast as Prolog evaluation, in the sense of time complexity, over all programs. (The work
in this thesis, like that of Ullman [Ull89a], ignores IO costs, and assumes that all answers are generated.)
For the purpose of comparison, we use a model of Prolog evaluation that we call Prolog* evaluation; we

believe that this model reflects current Prolog implementations fairly accurately.?

30ur model of Prolog evaluation incorporates tail-recursion optimization, but assumes that intelligent backtracking (see,
e.g., [CD85]) is not used. It also assumes that all answers are computed.



A close look shows several problems in making bottom-up evaluation comparable to or better than
Prolog for all programs. Magic Templates rewriting [Ram88] and Alexander Templates [Sek89] are the main
bottom-up evaluation techniques that deal with general logic programs. (Ullman’s MSR rewriting does not
deal with general logic programs, which can generate facts containing complex terms built from function
symbols, constants and variables.) Let us denote bottom-up query evaluation using Magic Templates (resp.
Alexander Templates) as BU-MT evaluation (resp. BU-AT evaluation). There are three problems with both

the above evaluation techniques when non-ground facts are generated.

1. Both techniques can make considerably more inferences than Prolog, even for Datalog programs, even
ignoring the effect of optimization such as tail-recursion optimization. The basic problem was noted

by Codish, Dams and Yardeni [CDY90], but is not widely recognized. Consider the following program

R1: q:— p(a),p(X),r(X).
R2: p(X).
Query: ?7-q.

On this program, the only subgoal generated for the predicate r by Prolog evaluation is 77(X).

Bottom-up evaluation using Magic Templates rewriting generates an answer fact p(a), and uses this
with literal p(X) to generate a query 7r(a). A fact p(X) is generated later, and p(a) is found to be
subsumed, but the query ?r(a) is generated before the subsumption is detected. (The query ?r(X) is
generated after the answer p(X) is generated.) Thus bottom-up evaluation can generate subgoals (and

generate corresponding answers) that Prolog evaluation avoids.

We extend this observation in Example 3.1.2, and illustrate how it can lead to BU-MT query evaluation
performing asymptotically worse than Prolog. We formalize the problem through the definition of mgu-
subgoals and mgu-answers (Section 3.1); the problem is that Magic Templates rewriting can generate

answers (and subgoals) that are not mgu-answers (resp. mgu-subgoals).

Our contribution in this respect is as follows:

o We refine Magic Templates rewriting to avoid the problems noted by Codish et al.; we call this
refinement MGU Magic Templates (MGU MT) rewriting. Bottom-up query evaluation using
MGU MT rewriting generates only mgu-subgoals and mgu-answers. This refinement is described

in Section 3.3.

2. Prolog performs tail-recursion optimization, which we describe in Section 2.3. Even for safe Datalog
programs, tail-recursion optimization can reduce the number of inferences made by Prolog evaluation
to much less than the inferences made by Ullman’s BU-MSR evaluation technique, or by BU-MT
evaluation. Example 2.3.1 illustrates this problem. Ross [Ros91] presents a variant of Magic Templates

to incorporate tail-recursion optimization (we call Ross’ rewriting MTTR rewriting).

MTTR rewriting suffers from the same problems with subsumed answers (described above) as do Magic

Templates and Alexander Templates rewriting. Our contributions in this context are as follows:

4To keep the example simple, we do not have any rules defining r, and hence the subgoal fails.



e We use the ideas behind MGU MT rewriting to refine Ross’ MTTR rewriting; we call this refine-
ment MGU MTTR rewriting. MGU MTTR rewriting is described in Section 3.4. This refinement
is important since it enables us to account for tail-recursion optimization while also dealing with
the problem of using non-mgu-answers in derivations.

e We show (in Section 4.3) that bottom-up evaluation using MGU MTTR rewriting performs no
more “actions” than a small constant number of times the number of “actions” performed by
Prolog* evaluation of the query on the program. In many cases bottom-up evaluation performs

far fewer actions than the number of actions performed by Prolog* evaluation.

3. The cost per inference in bottom-up evaluation can be more than for Prolog evaluation. For instance,
queries on the well-known predicate append run on Prolog in time linear in the size of the lists in the
query. If the query contains lists with variables, an unoptimized query evaluation using MT rewriting
(or any of its variants mentioned above such as MGU MT rewriting or MGU MTTR rewriting) takes
time quadratic in the size of the lists (although the number of inferences does not change). The basic
reason is that bottom-up evaluation of the Magic rewritten program performs some unifications that
Prolog evaluation does not perform, when answers are returned for a query. We call such unification
answer-return unifications. Unification is in general linear in the size of the terms to be unified, and

can be costly for large non-ground terms.® This is discussed in Example 5.1.1.

It is important that bottom-up evaluation of programs that generate non-ground facts be done effi-
ciently. Non-ground data-structures such as difference lists (Example 5.1.1) are important in some
applications, and support some operations (such as list append) more efficiently than ground data-
structures in the context of Prolog. Many applications that benefit from bottom-up evaluation would
also benefit from the use of non-ground data-structures, if bottom-up evaluation using non-ground
facts can be done efficiently. Example 5.9.2 shows a shortest-path program that keeps track of the
actual path that is computed, and benefits from using a difference list representation. Chart parsing of
Definite Clause Grammars is another area where non-ground data-structures and bottom-up evaluation

are both useful.

Our main contribution in this area is as follows:

e We present (in Chapter 5) a version of bottom-up evaluation that incorporates several optimiza-
tions that are applicable to programs that have been rewritten using MGU MTTR (or MGU MT)
rewriting. These optimizations are able to reduce the cost of answer-return unifications performed
by bottom-up evaluation to nearly a constant per unification. These optimizations are important
since we are also able to show the following important result:

Suppose we are given a logic program and a query. If the time taken by Prolog* to evaluate the
query % on a given database is ¢, then evaluating the query using MGU MTTR rewriting and the
above mentioned optimizations, on the given database, takes time O(¢-loglogt), provided that we

do not check for subsumption.” (The size of the program is assumed to be fixed, and is not taken

5Unification can be done in constant time for ground terms in certain cases, by using a technique called hash-consing [Got74,
SG76]. This requires that all facts generated by the program be ground, and is not applicable to non-ground terms.

6Where evaluating the query is interpreted as generating all answers to the query.

"Recall that Ullman’s result, while more limited in several respects, did account for the cost of subsumption checking in
bottom-up evaluation. We discuss the issue of subsumption checking later in this section.



into account in the time complexity measure.) Subsumption-checking has a cost, but may also
have significant benefits if subgoals are repeated; it can be done where desired. The above result
provides an upper bound on how much worse bottom-up evaluation can be compared to Prolog*
evaluation. For the other direction, there are programs where Prolog* evaluation is arbitrarily

worse than bottom-up evaluation with subsumption-checking.

Equally importantly, our optimization techniques allow efficient evaluation of programs that gen-
erate non-ground facts, and must be evaluated with memoing (for instance, the program in Ex-
ample 5.9.2).

We have also developed an efficient evaluation technique for a restricted class of programs [SR92b].
Using this evaluation technique, we have shown that for a class of programs that properly contains safe
Datalog, the time complexity of optimized bottom-up query evaluation with MTTR rewriting is never
more than that of Prolog* evaluation, even taking the cost of subsumption checking into account.®
This result extends those of Ullman [Ull89a] since it handles a larger class of programs. We discuss

these results briefly in Section 5.10.

What these results show is that we can optimize bottom-up evaluation so that its time complexity is at
worst marginally greater than that of Prolog* evaluation, and at best much better.

There are a few points that must be kept in mind when interpreting these results. First, the results
leave open the question of constants. We expect that for purely in-memory implementations, the constant
costs will favor Prolog for programs that do not perform duplicate computation, and are not set-oriented.
For data-intensive programs as well as programs that repeat computations (such as programs for dynamic
programming problems), bottom-up evaluation is likely to beat Prolog evaluation. However, such questions
can only be settled by actual optimized implementations. Second, the results assume that all answers to the
query are required; the case that only some answers are required is not addressed. (See Chapter 7 for a brief
discussion of this case). Third, these results do not incorporate space complexity. However, independent
of the time and space costs of evaluation, bottom-up evaluation, even without subsumption-checking, is

complete, unlike Prolog — a desirable property in many circumstances.

1.3 Optimizations Related to Aggregate Operations

Database query languages such as SQL provide aggregation operations, that let one compute aggregate
values over sets of answers. For example, SQL provides the group-by construct that can be used along with a
variety of aggregate operations. The use of aggregation with recursive queries has been considered by several
researchers (e.g., [BNR*87, MPR90]).

In Chapter 6 we develop an optimization technique for bottom-up evaluation, using a notion of relevance of
facts to some aggregate operations such as min and maz. Our notion of relevance can be seen as an extension
of the notion of relevance used in optimizations such as Magic sets rewriting [BMSU86, BR87b, Ram88].
One can think of the aggregate operations as providing a form of “selection” on generated facts; we refer to

such selections as “aggregate selections”.

8 As before, we assume that all answers are generated by Prolog* evaluation.



The optimization technique consists of two parts — a rewriting technique that “pushes” aggregate se-
lections into rules in the program, and an evaluation technique that makes use of aggregate selections when
evaluating the rewritten program. The combined technique is able to detect many facts as irrelevant, and
avoids using them to make derivations. As an example of the power of our techniques, we consider a naive
program to find shortest paths. The program first computes all paths, and then selects shortest paths. The
rewriting technique deduces that for any pair of nodes, any path between them that is not shortest is irrele-
vant for computing shortest paths. Thus the “optimality principle” is deduced automatically. The evaluation
technique when applied to this rewritten program is essentially an extension of Dijkstra’s algorithm.

The evaluation techniques developed in this section of the thesis are orthogonal to the optimization
techniques developed in the first part of the thesis. We present an example (Example 5.9.2) where both

kinds of optimizations are very useful.

1.4 Organization of the Thesis

This thesis is organized as follows. In Chapter 2, we present background material. In Chapters 3, 4, and 5
we develop our main result comparing optimized bottom-up evaluation and Prolog evaluation. In Chapter 3,
we present rewriting refinements to Magic Templates rewriting and to MTTR rewriting, to avoid problems
due to subsumed answers. In Chapter 4 we present a model of Prolog* evaluation and a model of bottom-up
fixpoint evaluation. We then present our results comparing Prolog* evaluation with a fixpoint evaluation of
the MGU MTTR rewritten program, at the level of number of inferences. In Chapter 5 we consider the cost
of derivations, and present an optimized fixpoint evaluation technique, which we call Opt-NG-SN evaluation.
In Section 5.7 we present our results comparing the time cost of query evaluation using Prolog* evaluation
with the time cost of Opt-NG-SN evaluation of the MGU MTTR rewritten program. In Chapter 6 we

describe our rewriting and evaluation techniques for programs that use aggregate operations.



Chapter 2

Background Material

2.1 Notation and Preliminary Definitions

The language used in this thesis is that of Horn logic (see, e.g., [L1087]). In this section we present some

basic definitions for the convenience of the reader.

2.1.1 First Order Languages

A first-order language has a countably infinite set of variables and countable sets of function and predicate
symbols, these sets being mutually disjoint. It is assumed, without loss of generality, that with each function
symbol' fand each predicate symbol p, is associated a unique natural number n, referred to as the arity of
the symbol; f and p are then said to be n-ary symbols. A 0-ary function symbol is referred to as a constant.
A term in a first order language is a variable, a constant, or a compound term f(¢y,...,t,) where fis an
n-ary function symbol and the t; are terms. A tuple of terms is sometimes denoted simply by the use of an
overbar, e.g., . Compound terms are also referred to as structured terms.

If p is a predicate symbol with arity n, and t1,...,t, are terms, then p(t1,...,t,) is an atom, and
=p(t1,...,t,) is the negation of an atom. A literal is an atom or the negation of an atom. A positive literal
is an atom, and a negative literal is a negation of an atom.

A simple expression is either a term or an atom. An expression is either a simple expression, a literal,
or a disjunction of literals. An expression is said to be ground if it contains no variables, and non-ground
otherwise. A substitution 6 is a finite set of the form {vy /t1,...,v,/t,}, where each v; is a variable, each ¢;
is a term distinct from v;, and the variables vy, ..., v, are distinct. Each element v;/#; is called a binding for
v;. 0 is called a ground substitution if all the ¢; are ground. Substitutions are denoted by lower case Greek
letters 6, o, ¢, etc.

Let 6 = {v1/t1,...,v,/tn} be a substitution, and F an expression. Then E[f], the instance of E by 8, is
the expression obtained from E by simultaneously replacing each occurrence of the variable v; by the term
t; i=1,...,n). I S={E,...,E,} is a finite set of expressions, and # a substitution, then S[f] denotes

the set {E1[6],. .., E,[0]}. We sometimes omit the [ |, and write E[f] as Ef.

LFunction symbols are also referred to as uninterpreted function symbols.



Let 0 = {u1/s1,...,um/sm} and o = {vy [t1,...,v,/tn} be substitutions. Then the composition o] of

6 and o is the substitution obtained from the set

{ui/s1[o], ... um/smlo],v1/t1, ..., on/tn}

by deleting any bindings u;/s;[o] for which u; = s;[o] and deleting any binding v;/¢; for which v; €
{ur, ..., um}.

For example, the composition of substitutions {z/a,y/f(Z),t/x} and {z/c,r/d} is the substitution
{2/a,y/ £(2),t/e,r/d).

Let E and F be expressions. We say that E and F' are variants if there exist substitutions 8 and o such
that E = F[f] and F = E[o]. We also say that F is a variant of F, or F' is a variant of E. Let E be an
expression, and V' be the set of all variables occurring in E. A renaming substitution for E is a substitution

{z1/y1,...,Zn/Yn} such that {z1,...,z,} CV, the y; are all distinct variables, and

(V\{z1,...,z2}) N{Yy1, ... Yn} = ¢

Expressions E and F are variants iff there is a renaming substitution 6 for F, such that E = F[6)].

For example, {z/y,y/z, z/w}, where x,y, z and w are variables, is a renaming substitution for an expres-
sion that does not contain the variable w. But if an expression does contain w, z and w are mapped to w
by this substitution. We cannot distinguish between them after applying the substitution, and hence there
cannot be an inverse substitution as required in the definition of variants.

A substitution o is more general than a substitution § if there is a substitution ¢ such that 8 = o[¢p].
Two simple expressions t; and ¢, are said to be unifiable if there is a substitution o such that t;[o] = t2]0].
o is said to be a unifier of t; and t5. A unifier # of simple expressions t; and ¢, is said to be a most general
unifier of t; and t, if, for each unifier o of ¢; and ¢, there exists a substitution v such that o = 4[y]. If two
simple expressions have a unifier, they have a most general unifier that is unique up to renaming of variables.
Given two simple expressions ¢; and to, MGU (t1,t2) denotes the set of most general unifiers of ¢1 and ¢2;
all the elements of this set are equivalent up to renaming. We let mgu(t1,¢2) denote an arbitrary element
of MGU ((t1,t2).

For example, given terms f(z,y) and f(a, g(z)), where z,y, z are variables, the substitution {z/a,y/g(b)}

is a unifier, while {z/a,y/g(2)} is a most general unifier.
2.1.2 Definite Clause Programs
A clause is a formula of the form

VX1,... VX4 (L1 V...V Ly)

where Ly, ..., L, are literals, and Xy, ..., X, are all the variables occurring in L1 V...V Ly,. A Horn clause
is a clause with at most one positive literal. A Horn clause with exactly one positive literal is referred to
as a definite clause. Following the syntax of Edinburgh Prolog, definite clauses (usually referred to as rules)

are written as

p:i—aqi;-...qn-



where p is the positive literal and —qy, ..., —¢, are the negative literals in the definite clause. Let the variables
in the rule be denoted by X. Then the rule is read declaratively as VX (q1 A g2 A ... A g, — p). The positive

literal in a definite clause is its head, and the remaining literals, if any, constitute its body.? The notation

R:p:—q1,...,qn-

denotes a rule with a name R. We use the name to refer to the rule. A fact is a rule with empty body.

A predicate definition consists of a set of definite clauses, whose heads all have the same predicate symbol.
A definite clause program is a finite set of definite clauses. A goal is a negative literal, and is usually written
as ?p(ti,...,t,).> We also refer to a goal as a subgoal or a query.

We use the convention that names of variables begin with upper case letters, while names of non-variable
(i.e., function and predicate) symbols begin with lower case letters. We use the following special notation
for lists. The empty list is a constant symbol [ |. A list is either an empty list, or cons(h,t) where h and ¢
are terms. We use the special notation [h|t] to denote cons(h,t). We refer to h as the head of the list and
t as the tail of the list. We use the notation [h1, ho, ..., hn|t] to denote the list [h1|[ha] ... [hn=1][halt] - - ]-

Further, [hy, ha, ..., hy,] denotes [hy, ha, ..., byl ]]-

2.1.3 Models of Programs

A universe is a set of elements. In order to give a semantics for a definite clause program, we have to first
choose a universe for the program. Given a first order language L, the Herbrand universe Uy, of L is the
set of all ground terms in the language. (In case L has no constants, we add some constant, say, a, to form
ground terms.) The Herbrand base By, for L is the set of all ground atoms in the language.

An interpretation I of a definite clause program maps each function symbol of arity n in (the language
of) the program to a total function of arity m on the universe, and each predicate symbol of arity n in
(the language of) the program to a set of n-tuples from the universe. Thus each constant, which is a 0-ary
function symbol, is mapped to an element in the universe. Such a mapping can be uniquely extended to
a mapping from ground terms to elements of the universe. A model M of a definite clause program is an

interpretation that is closed under rule implication, i.e., if
h(t): —bl1(t1),02(t2),...,bn(ty,).

is a rule in the program, and 6 is a ground substitution such that
(Vi, 1 < i <n, M(#[6]) € M(bi))

then M(t]0]) € M(h).
A Herbrand interpretation of a definite clause program is an interpretation of the program that satisfies

the following properties. Let L be the language of the program.
1. The universe of the interpretation is the Herbrand universe Uy,.

2. Constants in L are mapped to themselves in Uy,.

2We assume that no literal is repeated in the body of a definite clause.
3This definition is more restricted than that of Lloyd [L1087], which considers a goal to be a disjunction of negative literals.
In this thesis, we only consider the case where all goals have a single literal, for ease of exposition.
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3. If f is an n-ary function symbol in L, then the mapping from (Up)™ into Uy, defined by

(tla---;tn) — f(tla;tn)
is assigned to f.

When we use a Herbrand interpretation, we do not need to distinguish between a term and its mapping under
the interpretation.* A Herbrand model is a Herbrand interpretation that is a model. The least Herbrand
model semantics of a logic program is given by its least Herbrand model; for definite clause programs, such
a model always exists (see Lloyd [L1o87]).

Since the Herbrand model semantics of a program is a model, it supports the declarative reading of

clauses as “if body is true, then head is true”.

Example 2.1.1 Consider the following program, whose language has a constant ¢ and a l-ary function

symbol f.

The Herbrand universe of this program is {a, f(a), f(f(a)), f(f(f(a))),...}. The least Herbrand model of

the program is

{q(f(a)), p(f(a))}

The following is a Herband model that is not a least Herbrand model:

{q(f(a)), q(a),p(f(a)), p(a)}

An alternative way of defining the semantics of a program is by means of a ‘least fixpoint’, defined as
below. (See Lloyd [L1087] for more details.)

Let P be a definite clause program. The mapping Tp : 287 — 2BP is defined as follows. Let I be a
Herbrand interpretation, and let P = {R1,..., Rp}. We define

Tri(I) ={A€ Bp: A+ Ay,..., A, is a ground instance of Ri,

and
Tp(I) = U_ Tri(I)

For definite clause programs, Tp is monotonically increasing. The least fixpoint semantics of P is defined as
the least fixpoint® of the function Tp(I). For definite clause programs, the least fixpoint always exists, and
the least Herbrand model of P is equivalent to the least fixpoint of Tp [VEKT76].

4In a Herbrand interpretation, function symbols can be viewed as “record constructors”.
5That is, the least set that is mapped to itself by the function.
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The least fixpoint of Tp can be computed as follows. Define T3(I) = ¢, and define Tt (I) as Tp(Th(I))

and

3

TE(I) = Uico (Tp(D))

Then the least fixpoint of Tp is equivalent to TH(I) [Llo87]. We do not necessarily have to compute the
infinite set of values Th(I) for all 4. If TIJ;H(I) = T;,(I) for some j, then Tg(I) = T{,(I).

In this thesis, unless otherwise specified, we assume that the universe for a definite clause program is its
Herbrand universe, and the semantics of the program is the least fixpoint semantics. We shall refer to this

semantics as the semantics of the definite clause program.

2.1.4 Databases and Programs

A definite clause program consists of a finite set of definite clauses. In the context of databases, a large
number of these clauses are likely to be facts. We follow the convention in deductive database literature of
separating the program P from the database D. The database consists of a set of facts, while the program
contains rules. The motivation is that the rewriting algorithms to be discussed are applied only to the
program, and not to the database. This is important in the database context since the set of facts can be
very large. However, the distinction is artificial, and we may choose to consider (a subset of) facts to be
rules if we wish. In most cases, we refer only to the program; the database is used implicitly.

We assume that the predicates defined in the database (referred to variously as database predicates, base
predicates or Extensional DB (EDB) predicates) are distinct from the predicates defined in the program
(referred to as derived predicates), which can be ensured as follows: Rename all predicates in the database

with new names, and for each n-ary predicate p; renamed to r;, add a rule
pi(Xla v aXn): _ri(Xl- e ,Xn)

to the program. A base literal is a literal whose predicate is base, and a derived literal is a literal whose
predicate is derived.

We use the notation (P, Q) to denote a program P with a query @Q; we call (P, Q) a program-query pair.

A relation is a finite set of facts. A relation is said to be ground if all facts in it are ground; otherwise
the relation is said to be non-ground. We assume knowledge of the basic relational operators such as select
(o), project (w) and join (). See [Ull88] for definitions of these operators.

By virtue of having its variables universally quantified, a non-ground fact represents the set of its ground
instances in the Herbrand base. Given a fact f, let gnd(f) denote the set of ground facts represented by f. A
relation R with non-ground facts represents the relation containing the union of the ground facts represented
by the facts in R. Given a relation R, let gnd(R) denote the set of ground facts represented by R. Two facts
fl and f2 are equivalent if gnd(f1) = gnd(f2). Two facts are equivalent iff they are variants of each other
(in other words, they are equal up to renaming). Whenever we say that two facts are equal, unless otherwise
specified we mean that they are equivalent.

A fact f1 is subsumed by a fact f2 if gnd(f1) C gnd(f2). Given a fact f and a relation R, we say that
f is subsumed by R if gnd(f) C gnd(R).

Since variables in a fact are universally quantified, testing subsumption of a fact by another requires

renaming of variables to avoid name clashes. A fact f1 subsumes a fact f2 iff there is a variant f1' of f1
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and a substitution 6 such that f1'[f] = f2. If a fact f; subsumes a fact fo, we say that f; is more general
than fs5, or equivalently, fy is more specific than f.

Consider a program. Let R be a rule in the program, € a substitution, and I an interpretation for the
program. Then RI[f)] is an instantiation of R. R[] is said to be a successful instantiation in interpretation I
if for each literal p;(¢;) in the body of R, p;(#;)[6] is subsumed by I.

A definite clause program is said to be a Datalog program if it does not use any function symbols other
than constants, and the database facts do not use any function symbols other than constants. A rule is said
to be range-restricted if every variable that appears in the head also appears in a literal in the body. (For the
case of rules with empty body, this is equivalent to there being no variables in the rule.) A program is said to

be range-restricted if all facts in the database are ground, and every rule in the program is range-restricted.®

2.2 The Bottom-Up Approach

The bottom-up approach to answering queries consists of a two-part process. First, the program-query pair
is rewritten in a form so that the bottom-up fixpoint evaluation of the program will be more efficient; next,
the fixpoint of the rewritten program is computed by bottom-up iteration. Section 2.2.1 describes the initial
rewriting, while Section 2.2.3 investigates the computation of the fixpoint of the rewritten program. Both

these steps can be refined further as discussed in later chapters.

2.2.1 The Magic Templates Rewriting Algorithm

Suppose we are given a query ?¢(¢) on a program that defines predicate q. An evaluation of the fixpoint
of the program would generate all facts implied by the program, including many that are irrelevant to the
query. Magic rewriting [BMSU86, BR87b, Ram88] addresses this problem.

We present below a simplified version of the Magic Templates rewriting algorithm [Ram88].” The idea is to
compute an auxiliary predicate query that stores subgoals generated on derivated predicates in the program.
A fact of the form query(p(t)) denotes that ?p(f) is a subgoal generated on p. In the fact query(p(t)), p is
formally treated as a function symbol, rather than a predicate, since the language is first order. We thus
have a predicate and a function symbol of the same name — they are distinguished based on where they
occur in the rule.

The rules in the program are then modified by attaching a literal to the rule body that uses the query
predicate to act as a filter that prevents the rule from generating irrelevant facts. Further, the rewriting
generates rules that define how to generate a query fact for a body literal, given a query fact on the head

literal.

Definition 2.2.1 The Magic Templates Algorithm

Let P be a program, and ?¢(¢) a query on the program. We construct a new program P™9. Initially, P™9

6The motivation for this definition is that the fixpoint evaluation of a range-restricted program generates only ground facts.

7As described in [BR87b, Ram88], the initial rewriting of a program and query is guided by a choice of sideways information
passing strategies, or sips. For each rule, the associated sip determines the order in which the body literals are evaluated. The
version we present is tailored to the case that sips correspond to left-to-right evaluation with all arguments considered “bound”
(perhaps to a free variable), as in Prolog.
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is empty.
1. For each rule in P, add the modified version of the rule to P™9. If rule r has head, say, p(%), the
modified version is obtained by adding the literal query(p(f)) to the body.

2. For each rule r in P with head, say, p(f), and for each occurrence of a derived literal g;(#;) in its body,
add a query rule to P™9. The head is query(q;(#;)). The body contains the literal query(p(t)), and all
literals that precede ¢;(;) in the rule.

3. Create a seed fact query(q(¢)) from the query on the program.

We refer to the rules defining the query predicate as query rules. We sometimes refer to query rules
as magic rules, and the query predicate as the magic predicate, when we need to be consistent with the
terminology used in [BMSU86, BR87b, Ram88].

Example 2.2.1 Consider the following program. (In this program sg stands for “same generation”.)

R1: sg(X,Y) :— flat(X,Y).
R2: sg(X,Y) :— wup(X,U),sqg(U,V),down(V,Y).
? —sg(john, Z)

The Magic Templates algorithm rewrites it as follows:

s9(X,Y) i —  query(sg(X,Y)), flat(X,Y). [Mod. Rule R1]
s9(X,Y) 1= query(sg(X,Y)),up(X,U),

sg(U, V),doum(V,Y) [Mod. Rule R2]
query(sg(U,V)) :—  query(sg(X,Y)),up(X,U). [Query Rule]
query(sg(john, Z)). [Seed Query)]

The first two rules above are the original rules, modified by adding filters. The third rule defines how to
generate queries on the body of the second rule (in the original program), given queries on its head predicate.
The last rule is a fact that corresponds to the original query on the program, and it is called the seed query
fact. O

The following theorem ensures the soundness and completeness of the transformed program P™9 with

respect to the query on the original program P.
Theorem 2.2.1 [Ram88] P is equivalent to P™9 with respect to the set of answers to the query.

Definition 2.2.2 We define the Magic Templates Fvaluation Method as follows:
1. Rewrite the program and query ((P,Q)) using the Magic Templates algorithm.

2. Evaluate the fixpoint of the rewritten program.
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Although the evaluation method and the rewriting algorithm both have the same name, the distinction
should be clear from the context. The second step above is presented in more detail in Section 2.2.3.
The rewriting has the important effect of mimicking Prolog in that (modulo optimizations such as tail
recursion optimization and intelligent backtracking, and modulo some inefficiencies when non-ground facts
are generated) only goals and facts generated by Prolog are generated.

Magic Templates is often presented along with an adornment rewriting that annotates predicates with
a string composed of characters ‘f* and ‘b’, with one character for each argument. This step, along with a
modification of Magic Templates rewriting that projects out of query predicates those arguments that have
an f adornment, is used to ensure that the rewritten program generates only ground facts if the original
program generated only ground facts. The benefit of generating only ground facts is achieved at the possible
cost of some redundant computation, but is important since it permits the use of database systems that

handle only ground facts. For simplicity, we omit this step.

2.2.2 Supplementary Magic Templates Rewriting

Some joins are repeated in the bodies of rules in the Magic Templates rewritten program. Supplementary
Magic Templates rewriting is a version of Magic Templates rewriting that essentially identifies these common
sub-expressions and stores them (with some optimizations that allow us to delete some columns from these
intermediate, or supplementary, relations). We refer the reader to [BR87b] for details, but present below an

example that gives some intuition.

Example 2.2.2 We continue with Example 2.2.1. The program generated by Magic Templates rewriting is

as follows.
Sg(X=Y) P query(sg(X, Y)):flat(Xa Y)
Sg(XY) R query(sg(X, Y)):up(X: U)aSg(Ua V),down(V,Y)

query(sg(U, V)) P query(sg(X, Y)): up(Xa U)
query(sg(john, Z)).
Notice that the second and third rule above have a common prefix; this prefix is factored out to get the

following rule set.

s9(X,Y) i —  query(sg(X,Y)), flat(X,Y).

supy 1(X,Y,U) :—  query(sg(X,Y)),up(X,U).
query(sg(U.V)) t— sup (X, Y, U).

s9(X,Y) = sup (X, Y, U),s9(U,V),down(V,Y).

query(sg(john, Z)).

The predicate sup, ; is referred to as a supplementary predicate. The two subscripts denote the number
of the rule it is generated from and the position of the next literal in the rule (with numbering starting
from 0). Such predicates can be thought of as intermediate predicates used for common-subexpression
elimination. However, supplementary predicates actually have a deeper significance. In the above program,
supy,1(X, Y, U) stores bindings of the rule variables X, Y, U generated when a top-down evaluation of a query
?59(X,Y) on the rule

sg(X,Y): —up(X,U),sg(U, V), down(V,Y).

15



set up a subquery on up(X,Y) and got back an answer up(X,Y). Facts for supplementary predicates
maintain, in some sense, variable bindings in a “context” of the evaluation of the rule. We generate query
facts for derived literals in the rule by using the variable bindings in the supplementary facts, just as we
would generate queries in a top-down evaluation coming left-to-right in the body of the rule.

In the above example we generated supplementary rules by factoring common subexpressions out of
rules generated by Magic Templates rewriting. In describing variants of Magic rewriting, we find it easier to
generate supplementary predicates in a more uniform manner. We store all variables in the rule as arguments
of each supplementary predicate, and we introduce a supplementary predicate corresponding to each literal

in the body of the rule. Thus the program is rewritten as follows.

R1.1: supo(X,Y) :—  query(sg(X,Y)).

R1.2: sg(X,Y) t—  supyo(X ) flat(X,Y).
R2.1: supso(X,Y,U,V) i —  query(sg ( Y)).

R2.2: sups1(X,Y,U,V) t— supao(X,Y, U V), up(X,U).
Q2.2 : query(sg(U,V)) = supy (X, Y, U, V).

R2.3: sup:2(X,Y,U,V) = supa (X, Y, U, V), s9(U, V).
R2.4: sg(X,Y) t— supo(X,Y,U, V), down(V,Y).

Query : query(sg(john, Z)).

The first two rule are derived from R1 of the original program, and the next five rules are derived from
R2. The last rule is the query fact.

Generating the nicer form of the rewritten program presented earlier from this form can be achieved
by some simple transformations such as projecting out “unnecessary” variables from each supplementary

predicate, and “unfolding”® literals that use supplementary predicates. We do not go into details here. O

2.2.3 Iterative Fixpoint Evaluation

A derivation in a fixpoint evaluation generates a fact, using a rule R and a fact for each body literal of the

rule; there must be a substitution 6 for the rule, such that

1. the fact generated by the derivation is the head of R[f], and
2. for each body literal p;(#;) in R, the fact used for the literal subsumes p;(¢;)[f], and

3. 6 is the most general such substitution.

A naive evaluation of the fixpoint of a program performs iterations, with each iteration generating all
facts that can be derived using the program rules, base facts, and the facts derived in earlier iterations.
Iteration proceeds until a fixpoint is reached. In such a naive evaluation of the fixpoint, each iteration
repeats all derivations made in earlier iterations.

We describe an incremental version of fixpoint evaluation called Semi-Naive fixpoint evaluation. Semi-
Naive evaluation avoids the repetition of derivations by performing in each iteration an incremental compu-

tation using facts generated in the previous iteration.

_8F0r the case where there is only one rule R defining a predicate p, unfolding a literal p(t) in a rule R’ consists of replacing
p(t) by the body of R[0] where 0 is the mgu of p(f) and the head of R (w.l.o.g, we assume that the variables in R and R’ are
distinct). For the general case, refer to [TS84, GS91].

16



Semi-Naive evaluation (SN evaluation) of definite clause programs was developed by several researchers
[Ban85, Bay85, BR87a]. We look at a simplified form of SN evaluation. Without loss of generality, we
assume that rules have at most two body literals; rules not in this form can be easily rewritten to be in this
new 9

form. For each derived predicate ¢; in the program we introduce four relations g;, ¢?'¢, §¢¢'?, and dgq!

We then rewrite each rule as follows.

Semi-Naive Rewriting(R):

1. If the rule is of the form:  R: p(...): —q1(...),q2(..")

where both ¢; and ¢ are derived predicates, we rewrite R as follows:

R': pmevw(..) r — 8g¢(...), q8%(. . ).
R":5pmev(..) =68 ), qu(.. ).

2. If the rule is of the form: R : p(...): —q1(...),b2(...)

where ¢ is a derived predicate and b2 is a base predicate, we rewrite it as follows:
R 6pme (.. ) —0g9" (.. ), ba(.. ).

3. If the rule is of the form:  R: p(...): —q:i(...)

where ¢ is a derived predicate, we rewrite it as:
R 6p™v(...): =g71(.. ).

4. If the rule is of the form:  R: p(...): —...

where the body has no derived predicates, we rewrite it as follows:

R :op™ () — ...

The above rewriting is called Semi-Naive rewriting [BR87a, Ban85]. Given a program P, let the program
generated by Semi-Naive rewriting be denoted PSN.

Semi-Naive evaluation is described in Algorithm SN_Iterate. Procedure Apply(R;) performs the opera-
tions of making all derivations that can be performed using rule R; and the facts in the current extents of
the relations,'® and inserting all derived facts into the relation for the head of R;. We assume that Apply
performs a left-to-right nested-loops join with indexing!! on the rule. (This is important for some of our
later theoretical results concerning time complexity, but not for correctness.)

In Semi-Naive iteration, the set of facts produced in iteration n is compared with the set of known facts
to identify the new facts produced. Duplicates generated within the same iteration are eliminated implicitly,

by the definition of sets.

9The distinction between the predicate and the relation should be clear from the context.

10In case non-ground facts are derived, it suffices to deduce a set of facts that subsumes the set of all facts that follow from
rule R; and current extents of the relations. This can be done by using most-general unifiers when unifying facts with the rule
body.

I3ee, e.g., Ullman [U1188] for a definition of nested-loops join with indexing.
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Algorithm SN_lterate( P5™N)
1. Foreach rule R; in PSN that has no derived literal in its body
Apply( R;).
2. Repeat
2.1 Foreach rule R; in PSN that has a derived literal in its body
Apply(R;).
2.2 Foreach derived predicate g; in
a. g = qp" U o,
b (Sq‘?ld — 5qnew _ qpld
" (3 ° (2 (2 "
c.  qi:=qudsgste.
d. dghev = ¢.

Until all relations 6¢¢'¢

(3

PSN

are empty.

We call the set of updates in Step 2.2 of the above algorithm as Semi-Naive updates. For each predicate

i, 6¢?'% denotes the set of ¢; facts that were computed in the previous iteration but not in earlier iterations,

and q;?ld denotes the set of g; facts derived before the previous iteration. The relation g; is the union of ¢4

i
old

and 6¢?'4. We call the facts in relations of the form ¢¢!¢ as old facts, and facts in relations of the form §g¢'?

2

as new facts.

old
i

The difference operation in Step 2.2.b ensures that §¢?'¢ and ¢¢!¢ are disjoint when Step 2.2.a is executed.
Hence the union operation in Step 2.2.a does not need to check for duplicates; it can simply move facts from
§g?' to q?'Y. We do not materialize ¢; (Step 2.2.c), but treat it as an un-materialized union of the relations
old old old

¢?'? and 6¢¢'4. To check if a fact is in g;, we check if it is either in g b

b o' or in dq

The procedure Apply does not repeat derivations within a single execution of the procedure. Hence no
derivations are repeated within an iteration of SN_Iterate. Due to Semi-Naive rewriting and the updates
in Step 2.2 of SN_Iterate, in each iteration only derivations that use at least one new fact are carried out.
Any derivation performed in an earlier iteration would have used only old facts, and hence no derivation is
repeated in the evaluation. Further, any derivation that uses only old facts would have been made in an
earlier iteration. Semi-Naive evaluation terminates when no new facts are generated. Thus the algorithm
terminates if and only if the set of facts generated is finite.

We call literals of the form §p°'? or dp"¢™ as § literals. With the Semi-Naive rewriting presented ahove,
if a rewritten rule has a § literal in the body, the first literal in the rewritten rule (and hence in the join
order that we assume) is a ¢ literal.

Performing the join with non-ground facts involves details, such as renaming of variables, discussed in
Section 4.2. We use subsumption checking instead of duplicate checking, if non-ground facts are generated,
Thus when we add a fact to a relation, we need to check if the fact is subsumed by a fact in the relation,
or if it subsumes facts in the relation, and delete facts that are subsumed. Similarly, the operators “—” and
“U” used in SN_Iterate perform subsumption checks, rather than duplicate checks, if non-ground facts are

generated.
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Not-So-Naive (NSN) evaluation [MR89] is the same as Semi-Naive evaluation except for the following

differences.

1. 0¢?*" is a multi-set of facts rather than a set of facts

2. The step dg¢'? := 6q7°% — ¢¢!¢ is replaced by the step §g?!¢ := dqrev.

k3 (3

3. The U operator does a multi-set union, i.e., it does not check for duplicates.
In the case of NSN evaluation, §g2¢

i
old
i

is the multi-set of ¢; facts that were computed in the previous iteration,
and ¢ is the multi-set of ¢; facts derived before the previous iteration.

We also use the terms Semi-Naive evaluation without duplicate elimination or Semi-Naive evaluation
without subsumption-checking'® to refer to NSN evaluation.

We have the following standard result on completeness of Semi-Naive and Not-So-Naive evaluation (see

e.g. [MR89, RSSO1]).

Theorem 2.2.2 (Completeness) Suppose a program P is evaluated using Semi-Naive or Not-So-Naive
evaluation. If a fact is in the least fixpoint of P, then there is a finite ¢ such that the fact is subsumed by

facts derived before iteration ¢. O

A derivation sequence is a total ordering of derivations in a bottom-up fixpoint evaluation, such that the
facts used in any derivation are either base facts, or are generated by earlier derivations. We often use such

a total ordering of the derivations in a bottom-up fixpoint evaluation to prove properties of the evaluation.

2.2.4 Related Background Material

The Alexander method [RLK86] was proposed independently of the Magic Sets approach. It is essentially
the supplementary variant of the Magic Templates method, described in [BR87b]. Seki has generalized the
method to deal with non-ground facts and function symbols, and has called the generalized version Alexander
Templates [Sek89].

The Magic Templates idea was developed in a series of papers ([BMSU86, BR87b, Ram88]). Several
variants of the Magic Templates idea have also been proposed. For example, it is possible to compute su-
persets of the magic sets (in our notation, the set of facts for query is the magic set) without compromising
soundness. Although this variant results in some irrelevant computation, it may be possible to compute
supersets more efficiently than the magic sets themselves [SS88]. The technique can be extended to deal
with SQL programs, including those containing features like group-by, aggregation and arithmetic condi-
tions [MPR90, MFPR90b, MFPR90a]. A performance comparison presented in Mumick et al. [MFPR90a]
shows that Magic Sets performs at least comparably to standard query evaluation techniques, and is often
significantly better.

The Magic and Alexander methods are based on program transformations. Other methods use a combi-
nation of top-down and bottom-up control to propagate bindings. Pereira and Warren presented a memoing

top-down evaluation procedure based on Earley deduction [PW83]. Vieille has proposed a method called

121t is possible to conceive of Semi-Naive evaluation with duplicate elimination, but without full subsumption-checking.
However, we use the term Semi-Naive evaluation without subsumption-checking exclusively to refer to Semi-Naive evaluation
without duplicate elimination.
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QSQ [Vie86, Vie87, Vie88] that can be viewed as follows. Goals are generated with a top-down invocation
of rules, as in Prolog. However, there are two important differences: 1) whenever possible, goals and facts
are propagated set-at-a-time, and 2) all generated goals and facts are memoed. If a subgoal is found to have
been generated earlier, it is not solved again, but answers derived for the first generation of the subgoal are
used for the new subgoal. Dietrich has proposed a method called Extension Tables [Die87]. This method is
very similar to QSQ, but performs computation tuple-at-a-time.

The reader is referred to [NR91, RSS92c| for a more detailed discussion of related work.

2.3 Magic Templates and Tail-Recursion

Consider a rule of the form: R : p(f): —q1(t1),q2(%2), ..., qn(ts). Suppose we had a subgoal p(a), and in
answering this subgoal in a top-down fashion, we had set up and solved subgoals g1 (a7), . . ., ¢n—1(@rn=1), and
have now set up a subgoal ¢, (ay).

The subgoal g, (@) will return zero or more successful answers. When each answer is returned, no more
computation is done at rule R, but control merely passes back to the point where the subgoal ?p(a) was
invoked. Prolog can therefore change the return address so that the call to ?¢,(@;) returns directly to the
query on R, bypassing R. This optimization is called tail recursion optimization (see for instance [MW8&8]).

In particular, when ¢, is recursive with (possible even the same as) p, Prolog evaluation may return
directly past a large number of invocations of R. By bypassing R, Prolog* in effect bypasses a step where a
bottom-up evaluation using Magic Templates rewriting would have created a fact for the head predicate p
of rule R.

The following example illustrates how Prolog evaluation of a query, using tail-recursion optimization, can

be much faster than bottom-up query evaluation using Magic Templates rewriting.

Example 2.3.1 This example is from [Ros91]. Let P be the program

R1 :p(Xa Z) - €(X,Y),p(Y, Z)
R2:p(n,X) : — t(X).
e(1,2).

Query: 7-p(1, X).

Given the subgoal ?p(1, X) Prolog sets up subgoal ?e(1, X') and gets an answer that binds X to 2. Using this
binding Prolog sets up a subgoal ?p(2, X), which in turn sets up subgoal ?p(3, X)) and so on till the subgoal
?p(n, X) is set up. However, Prolog can deduce that there are no more answers to e(1, X), and when an
answer for ?p(2, X) is found, it can directly return (with bindings for variable X) to the subgoal 7p(1, X),
bypassing the subgoal ?p(2, X). By applying this optimization repeatedly, when Prolog finds an answer for
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subgoal ?p(n, X), it returns directly (in unit time, with bindings for X') to the subgoal ?p(1, X), bypassing
all intermediate subgoals. Applying this optimization again to the subgoal ?¢(X) generated from ?p(n, X),
when an answer is generated for 7¢(X), evaluation can return directly to the subgoal ?p(1, X). Since there
are m answers for 7¢(X), Prolog backtracks to 7¢(X) a total of m times, and evaluates the program in time
O(n +m).

Prolog “generates” only facts p(1,7),1 < j < m (here “generating” a fact is interpreted as the act of
Prolog’s control returning, with appropriate variable bindings, to the point where a subgoal was set up).

Bottom-up evaluation (using Magic Templates rewriting), on the other hand, works as follows. For each
Prolog subgoal ?p(i, X), a fact query(p(i, X)) is generated. Facts p(n,1),...,p(n, m) are generated using the
modified rule R2. These facts are used with the modified rule R1 to generate facts p(n—1,1),...,p(n—1,m),
which in turn are used to generate more facts using the modified rule R2. Eventually, all facts p(i,7),1 <
i <n,1 <j<m are generated. Thus at least m - n facts are generated, and evaluation takes o(m - n) time.
O

If bottom-up evaluation is to perform as well as Prolog* on this program, it too must bypass the step
of computing a fact for the head of rule R1.!® This is precisely the optimization achieved by the program
rewriting technique of Ross [Ros91], which we describe in Section 2.3.2. We note that QoSaQ [Vie88],
which is a set-oriented top-down evaluation technique that implements memoing, also incorporates a form

of tail-recursion optimization.

2.3.1 Hilog Syntax

Before we describe Ross’ rewriting technique, we briefly describe an extension of definite clause syntax that
is used in the rewriting. The extended syntax is part of Hilog [CKW89]. We describe the extended syntax

and its semantics informally. The extension to definite clause syntax allows rules such as the following:

R1: A: _query(pj(Xa Y) A)apk (X/Y)

3

The head of a definite clause rule must be an atom, whereas the the head of rule R1 is a variable — thus
the syntax used is higher order.

We require that in rules that use this extended syntax, the variable in the head of the rule must get
bound to a term of the form p;(f) when the rule is successfully instantiated in bottom-up evaluation. The
term p;(t) is interpreted as a literal when creating the head fact. For example, suppose we have facts
query(p;(a, X), pm(b, X)), pr(a,c) and pi(a,d). Then R1 implies that the facts py,(b,¢) and py,(b,d) are
true. The semantics of rules using the extended syntax is first-order. The use of this higher-order syntax is
not essential for our discussion, but it makes the presentation concise.

We can use Semi-Naive evaluation for programs using the above syntactic features, with very minor

changes, which we now briefly discuss. The only change to Semi-Naive rewriting is to not transform the

13We assume that b and ¢ are base predicates. The time complexity measure used in this thesis ignores the size of the
program, based on the assumption that the number of rules is small. We use m and n in the time complexity measures for
this program, and cannot assume the number of rules to be small if facts for b and ¢ are treated as rules. We do not apply
tail-recursion optimization to base literals. However, applying tail-recursion optimization to base literals provides no benefits,
since the computation to solve a query on a base literal in the bottom-up context consists merely of looking up a table, and
does not invoke a new rule.
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heads of rules that use the above extended syntax. When the body of such an extended rule is satisfied,
the head variable is instantiated to a term. This term is treated as a fact; suppose this fact is p(a). The

semi-naive version 0p™¢¥ (@) of this fact is then inferred.

2.3.2 MTTR Rewriting

Ross ([Ros91]) proposed a modification to Magic Templates ([Ram88]). We describe Ross’ technique, which
we call Magic Templates with Tail Recursion (MTTR) rewriting, in this section. The set of predicates to be
treated as tail-recursive is a parameter to Ross’ rewriting as described in [Ros91] — thus the tail-recursion
optimization can be applied to a selected set of predicates. Unless otherwise specified, we assume that the
optimization is used for all derived predicates, but not for base predicates. MTTR rewriting may perform
worse than Magic Templates rewriting on some programs (see [Ros91] for an example). However, it is useful
for the purposes of comparison with Prolog*, since MTTR rewriting can perform tail-recursion optimization
whenever Prolog* does so.

Intuitively, the difference between MTTR rewriting and Supplementary Magic rewriting (Section 2.2.2) is
as follows. Magic rewriting generates facts of the form query(p(s)), that indicate that there is a query ?p(3).
The rules in the program are modified to generate answers to such queries. With tail recursion optimization
in Prolog, answers are not “generated” for a tail-recursive query; instead, answers are “generated” for some
query that is an ancestor of the query. This effect is achieved in MTTR rewriting by generating facts of the
form query(p(s),q(t)). Such a fact says that there is a query ?p(3); after instantiating a rule to solve this
query, instead of generating answers for the query, answers should be directly generated for ?¢(%), which is
an ancestor of ?p(35). A solution to ?p(5) provides bindings for variables in #; applying these bindings to ¢(%)
gives us answers for ¢(%).

To handle the case of non-tail-recursive literals, any query fact generated due to such literals is of the
form query(p(3s),p(s)) (i.e., the first and second arguments of query are the same). Such a fact says that
?p(3) is a query, and answers must be generated for it.

We now present the rewriting; we give some intuition after presenting the rewriting.

MTTR Rewriting: Given program P and a query ?q(#) on P, we generate a program using the following

rewrite rules. We call the resultant rewritten program PT.

0. Generate the rule (actually a fact)

query(q(t), q(t)).

Call this a Type 0 rule.

Consider each rule R; in the program P. Let rule R; be of the form
Let V denote a tuple of all variables that appear in R;.

1. Generate the rule

supjo(V,A): —query(h(t), A).
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Call such rules Type 1 rules.

2. If the body of R; is non-empty, generate the following rules and call them Type 2 rules:

supji(V,A)  + = supjo(V, A),p1(t).

Supj,nfl(va A) P Supj,n72(va A):pnfl(tnfl)-
3. If the body of R; is empty, generate the rule
A: —supjo(V, A).

If the body of the rule is not-empty, and the last literal is base, or is not treated as tail-recursive, generate

the rule
A: —supjn_1(V, A), pn(tn).

Call such rules Type 3 rules.

4. If the body of R; is non-empty, for each derived literal p;(#;), i # n in the body of R; generate a rule

query(pi(t:), pi(%)): —supji-1(V, A).

If the body of the rule is non-empty, and p,(%,) is a derived literal, but is not treated as tail-recursive,

generate the rule:
query(pn(tn), pn(tn)): —supjn—1(V,A).

Call such rules Type 4 rules.

5. If the body of R; is non-empty and p,,(%,) is a derived literal and is treated as tail-recursive, generate the

following rule:

query(pn(tn), A): —supjn_1(V, A).

Call such rules Type 5 rules.

We say that PT generates a subgoal ?p(%) if it derives a fact query(p(?),...). Type 0 and Type 4 rules
generate subgoals that must be explicitly solved; however, Type 5 rules provide tail recursion optimization—
in effect they say “solve the last subgoal in rule R;, but instead of generating answers for it, use the bindings
to directly generate answers for the goal that invoked the rule”. Type 1, 2 and 3 rules collectively perform
the same function as rules in the original program, except that they are restricted to generate facts only if

there is a corresponding subgoal; thus they avoid generating many irrelevant facts.

Example 2.3.2 [Ros91] The rewritten version of the program from Example 2.3.1 is as follows. We treat e

and t as base predicates in this rewriting.

R1.1:supio(X,Y, Z,A) : — query(p( 7Z), A).
R1.2: supy 1(X,Y, Z,A) : — sup10(X,Z, A),e(X,Y).
R1.3: query(p(Y,Z), A) : — supy 1(X Y Z, A).

R2.1: sups (X, A) t — query(p(n, X), A).

R22: A D= supao(X, A), H(X).
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t(m).
query(p(1, X),p(1, X)).

Rules R1.1 is a Type 1 rule generated from rule R1 of the original program, and R1.2 is a Type 2 rule
generated from R1. Rule R1.3 is a Type 5 rule generated from R1. Rule R2.1 is a Type 1 rule generated
from rule R2 of the original program, and rule R2.2 is a Type 3 rule generated from R2.

The query facts derived by the Semi-Naive evaluation of this program are of the form query(p(i, Z), p(1, Z)
),1 < < n. Rule R2.2 derives facts p(1,7),1 < j < m. Also, supplementary facts sup; o(i,Y, Z,p(1, Z)),
1<i<mn,supia(i,i+1,Z,p(1,2)), 1 <i < n, and sup2o(Z,p(1,Z)) are derived. Finally answer facts
p(1,7),1 <1i < m are derived. Overall, Semi-Naive evaluation of the program derives O(n + m) facts, which
is the same as the number of inferences made by Prolog evaluation. On the other hand, evaluation of the

Magic Templates rewriting of the program makes O(n - m) inferences, as described in Example 2.3.1. O

Semi-Naive evaluation of PT may in some cases generate many more facts that Semi-Naive evaluation of
the Magic Templates rewritten form of P [Ros91]. However, it has the advantage (for our purposes) that it
is never more than a constant factor worse than (a model for) Prolog evaluation, in terms of the number of
inferences made, provided that P is range-restricted (see Section 5.10). There are many program/query pairs
for which the MTTR rewritten program makes far fewer inferences than Prolog; as an extreme example,
there are program/query pairs for which Prolog does not terminate, but Semi-Naive evaluation of the MTTR
rewritten program does terminate. In Section 3.4 we present a version of the rewriting that is never more
than a constant factor worse than (our model of) Prolog evaluation in terms of the number of inferences
made, for all programs.

The Hilog notation is not critical for MTTR rewriting — we can generate an equivalent rewritten program

in definite clause syntax. The basic idea is that for any rule

in the extended syntax, the variable A in the head can only get bound to terms built from one of a finite
number of function symbols (corresponding to the predicates in the program). Hence, for each n-ary predicate
p in the original program, we create an instantiated version R[A/p(X,)] of R, where X,, is an n-tuple of
distinct variables that do not appear in R. We then replace R by the set of its instantiated versions. By
performing this transformation for each rule of an MTTR rewritten program, we derive an equivalent definite

clause program. Clearly, the Hilog notation is more concise.
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Chapter 3

Magic Rewriting for

Non-Range-Restricted Programs

In this chapter we describe extensions of Magic rewriting techniques for programs that generate non-ground
facts. We begin the chapter by showing some pitfalls that bottom-up evaluation using Magic Templates (with
or without Tail Recursion) can run into when non-ground facts are generated. The basic problem was noted
by Codish, Dams and Yardeni [CDY90], but is not widely recognized. In Example 3.1.2 we extend their
observation to show that bottom-up evaluation can make many more inferences than Prolog evaluation. We
formalize the problem through the definition of mgu-subgoals and mgu-answers; Magic Templates rewriting
can generate answers (and queries) that are not mgu-answers (resp. mgu-subgoals).

We refine Magic Templates rewriting (in Section 3.3) to avoid the problems noted by Codish et al.;
we call this refinement MGU Magic rewriting. Bottom-up query evaluation using MGU Magic rewriting
generates only mgu-subgoals and mgu-answers. MGU Magic rewriting generates programs that contain
“meta-predicates”; in Section 3.2 we discuss the operational semantics of meta-predicates and of programs
that use meta-predicates. We use the ideas behind the refinement of Magic Templates rewriting to also refine
MTTR rewriting; we call this refinement MGU MTTR rewriting (Section 3.4).

MGU MTTR rewriting is important since it enables us to account for tail-recursion optimization while
also dealing with the problems noted by Codish et al. We show in Chapter 4 (Section 4.3) that bottom-up
evaluation using MGU MTTR rewriting performs no more “actions” than a small constant times the number
of “actions” performed by Prolog* evaluation (a model of Prolog evaluation). (In many cases bottom-up

evaluation performs far fewer actions than the number of actions performed by Prolog* evaluation.)

3.1 Problems With Subsumed Answers

Subsumption-checking bottom-up evaluation can make some derivations using subsumed facts that Prolog
avoids even though it does not perform any subsumption checking. This observation was made by Codish,

Dams and Yardeni [CDY90], using the following example.

3
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Example 3.1.1 [CDY90]

R1: q:— p(a),p(X),r(X).

R2: p(X).

Query: ?7-q.
On this program, the only goal generated for the predicate r by Prolog evaluation is ?r(X). (To keep the
example simple, we do not have any rules defining r — this means that subgoals on r will fail, but this is

irrelevant to the point we seek to make.) The Magic Templates rewriting of this program is as follows.

M1.1: query(p(a)) : — query(q).
,p(a).

Rl'": ¢ : — query(q), p(a), p(X),r(X).
p

M1.3 : query(r(X)) : — query(q), p(a), p(X
R2'": p(X) : — query(p(X)).

Q:  query(q).

(

(q)
(q)

M1.2 : query(p(X)) : — query(q)
(q) )-
(n(

Semi-Naive evaluation of the rewritten program generates the fact query(p(a)) first, followed by p(a).
The fact p(a) is used for the literals p(a) and p(X) in rule M1.3, and a fact query(r(a)) is generated. Note
that Prolog evaluation does not generate the subgoal ?r(a). The query generated from the literal p(X) in this
rule is 7p(X), which has a most general answer p(X); thus a less general answer is being used for a query that
has a more general answer. The answer p(X) is generated later, and p(a) is found to be subsumed (but p(a)
has already been used to derive query(r(a))). Rule M1.3 uses p(X) to generate a query fact query(r(X)).
O

The above example illustrates the following problem. If a fact p(X) is an answer to a subgoal 7p(X), then
so is every fact of the form p(a), for every a in the universe of discourse. Such facts may be generated in an
evaluation, in response to more specific subgoals, and may be used unnecessarily for more general subgoals.

It is important to avoid using answers computed for less general subgoals as answers for more general
subgoals since there are programs where doing so can result in a large loss in efficiency.! The following

example illustrates an asymptotic slow-down.

Example 3.1.2 Consider the following program and query.

R1:¢(X) :— b(X),p(X).
R2:9(X) 1= q2(1),42(2),p(X), r(X).
R3 : p(X).
R4 :r(X) :—1r2(X,n).
R5:12(X,Y): — YV > 0,r2(X,Y — 1).
R6 : r2(X,0).

q2(1).

q2(2).

L Another motivation is that in the context of abstract interpretation (see e.g. [CDY90]), using answers computed for less
general subgoals to solve more general subgoals can lead to answers that are overly conservative. However, using answers in
such a fashion does not affect correctness.
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Query’ : query(q(X)).
X

MR1: query(p(X)) — query(q(X)), b(X).
R1':  q(X) : — query(q(X)), b(X), p(X)
MR2: query(q2(1)) — query(q(X)).
MR2': query(q2(2)) — query(q(X)), ¢2(1)
MR2" : query(p(X)) = query(q(X)),¢2(1), ¢2(2).
MR2" : query(r(X)) — query(q(X)),q2(1), 42(2), p(X).
R2': q(X) s — query(q(X)), 42(1), q2(2), p(X), r(X)
R3' :  p(X) : — query(p(X)).
MR4A . query(r2(X,n)) : — query(r(X)).
R4 r(X) : — query(r(X)),r2(X,n)
MRS query(r2(X,Y — 1)) : — query(r2(X,Y)),Y > 0.
R : r2(X,Y) s — query(r2(X,Y)),Y > 0,r2(X,Y — 1).
R6': r2(X,0) i — query(r2(X,0)).
2(1) -~ query(q2(1)).
2(2) -~ query(q2(2))
b(1).
b(m).

Figure 1: Magic Templates Rewritten Form of Program from Example 3.1.2

Query: ?-¢(X).

If we used Prolog to run this query on this program, rule R1 would be used to set up a subquery ?b(X),
which returns m answers (one at a time). For each of these answers, a subquery ?p(i) is set up, which
succeeds right away, generating an answer ¢(i). After trying all alternatives for rule R1, Prolog then tries
R2, which generates goal ?7¢2(1) which succeeds and 7¢2(2) which also succeeds. It then generates subgoal
?p(X), which gets an answer p(X). A subgoal 7(X) is set up, which is solved in O(n) time by rules R4, R5
and R6. Rule R2 is deterministic, and hence there are no more answers, and Prolog solves this query in
O(m + n) time.

Consider now what happens if this query is run using Magic Templates rewriting, and Semi-Naive evalu-
ation. The program obtained by Magic Templates rewriting of the above program is shown in Figure 1. We
treat b as a base predicate since it has a large number of facts.

The set of facts computed in each iteration of a subsumption-checking Semi-Naive evaluation of the above
program is shown in Table 1. (To keep the table compact, we use Q instead of query.)

It is clear from Table 1 that Semi-Naive evaluation of the Magic Templates rewritten program derives

O(m - n) facts, and would take at least time O(m - n), even though it performs subsumption checking. O
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Iteration | Facts Computed

0 Q(q(X))

1 Q(q2(1)),Q(p(0)), Q(p(1)), ..., Q(p(m))

2 q2(1),p(0), p(1),...,p(m)

3 Q(¢2(2)),4(0),¢(1),...,q(m)

4 q2(2)

5 Q(p(X)),Q(r(0)),Q(r(1)),...,Q(r(m))

6 p(X),Q(r2(0,n)), Q(r2(1,n)),...,Q(r2(m,n))

7 Q(TZ(Xan)) (7‘2(0;71 - 1))7Q(T2(lan - 1))7 -aQ(TQ(man - 1))
n+6 r2(X, 1)), Q(r2(0,0)), Q(r2(1,0)), ..., Q(r2(m, 0))

Q(r2(X,1 -
n+7 Q(r2(X,0)),72(0,0),72(1,0),...,72(m,0)
n+8 r2(

2n+7 r2(X,n —1),r2(0,n),r2(1,n),...,r2(m,n)
2n+8 r2(X,n),r(0),r(1),...,r(m)

2m+9 | r(X)q(0),q(1),...,q(m)
2n 4+ 10 | q(X)

Table 1: Semi-Naive Evaluation of Program from Figure 1

Although we used Magic Templates rewriting in the above example, the problems we described would
also occur with Supplementary Magic Templates rewriting. It is also not hard to modify the above example
to show that the problems illustrated in the example also occur with Magic Templates with Tail Recursion

rewriting.

3.1.1 Mgu-Subgoals and Mgu-Answers

We now define mgu-subgoals and mgu-answers. The basic idea behind these definitions is to ensure that if a
subgoal is generated from a literal in a rule, only answers to that subgoal or more general subgoals are used for
that literal; answers to less general subgoals are not permitted to be used. The order of evaluation of literals
in a top-down evaluation of a rule (a.k.a. sideways information passing strategies, or sips, in the context
of Magic rewriting [BR87b, Ram88]) affects the subgoals that are generated from the rule. We assume a
left-to-right order of evaluation (left-to-right sips) in the following definitions, although the definitions can
be extended to the general case.

Recall that given two terms ¢1 and t2, MGU(t1,t2) denotes the set of most general unifiers of ¢1 and #2,

mgu(tl,t2) denotes a an arbitrary element of this set.

Definition 3.1.1 (mgu-subgoals and mgu-answers)
Let P be a program with a given query ?query(u).
The given query ?query(u) is defined to be an mgu-subgoal.

Let R be any rule in the program, and ?¢(s) an mgu-subgoal.

1. Suppose rule R is of the form ¢(%) (i.e., its body is empty), and § € MGU (3,t'), where #' is a renaming

of  that shares no variables with 5. Then ¢(3)[f] is an mgu-answer to the subgoal 7¢(3).
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2. Suppose R is of the form:

R:q@): —pi(t1),...,pn(tn).

such that n > 1 and for some k,1 < k < n, and each i, 1 < i < k there are subgoals ?p;(5;), and
answers p(a;) that satisfy all the following conditions: (W.l.o.g. assume that the @;’s share no variables

with each other or with rule R.)

(a) pi(a;) is an mgu-answer to 7p;(s;).

Then p;(57) = pi(%:)[0:].
Then ?py(3%) is an mgu-subgoal generated from ?¢(s).

Further, if £ = n, and

6 € MGU((q(t),p1(t1), - - Pn(tn)), (¢(3), p1(@1), - - ., pn(@n)))

Then ¢(3)[6] is an mgu-answer to subgoal ?¢(3).

Note that the definition of mgu-subgoals and mgu-answers is cyclic. This causes no problems, since each
answer generated by a program must have an acyclic derivation. The following example illustrates the use

of this definition.

Example 3.1.3 Consider a modified version of the program from Example 3.1.1.2

Rl:gq
R2:p
R3:r

Given a query ?q(X), by Part 1 of Definition 3.1.1 and rule R4, ¢(1) is an mgu-answer to ?¢(X). Given a
query ?q(X), ?p(a) is an mgu-subgoal, by Part 2 of Definition 3.1.1 and rule R1. Using R2, p(a) is an mgu-
answer to ?p(a), by Part 1 of the definition. Now, ?p(X) is an mgu-subgoal, by Part 2 of the definition, using
the prefix of R1 up to p(X). Using R2, p(X) is an mgu-answer to ?p(X). Next, ?r(X) is an mgu-subgoal,
by Part 2 of the definition, and r(X) is an mgu-answer to ?r(X), using rule R3. Finally, by Part 2 of the
definition, ¢(X) is an mgu-answer to ?¢(X). Note that ?¢(X) has two mgu-answers, one of which subsumes
the other. O

2The modification to the program is in order to illustrate some aspects of the definition of mgu-answers that are not illustrated
by the original program.
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3.2 The goal_.id Meta-Predicate

A meta-predicate is a predicate that does not have a logical semantics. A meta-literal is a literal that
uses as predicate a meta-predicate. The rewritten programs that we generate using our refinements of
Magic Templates rewriting uses a meta-predicate goal.id(goal,id) that assigns identifiers to goals that are
generated in the course of bottom-up evaluation. Before we start describing our refinements of Magic
Templates rewriting, we need to define the semantics of programs that contain the meta-predicate goal-id.

Meta-predicates are different from ordinary predicates in two ways. First, given a normal predicate p,
if a query ?p(X, 1) succeeds, each query ?p(a,1) also succeeds, where a is an element of the universe of the
program. However, if 7goal_id(p(X), 1) succeeds, it does not follow that ?goal_id(p(a), 1) succeeds, since p(X)
and p(a) may be given different identifiers. Second, two occurrences of the same query on a meta-predicate
can return different answers, as we illustrate after defining the goal.id meta-predicate.

We do not assign semantics to meta-predicates in the usual manner of assigning sets of facts to predicates.
Instead, we assign semantics to meta-predicates operationally in terms of “answers” that are returned to

queries on the meta-predicates.

Definition 3.2.1 (goal.id) The meta-predicate goal_id(g,n) is defined as follows. When it is called with a

goal g(t), it returns an integer identifier n for the goal, where the identifier satisfies the following conditions:

e If subsumption-checking is to be used, (a) all variants of a goal are given the same identifier, and (b)

if two goals are not variants of each other, they are given distinct identifiers.

e If subsumption-checking is not to be used, the call returns an identifier that is distinct from those

returned by any other calls to goal-id.

e 0 is not generated as the identifier of any goal.

For example, a call ?goal_id(p(X), ID) may bind ID to 10. If subsumption-checking is used, all further
calls ?goal_id(p(X), ID) will bind ID to 10. However, a call ?goal_id(p(a), ID) will bind ID to some value
other than 10. If subsumption-checking is not used, even further calls ?goal_id(p(X), ID) will bind ID to
some value other than 10.

As defined above, goal_id does not perform full subsumption-checking on goals — if it did, and gave the
same identifier to two goals, one of which subsumes the other, and we will not be able to use the identifier
for the purpose of keeping track of mgu-answers to goals. In Section 3.3.4 we discuss how the evaluation
technique can be extended in order to allow goal_id to perform some degree of subsumption-checking. It is
straightforward to implement the meta predicate goal_id, and we do not discuss details.

It is not possible in general to use the traditional least model or least fix-point semantics for programs with
meta-predicates. Instead we define the operational semantics to the programs generated by our rewriting
techniques to be the result of Semi-Naive evaluation (either with or without subsumption-checking). With
either semantics, the answers generated for the query on the original program are the same for the rewritten

programs (as we show when proving the correctness of the rewriting algorithms).
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Semi-Naive evaluation works in a straightforward manner with meta-predicates. Meta-predicates are
treated in a fashion similar to base predicates. However, instead of indexing a relation for a base predicate

and getting an answer, a query is set up on the meta-predicate, and solved.

3.3 MGU Magic Templates

In this section we present a version of Magic Templates rewriting; the Semi-Naive evaluation (using most
general unifiers) of the rewritten program generates subgoals and answers only if they are mgu-subgoals or
mgu-answers. We call this rewriting technique MGU Magic Templates.

For simplicity we describe the supplementary version of the rewriting.?

The idea behind MGU Magic Templates rewriting is to keep with each answer the goal for which it was
generated as an mgu answer; this lets us avoid using answers to less general subgoals with rules instances
(supplementary facts) that generated more general subgoals. If we stored the actual goal in the supplementary
facts (without renaming variables in the goal), the process of unification during the generation of the answer
would instantiate the goal. We store instead an identifier that tells us what the original goal is; this identifier
is generated using the meta-predicate goal_id.

Intuitively, the main difference between Supplementary Magic Templates rewriting (Section 2.2.2) and
MGU Magic Templates described below is that for each query fact, answer fact and supplementary fact,
we have an extra argument that stores the identifier of a query. Facts of the form answer(id, g(az)) are
generated in the bottom-up evaluation of the MGU Magic Templates rewritten program. Intuitively, such a
fact says that id is the identifier of a subgoal on ¢, and g(a3) is (at least as general as some) mgu-answer to
the subgoal. Similarly, facts of the form query(q(az),id) are generated in the bottom-up evaluation of the
MGU Magic Templates rewritten program. Intuitively, such a fact says that g(az) is a subgoal, and id is the
identifier of the subgoal.

Finally, there are facts of the form sup; ;(i,7,i1). Intuitively, such a fact represents an instance of the
prefix of a rule R; up to the jth derived literal in R;, such that R; is being used to solve a subgoal with
identifier 4, and i1 is the identifier of a subgoal on the jth derived literal of the rule. The rules in the
rewritten program (Type 2 rules below) are such that only answers for a query with identifier i1 can be used
in a derivation with the supplementary fact sup; ;(i,7,i1). Thus, the only answer facts that can be used
with a supplementary fact are those that are mgu-answers to the query generated from the supplementary
fact.

MGU Magic Templates Rewriting: Let P be a program, and ?¢(¥) a query on P. The following rewrite
rules generate a rewritten program which we call P’V from P and ?¢(%).

Generate the rules:
Qg1 :initial _query(q(t), ID) : — goal_id(q(t), ID).

Qr2 : query(Q, ID) : —initial query(Q,ID).
Qrs : q(A) . — initial_query(_, ID), answer(ID, q(A)).

3The rewriting assumes left-to-right sips (Section 2.2.1).
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from the initial query q(), where A is a vector of distinct new free variables, of the same arity as ¢.
Call all the above rules Type 0 rules.

Consider each rule R; in the program P. Let rule R; be of the form
R h(@): —pi(B) o), -, pu(F):
Let V denote a tuple of all variables that appear in R;.
1. If the body of R; is empty generate the rule
supjo(HId,V,0): —query(h(t), HId).
else generate the rules:

suplyo(H1d, V., py (i) : — query(h(), HId).
supjo(HId,V,11) : — supl;o(HId,V,QH),goalid(G, I1).

Call the above rules Type 1 rules.

2. If the body of rule R; is not empty, for each i, 1 <i <n — 1, generate the following rules:

Supl]Z(HIdavapH-l(m)) P Supj7i—1(HId:V:Il))answer(llapi(t_i))'
sup;(HId,V, I1) . — supl;;(HId,V,Q),goal_id(G,I1).

Call these rules Type 2 rules.

3. If the body of R; is empty generate the rule:
answer(HId, h(t)): —sup;o(HId,V,_).
otherwise generate the rule:
answer(HId,h(t)): —sup;n,—1(HId,V,I1),answer(I1,p,(t,)).

Call these rules Type 3 rules.
4. For each literal p;(t;) in the body of R; generate a rule
query(p;(t;), ID1): —supj ;1 (HId,V,ID1).
Call such rules Type 4 rules.
For each base predicate b; used in the program generate a rule:
answer(ID,b;(X;)): —query(bi(X;), ID), b;(X;).

where X is a tuple of distinct variables, with arity equal to that of b;. Call such rules Type 6 rules.

Note that there are no Type 5 rules above — the numbering is designed to be consistent with the
numbering of rule types used in MTTR rewriting as described in Section 2.3.2.

Rule Qg1 generates an initial_query fact corresponding to the initial query on the program. This fact is
used to generate a query fact using rule Qgro. Rule Qg3 selects facts that are answers to the initial query.

The structure of rule @ g3 ensures that the id field of any answer fact used in a successful instantiation of the
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Qr1 : initial_query(anc(X,Y),ID) : —goal.id(anc(X,Y), ID).

Qr2: query(Q,ID) : — initial query(Q,ID).

Qr3: anc(X,Y) : — initial _query(_, ID), answer(ID,anc(X,Y)).
S1.0: suplyo(HId, X,Y,parent(X,Y)) : —query(anc(X,Y), HId).

S1.1: supyo(HId, X,Y,ID) :— suplyo(HId, X,Y,G),goalid(G,ID).

M1.0 : query(parent(X,Y),ID) : — supy o(HId, X,Y,ID).

R1": answer(HId,anc(X,Y)) : — sup1 o(HId, X,Y,ID), answer(ID, parent(X,Y)).

S2.0: suplao(HId, XY, Z, parent(X, Z)) : —query(anc(X,Y), HId).

S2.1: supso(HId,X,Y,Z,ID) : — suplso(HId, X,Y, Z,G),goalid(G, ID).

M2.0: query(parent(X,Z),ID) : — supso(HId, X,Y,Z,ID).

S2.2: suply(HId, X,Y,Z,anc(Z,Y)) : —supso(HId, X,Y,Z,ID),answer(ID, parent(X, Z)).
S2.3: supaq(HIA,X,Y,Z,ID) : — supls1(HId, X,Y, Z,G),goalid(G, ID).

M2.1: query(anc(Z,Y),ID) i — supa 1 (HId, X,Y, Z, ID).

R2': answer(HId,anc(X,Y)) : — sup21(HId, X,Y, Z,ID),answer(ID,anc(Z,Y))

B1: answer(ID,parent(X1,X2)) : —query(parent(X1, X2),ID), parent(X1, X2).

Figure 2: MGU Magic Rewriting of Ancestor Program

rule must match the id field of the initial_query fact. Hence there is no need to actually unify the answer
with the initial query.

We call the rewritten version of a program P with query @ as we often refer to

PCJQ\/IGU; PCJQ\/IGU as PMGU
when the query ) is understood from the context, or is not relevant to the discussion.

The following is an example of MGU Magic Templates rewriting. We presented a simple version of the
rewriting above in order to keep the proofs simple. If we use the simple version of the rewriting, there are a
large number of rules in the rewritten program for each rule in the original program (although the number
of rules is linear in the number of literals in the original rule). After presenting the example, we discuss how

to improve the rewriting to reduce the number of rules generated.

Example 3.3.1 Suppose we had the program

Ry :anc(X,Y) : — parent(X,Y).
Ry :anc(X,Y) : — parent(X, Z),anc(Z,Y).

Here the only derived predicate is anc, and the only base predicate is parent. Given a query Tanc(X,Y),
the rewritten program is as shown in Figure 2.

The first three rules above are generated from the query. The next four rules are generated from rule R;.
The first two generate a supplementary fact containing an identifier for the query on the first body literal.
The third rule generates a query on the body literal parent(X,Y). The fourth rule generates answers for
the head from answers for the body literal. The rules generated from R, are similar to the above. The last

rule in the program is a Type 6 rule, that generates answer facts for the base predicate parent. O

In an actual implementation, we would generate all the above rules except Qg1 above at compile time
(when we do not have an actual query). At run time, we would generate a fact for initial_query from the

actual query fact, and add it to the database.
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3.3.1 Optimizations of MGU Magic Templates Rewriting

Several optimizations are possible on the above rewritten program. Henceforth we use these optimizations
in the examples in this thesis , but to keep our proofs simple we use the original version of the rewriting in
the proofs. We justify the correctness of the optimizations using simple arguments.

First, we can treat base predicates specially in the rewriting. We apply the following transformation to
the rewritten program, for each base predicate b;. First, each literal answer(ID,b;(t;)) where b; is a base

predicate is replaced by the literal b;(#;). Thus a rule
suplj i1 (HId,V,pit1(tis1)): —sup;ji(HId,V,11),answer(I1,b;(%;)).
is replaced by a rule
suplyis1(HId, V,pis1(fig1)): —sup;i(HId, V, I1),bi(%;).
Next consider rules of the following form:
suplj;—1(HId,V,b;(t;)): —supji—o(HId,V,I1), answer(I1,p;_1(t;i—1)).
supji—1(HId, V,I1): —supl;;—1(HId,V,Q),goalid(G, I1).
We replace these rules by the rule
supji—1(HId,V,0): —supj ;2 (HId,V,I1),answer(I1,p;—1(fi—1)).

Note that any fact generated for answer(I1,b;(t;)) must be generated from a fact for base predicate b;.
For any derivation made using a fact answer(id, b;(...)), there is an equivalent derivation in the modified
program, using a fact for the base predicate b;. Finally, we delete all rules that generate queries on b;, and
we delete the Type 6 rule that generates answer facts for b;.

Second, although as described above, V is a tuple of all variables in the rule, and is used in each of the
supplementary rules, it is possible to optimize the rewriting by storing in each sup;; and supl;; literal only
those variables that satisfy both the following conditions: (1) the variable appears either in the head of the
rule, or in or after the i + 1th literal of the rule, and (2) the variable appears either in the head of the rule,*
or in or before the ith literal in the body of the rule. This optimization has no effect on the facts created
for other predicates, since for each literal any variable that does not satisfy this condition is either not used
anywhere (if the variable does not satisfy condition 1 above), or is guaranteed to be a free variable (if the
variable does not satisfy condition 2 above). This optimization is the same as that described in [BR87b] for

Supplementary Magic Sets rewriting.

3.3.2 Examples

Example 3.3.2 We consider the program in Example 3.3.1 again, and rewrite it using the optimizations
outlined above, to illustrate the effect of the optimizations to MGU Magic rewriting. The rewritten program

is shown in Figure 3.

41f adornment is used, the variable must appear in a bound argument of the head of the rule.
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Qr1 : initial_query(anc(X,Y),ID) : —goal.id(anc(X,Y), ID).

Qr2: query(Q,ID) : — initial query(Q,ID).
Qr3: anc(X,Y) : — initial _query(-, ID), answer(ID,anc(X,Y))
S1.0: supyo(HId, X,Y,0) : — query(anc(X,Y), HId).

R1": answer(HId,anc(X,Y)) : — sup1 o(HId,X,Y,ID),parent(X,Y)

S2.0: supso(HId,X,Y,0) : — query(anc(X,Y), HId).

S2.2: suply(HId, X,Y,Z,anc(Z,Y)) : —supso(HId, X,Y,ID), parent(X, Z).
$2.3: sups.(HId,X,Y,Z,ID) : — supls:(HId, X,Y, Z,G), goalid(G, ID)

M2.1: query(anc(Z,Y),ID) c—supy1(HId, XY, Z,ID).

R2': answer(HId,anc(X,Y)): — sups1(HId, X,Y, Z,ID),answer(ID,anc(Z,Y))

Figure 3: Optimized MGU Magic Rewriting of ancestor program

Qg1 : initial_query(q,ID) : — goal.id(q, D).

Qr2: query(Q,ID) : — initial query(Q,ID).

Qr3: ¢q : — initial query(-, ID), answer(ID,q).
S1.0: suplyo(HId,p(a)) — query(q,ID).

S1.0": supy o(HId,ID1) : — supli o(HId,G),goalid(G, ID1).

M1.0 : query(p(a), ID1) 1 — supy o(HId,ID1).

S1.1: suply(HId, X,p(X)): — sup1o(HId,ID1),answer(ID1,p(a)).
S1.1': supy1(HId, X,ID1) :— suply (HId,X,G),goalid(G,ID1).
M1.1: query(p(X),ID1) :— sup11(HId, X,ID1).

S1.2: suplyo(HId, X,r(X)) : — sup11(HId, X, ID1),answer(ID1,p(X)).
S1.2": supy o(HId, X,ID1) :— supy1(HId,X,G),goalid(G,ID1).
M1.2 : query(r(X),ID1) i — supy o(HId, X,ID1).

R1': answer(HId,q) i —supy o(ID, X, IDl) answer(ID1,r(X)).
S2.0: supso(HId,X) — query(p(X), Hld)

R2': answer(HId,p(X)) — sups o(HId, X).

Figure 4: MGU Magic Templates Rewriting of Program from Example 3.3.3

The effect of the optimizations are as follows. Queries are no longer generated for parent, since parent is
a base predicate, and the Type 6 rule that generates answer facts for parent has been removed. The number
of supplementary rules has decreased since there is no need to compute goal-ids for base literals in the rule

body. The number of variable bindings stored in the supplementary predicates sups o is less than before.
O

Example 3.3.3 We use the following program from Example 3.1.1 to illustrate the differences between

evaluation of the Magic Templates and the MGU Magic Templates rewritten programs.

R1: q:— p(a),p(X),r(X).
R2: p(X).
Query: ?7-q.

The MGU Magic Templates rewritten version of the program, PM&U-MT 'is shown in Figure 4.
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We assume that goal_id generates identifiers 1,2,... in sequence. The evaluation of this program first
generates the following facts (in sequence): initial_query(q,1), query(q,1), supli o(1,p(a)), supio(1,2),
query(p(a), 2). At this stage, rules S2.0 and R2' generate the facts: sups o(2,a) and answer(2,p(a)). Now
rules S1.1,S1.1" and M 1.1’ generate the facts: suply 1(1, X,p(X)), sup11(1, X, 3), and query(p(X), 3).

The evaluation of the Magic Templates rewriting of the program generates corresponding facts query(p(a)),
p(a), query(p(X)), and p(X). Up to this stage, the evaluation of the MGU Magic rewritten program essen-
tially parallels the evaluation of the supplementary Magic rewritten program:

The difference between the two versions of the rewriting is that the MGU Magic rewriting does not use
answer(2,p(a)) in rule S1.2 (corresponding to the literal p(X)), since the supplementary fact sup; 1(1, X, 3)
contains the goal-identifier 3. Rather, only answer(3,p(X)) is used in Rule S1.2. Following this deriva-
tion, facts supli»(1, X, 7 (X)), sup1 2(1, X, 4), and query(r(X),4) are generated. No query fact of the form
query(r(a),n) is generated. On the other hand, the Supplementary Magic rewritten program generates the
fact query(r(a)) followed an iteration later by the facts query(r(X)), and r(a), followed an iteration later by
r(X). MGU Magic rewriting has avoided generating a query (resp., an answer) that is not an mgu-subgoal
(resp., an mgu-answer).

We do not go into details of the evaluation of the MGU Magic rewriting of Example 3.1.2; but note that

(by a similar process as above) the subgoal query(r(X)) is generated, while the subgoals

query(r(0)),. .., query(r(m))

are not generated. The evaluation would derive O(m + n) facts rather than the O(m - n) facts that the

evaluation of the Magic rewritten program would generate. O

3.3.3 Correctness of MGU Magic Templates

We define the following property to make the statements of several of our lemmas and theorems concise.

Property 3.3.1 (MGU-Prop) Let P be any program, and @ a query on P. We say that an evaluation
of Pg"GU has property MGU-Prop if

1. Every fact answer(id, p(a)) generated in the evaluation is such that p(a) is an mgu-answer to a subgoal

on p that has identifier id.

2. Every fact query(p(a), id) generated in the evaluation is such that ?p(a) is an mgu-subgoal with iden-
tifier id. O

The following lemma provides some intuition behind the variable bindings that are stored in the supple-

mentary facts.

Lemma 3.3.1 Let P be any program, and @ a query on P. Consider a step in a derivation sequence for
P(S/IGU such that the evaluation prior to that step has property MGU-Prop.
Suppose a supplementary fact sup; ;(id,v;,idi1) is derived at this step. Let sup;; be a supplementary

predicate generated from a rule R; of P,

Rj:p(®): —=pi(t1),p2(t2), .- ., pu(tn)
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such that the body of R; is non-empty.
Then there are facts answer(idy, p1(ar)), .. ., answer(id;—1, pi—1(a;—=1)), and a fact query(p(s),id), such
that

1. Each id,,,1 < m <1, is the id of an mgu-subgoal generated from 7p(3), and

2. The substitution for variables of R; specified by v;, is in

MGU((p(t).p1(t1), ... pi-1(ti=1)), (p(3), p1(@1), - .., pi—1(@i=1)))

The proof of this lemma, is presented in Appendix A.1.

Theorem 3.3.2 Given any program P and query Q, the bottom-up evaluation of Pé"IGU has property MGU-
Prop. O

The proof is by induction on derivation sequences for PMGU  and the full proof is presented in Appendix A.1.

Theorem 3.3.3 Given any program P and query @Q, the bottom-up evaluation of Pg"GU is complete with
respect to @, i.e., if a fact p that is an answer to () is present in the least model of P, then p is subsumed

by a fact computed in the bottom-up evaluation of PCJQVIGU. O

The proof of this theorem is presented in Appendix A.1. We sketch the idea below. The theorem is
proved by proving the following more general result (p stands for any predicate, in the following): if a fact
query(p(b),id) is available to the evaluation of Pg[GU, then for every fact p(@) that unifies with p(b), and is

generated by a bottom-up evaluation of program P (the original program), evaluation of P’V

generates a
fact answer(id, p(¢)) such that p(¢) subsumes p(@)[mgu (@, b)]. The proof of the above result is by induction
on derivation sequences for the original program P. Consider a step (i.e., a rule along with facts used in the
derivation) in the derivation sequence. Suppose that the theorem holds for all facts used in the derivation
step. An induction going left-to-right on the body of the rule shows that needed query facts are generated
(and the outer induction shows that the corresponding answer facts for these queries are also generated).

These facts are used to generate the required answer fact for the head of the rule.

3.3.4 Discussion

The sequence of results above show that given a program P and a query (), the bottom-up evaluation of

Pg"GU generates only

PCS’IGU is sound, generates all answers to query @ on P, and further, the evaluation of
mgu-subgoals and mgu-answers. By not generating answers that are not mgu-answer, with programs such as
those discussed in Section 3.1, bottom-up evaluation does not generate the subsumed answers that caused it
to be less efficient than Prolog evaluation. Prolog evaluation may still be more efficient due to tail-recursion
optimization, which is not performed by the MGU Magic rewriting. In the next section we describe how to
incorporate the ideas from this section into Magic Templates with Tail Recursion rewriting.

The goal-ids that we generate are very similar to the lcid/lcont scheme used for indexing answers and

goals in QSQR [Vie86, Vie88]. We used them primarily to avoid the use of answers to a query to directly
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answer a more general query. However, we can also use these goal-identifiers for the purpose of indexing
answers and goals, as is done in QSQR. Suppose we have a supplementary fact (resp. answer fact) with a
goal-id value id, and suppose that the fact unifies with the body literal of a (supplementary) rule. Then an
answer fact (resp. supplementary fact) unifies with the other body literal of the instantiated rule if and only
if it has the same goal-id value as the supplementary fact (resp. answer fact). The only if part is easy to see
from the structure of the supplementary rule. The if part follows since the answer fact must be an answer
to a query generated from the supplementary fact since it has the same goal-id.

The ids are ground values, so indexing on the id fields of relations can be done efficiently (in constant
time using hash tables). This form of indexing is useful for linking supplementary facts with answer facts;
any supplementary and answer facts fetched using the index are guaranteed to unify. We have implemented
such an indexing scheme in the CORAL deductive database system [RSS92b].

Semi-Naive evaluation of an MGU Magic Templates rewritten program checks for variants of a goal,
but does not perform full subsumption-checking on goals, due to the definition of the goal_id predicate, and
since a goal id is stored with each goal. If there are two goals that are not equivalent up to renaming,
both goals are stored. Not being able to do full subsumption-checking is a price we pay for keeping track of
which answer is an mgu-answer to which goal. We can extend the definition of the meta-predicate goal_id
to allow some subsumption checking on goals. If a new goal ng is subsumed by an old goal og, we give the
same identifier to ng as we gave to og earlier. Let this identifier be id. It is critical that any query fact
query(ng, id) is eliminated by subsumption-checking before it is used, for otherwise we will generate answers
for id that are not mgu-answers. It is possible to extend the rewriting, as well as the subsumption-checking
in the evaluation algorithm to perform a greater degree of subsumption-checking. We do not go into details

here.

3.4 MGU MTTR Rewriting

In this section we combine ideas from the MGU Magic Templates rewriting and Magic Templates with Tail
Recursion rewriting to get a combined technique, which we call MGU Magic Templates with Tail Recursion
rewriting, or MGU MTTR rewriting for short. In Chapter 4 we compare the semi-naive evaluation of the
MGU MTTR rewriting with Prolog* evaluation (a model for Prolog evaluation), and prove that it makes no
more inferences than Prolog* evaluation.

We describe MGU MTTR rewriting as an extension of MTTR rewriting that incorporates the ideas that
we used in MGU Magic rewriting. The basic extension is to add goal-identifier fields to query, supplementary
and answer predicates. As is the case with MGU Magic Templates rewriting, the goal-identifier field is used
to ensure that an answer that is an mgu-answer for some query will not be used as an answer for a more
general query. For simplicity, we assume that all predicates are tail-recursive when describing the rewriting,

and later indicate how to relax this assumption. MGU MTTR rewriting is described below.

MGU MTTR Rewriting:

Let P be a program, and ?¢q(%) a query on P. The following rewrite rules generate a rewritten program which
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we call PA'PU-T from P and ?q(%).

0. Generate the rules:

Qg ¢ initial _query(q(t),ID,answer(ID,q(t))): —goal_id(q(%), ID)
Qr2 : query(Q,ID, Ans) : — initial query(Q, ID, Ans).
Qrs : q(A4) . — initial_query(_, ID,_), answer(ID, q(A)).

from the initial query ¢(%), where A is a vector of distinct new free variables, of the same arity as ¢.

Call all the above rules Type 0 rules.

Consider each rule R; in the program P. Let rule R; be of the form
Rj : h(t): =p1(t1), p2(t2), - - pn(tn)-
Let V denote a tuple of all variables that appear in R;.
1. If the body of R; is empty generate the rule
supjo(HId,V,0,A): —query(h(f), HId, A).
else generate the rules:

supl;o(HId,V,pi(t1), A) : — query(h(t), HId, A).

supjo(HId,V,11,A) : — supljo(HId,V,G,A),goalid(G,I1).
Call these rules Type 1 rules.

2. If the body of rule R; is not empty, for each i, 1 <i <n — 1, generate the following rules.

Supl],Z(HId7 Vapi-l-l(m)’ A) P Supj,i—l(HId7 V? Ila A)a
answer(I1,p;(t;)).
sup;i(HId,V,I1, A) . — supl;;(HId,V,G, A),goalid(G, I1).

Call these rules Type 2 rules.

3. If the body of R; is empty generate the rule:
A: —supjo(HIA,V,_, A).

Call such rules Type 3 rules.

4. For each literal p;(t;) in the body of R; other than the last literal, generate a rule
query(pi(t:), ID1, answer(ID1,p;(t;))): —supj,i—1(HId,V,1D1).

Call such rules Type 4 rules.

5. If the body of R; is non-empty, generate the following rule:
query(pn(t,), ID1, A): —sup;,—1(HId,V,ID1, A).

Call such rules Type 5 rules.
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Qg1 : initial query(append([1,2,3],[4], X),ID, append([1,2,3],[4], X)) : —
goal_id(append([1,2,3],[4], X), ID).

Qr2: query(Q,ID, Ans) : — initial_query(Q, 1D, Ans).

Qrs : append(X1,X2,X3): —initial_query(_,ID,_),answer(ID, append(X1, X2, X3)).

S1.0: supyo(HId, X,0,A) : —query(append([], X, X), HId, A).
Rl': A :— supro(HId, X,ID, A).

S2.0": suplyo(HId,H,T,L,L1,append(T,L,L1), A) : —query(append([H|T|,L,[H|L1]),HId, A).

S2.0: supao(HId,H,T,L,L1,ID,A) : —suplso(HId,H,T,L,L1,G, A),goal_id(G,ID).
Q2.1: query(append(T,L,L1),ID,A) : —supso(HId,H,T,L,L1,ID, A).

Figure 5: MGU MTTR Rewriting of the append Program
For each base predicate b; used in the program generate a rule:

A: _query(bi(yi): ID: A); bl (Yz)

where X is a tuple of distinct variables, with arity equal to that of b;.

Call such rules Type 6 rules.

Rule Qg1 generates an initial query fact corresponding to the initial query on the program. This fact is
used to generate a query fact using rule Qgo. Rule Qg3 selects answer facts that are answers to the initial
query. Note that since the id field of the answer matches the id field of the initial query, there is no need to

actually unify the answer and query arguments.

Example 3.4.1 The append program is defined as follows.

R1 : append([], X, X).
R2 : append([H|T|, L, [H|L1]) : — append(T, L, L1).

Suppose the given query is ?append([1,2, 3],[4], X). The rewritten program is shown in Figure 5. The
first three rules in the rewritten program are Type 0 rules. Rule §1.0 is a Type 1 rule generated from rule
R1, while R1' is a Type 3 rule generated from rule R1. Rules S2.0' and S2.0 are Type 1 rules generated
from R2, and rule 2.1 is a Type 5 rule generated from R2.

In Section 3.4.1 we discuss some optimizations that simplify the rewritten program, and in Example 3.4.2

we discuss the evaluation of the optimized rewritten program. O

3.4.1 Optimizations of MGU MTTR Rewriting

As in the case of MGU Magic rewriting, we can optimize MGU MTTR rewriting in several ways. For
simplicity, our proofs are for the version of MGU MTTR rewriting without these optimizations.

We can choose to treat some literals as non-tail-recursive, even though they appear as the last literal in
the rule. The changes to the rewriting are fairly straightforward. An alternative way of ensuring that the

last literal in a rule is treated in a non-tail-recursive fashion is by introducing an extra literal true() at the
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end of the rule, and adding true() as a rule (with an empty body). This extra literal does not significantly
change the number of derivations made.

Some of the optimizations described in Section 3.3.1 are applicable to MGU MTTR rewriting. For
instance, we can project out variables from supplementary literals as described in that section.

We can treat base predicates specially in the rewriting, by applying the following transformation to
the rewritten program, for each base predicate b;. First, each literal answer(ID,b;(t;)) where b; is a base

predicate is replaced by the literal b;(Z;). Next rules of the form:
suplji—1(HId,V,b;(t;), A): —supji—2(HId,V,I1, A), answer(I1,p;i—1(fi—1)).
supji—1(HId, V11, A): —supl; ;1 (HId,V,G, A),goal_id(G, I1).
are replaced by the rule:
supji—1(HId,V,0,A) : — supj ;o HId, V,I1, A),answer(I1,p;_1 (ti_1)).

All Type 4 rules that generate queries on b; are deleted. (Note that any fact answer(id, p;(£;)) must
be generated from a fact for base predicate p;. For any derivation made using the answer fact, there is
an equivalent derivation made using the new rule with the original fact for p;.) If there is no Type 5 rule
that generates a query on b;, we delete the Type 6 rule that generates answer facts for b;. We can ensure
that there is no Type 5 rule that generates a query on any base literal b; by treating all occurrences of base
literals as non-tail-recursive.

The query rules that are removed are Type 4 rules. Such rules generate queries of the form
query(pi(t), ID, answer(ID,p;(t)))

that result in facts of the form answer(id, p;(...)) being generated; such rules are not useful once the answer
predicate is replaced by the base predicate p;. This optimization is not applicable for Type 5 rules, since
queries generated by such rules do not generate answers for the base predicate.

Projecting out extra variables from the supplementary predicates can be done as described in Sec-
tion 3.3.1.

We can simplify the set of rules Q g1, Qg2 and Q g3 by generating a query whose second argument is of the
form q(%) rather than answer(ID,q(t)). Thus answers to the original query on the program get generated
directly. The initial_query predicate and the rule Q) g3 are used only for generating answers of the form ¢(a)
for the original query on the program, from facts of the form answer(id, g(a)). We can therefore drop @ gs.

We merge the rules Qgr; and Qg2 to get the following rule:

Qr1 : query(q(t), 1D, q(t)): —goalid(q(?), ID).

3.4.2 An Example

We now consider an example of MGU MTTR rewriting with some of the optimizations described above.

Example 3.4.2 Consider the append program from Example 3.4.1.

R1 : append([], X, X).
R2 : append([H|T), L,[H|L1]) : — append(T, L, L1).
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'm1t query(append([1,2,3],[4],X),ID, append([1,2,3],[4], X)) : —
goal_id(append([1,2,3],[4], X),ID).

S1.0: supyo(HId, X,0,A) : —query(append([], X, X), HId, A).
Rl': A:—supo(HId,X,ID,A).

S2.0": supls o(HId, H,T,L, L1, append(T, L, L1), A) : —query(append([H|T], L,[H|L1]), HId, A).
S2.0: supso(HId, H,T,L,L1,ID, A) : —suploo(HId, H,T,L,L1,G, A),goalid(G, ID).
Q2.1: query(append(T,L,L1),ID, A) : —supso(HId,H,T,L,L1,ID, A).

Figure 6: Optimized MGU MTTR Rewritten version of the append program

Suppose the given query is ?append([1,2,3],[4], X). The optimized MGU MTTR rewritten program is
shown in Figure 6. The main difference between the optimized rewritten program and the MGU MTTR
rewritten program generated in Example 3.4.1 is that the initial query rules Q g1, @r2 and Qg3 have been
replaced by Q';.

In the Semi-Naive evaluation of the above rewritten program, rule Q'5, generates a fact
query(append([1,2, 3], [4], X), 0, append([1, 2, 3], [4], X))

(which corresponds to the given query on the program). The last argument of this fact is the fact to be
instantiated and generated as an answer to the query on the program.

Rules 52.0" and S2.0 generate a supplementary fact containing variable bindings and the identifier for a
query on the append literal in the body of rule R2. (J2.1 generates the actual query fact using this identifier.

Thus after three iterations, a query fact
query(append([2, 3], [4], X), 1, append([1, 2, 3], [4], [1|X]))

is generated. Three iterations later
query(append([3], [4], X), 2, append([L, 2, 3], [4], [1, 2| X]))

is generated.
query(append([], [4], X), 3, append([1,2, 3], [4],[1,2, 3| X]))

is then generated. This fact is used with rules S1.0 and R1’; X gets bound to [4], and a fact
append([1,2,3],[4],[1, 2, 3,4])

is generated. This completes the evaluation of the program.
In this particular example, the goal identifiers stored with the facts are not of particular use. They are
useful if there is a supplementary rule that unifies supplementary facts with answer facts, as is the case for

derived literals that are not the last literal in the body of a rule. O
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3.4.3 Correctness of MGU MTTR Rewriting

For simplicity, we prove correctness with respect to the unoptimized version of MGU MTTR rewriting. We

PMGU_T

define the following property of the evaluation of , and prove it as an intermediate step in proving

correctness.

Property 3.4.1 (MGU_T-Prop) Let P be any program and @) a query on P. We say that an evaluation
of PéVIGU-T has property MGU_T-Prop if

1. Every fact answer(id, a) generated in the evaluation is such that a is an mgu-answer to a subgoal with
identifier id.

2. Every fact query(p(@),idl, answer(id2, q(b))) generated in the evaluation is such that (a) ?p(a@) is an
mgu-subgoal, and id1 is the identifier of ?p(@), and (b) if p(a’) is an mgu-answer to the subgoal ?p(@)
(wlog assume that @ and b share no variables with a'), and 8 = mgu(p(a), p(a’)), then ¢(b)[f] is an

mgu-answer to the subgoal with identifier id2. O

Theorem 3.4.1 Consider any program P with query Q. Then a bottom-up evaluation of PMGU-T phas
property MGU_T-Prop. O

PMGU-T i5 sound, and generates only mgu-

PMGU_T

The above theorem shows that bottom-up evaluation of
answers to mgu-subgoals. The proof is by induction on derivation sequences for , and is presented
in the Appendix A.2. The following theorem shows completeness of bottom-up evaluation of PMGU-T with

respect to the query on the program. The proof of the theorem may be found in Appendix A.2.

Theorem 3.4.2 Given any program P and query @, the bottom-up evaluation of PéVIGU-T is complete with
respect to @, i.e., if the bottom-up evaluation of P generates a fact p that is an answer to @, then p is

subsumed by a fact computed in the bottom-up evaluation of P(S/IGU-T. O

To summarize this section, we have shown the following. Given a program P and a query @, the bottom-
up evaluation of P5'“YU-T is sound, generates all answers to query @ on P, and further, the evaluation
of Pé"IGU-T generates only mgu-subgoals and mgu-answers. Finally, we note that Pé"IGU-T performs tail-

recursion optimization in the same fashion as PT.
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Chapter 4

Bottom-up vs. Prolog™ — A High

Level Comparison

In this chapter, we first present a cost model, which we call Prolog*, of Prolog evaluation of a query, and
a model of a Semi-Naive evaluation of a program. We then use these models to perform a high level
comparison of Prolog* with bottom-up evaluation using MGU MTTR rewriting. The comparison is at the
level of “actions”, and applies to all definite clause programs. We also use these models in Chapter 5 to
perform a more detailed comparison (at the level of time complexity) of Prolog* with bottom-up evaluation
using MGU MTTR rewriting.

The chapter is organized as follows. We present our model of Prolog evaluation in Section 4.1. This model
accounts for tail-recursion optimization. In Section 4.2 we present a model for Semi-Naive evaluation. This
model helps reduce the actions in Semi-Naive evaluation of a program to a series of attempted derivations. In
Section 4.3 we use this model to compare the Semi-Naive evaluation of the MGU MTTR rewritten program
with Prolog* query evaluation.

In our models, we consider only definite clause programs, which do not have negated literals in the bodies

of rules.!

4.1 A Model for Prolog Evaluation

In this section we present a cost model for Prolog evaluation of definite clause logic programs, in order to
make precise the comparison of bottom-up evaluation and Prolog that we make in later sections. Since there
is no such thing as a “standard implementation” of Prolog, we define what we mean by a Prolog evaluation.
The formal model for Prolog computation is a depth-first exploration of the SLD tree for the query on the
program (see e.g. [L10o87]). However, the SLD tree model leaves some important aspects of the evaluation
unspecified. For instance, it does not specify if tail-recursion optimization is used or not.

We present the Prolog* cost model of Prolog query evaluation below. The main purpose of this cost

model is to provide a lower bound on the cost of Prolog evaluation. Hence we take the liberty of ignoring

IWe can extend this class to cover certain restricted forms of negation such as modularly stratified negation, by using
extended bottom-up evaluation techniques such as Ordered Search [RSS92a]. Details are beyond the scope of this thesis.
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details that are not critical for our cost analysis. Prolog* is intended to model Prolog evaluation with tail
recursion optimization, but without using any other optimizations that affect the number of subgoals set up,
or the number of answers generated.?

If a Prolog* evaluation is not complete, or does not terminate, bottom-up evaluation can certainly do
no worse. Hence, we only consider Prolog* evaluations that terminate and are complete. This also has the
benefit of simplifying our proofs considerably. The Prolog* model of subgoal evaluation ignores many details
of control flow. In particular, the depth-first search strategy used by Prolog is not reflected in the model.

Each subgoal g set up in Prolog* evaluation has a “return-point” r that is either the subgoal itself, or an
ancestor of the subgoal. The subgoal r is referred to as the return-point subgoal for g. The “return-point”
indicates to which subgoal control must return when an answer is generated for the subgoal, and is used
to implement tail-recursion optimization (Sections 2.3 and 4.1.1). (In case of failure to generate an answer,
control does not return to the return-point subgoal; rather the backtracking mechanism decides which goal
to retry. The details of control are irrelevant to our model, and we ignore them.) In the course of generating
an answer to a return-point subgoal r, the subgoal is progressively instantiated. Thus when some subgoal
g’ is generated, such that the return-point of ¢’ is r, the variables in r have been instantiated. Let the
instantiated version of r at the point when ¢’ is generated be r’. Then r’ is said to be the instantiated
return-point subgoal of ¢'.

As a base case, the return-point as well as the instantiated return-point subgoal of the initial query on
the program are defined to be the initial query itself. If a subgoal g is generated from a literal other than
the last literal in the rule, both its return-point and its instantiated return-point subgoal are set to g. If
a subgoal g is generated from the last literal of a rule, its return-point is defined to be the return-point of
the subgoal on the head of the rule. Let the return-point subgoal of g be . The instantiated return-point

subgoal of g is defined to be the instantiation of r at the point when g was generated.

Definition 4.1.1 (Prolog*) We define the Prolog* cost model of query evaluation through the procedure
“Prolog* Evaluation of a Subgoal” shown below. We assume that Prolog* evaluation proceeds till all answers
are generated (i.e., Prolog* does not stop at the request of the user), and that Prolog* evaluation terminates
and is sound.

The return-point as well as the instantiated return-point subgoal of the initial query on the program are

defined to be the initial query.

Prolog* Evaluation of a Subgoal:

Suppose we have a subgoal g =?p(%), with instantiated return point subgoal gr, and a set of rules defining p.
For each rule R defining p, Prolog* does the following:

Let rule R be of the following form:

R:p(to): —q1(t1), q2(t2), - - -, qn(tn).

1. Prolog* first attempts to unify the subgoal g with the head of R. If the unification fails, the attempt to

solve g using R fails.

If unification succeeds, let 6 be the most general unifier of g and p(%o).

2For instance, we disallow Intelligent Backtracking (see eg. [CD85]).
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2. If the body of the rule is empty, Prolog* evaluation returns an answer gr[f] to the return-point of g.
Otherwise, next_literal is set to the first literal in the body.
3. Prolog* evaluation generates a subgoal next_literal[f].

The return-point and the instantiated return-point subgoal of the generated subgoal are set to the subgoal
itself, if next_literal is not the last literal in the body of the rule, or if tail-recursion optimization is not

used for the last literal.

Otherwise, the return point of the subgoal is set to the return point of g, and the instantiated return point

subgoal is set to gr[f].

(Conceptually, in the first case, € is saved at this point, to be used when an answer is returned for the
subgoal. In practice in Prolog, the use of depth-first search with backtracking implies that we do not have

to physically save #. We do not assign any cost to this conceptual “saving” of 6.)
4. Prolog* then computes answers to the subgoal.

If next_literal is not the last literal in the body of the rule, or if tail-recursion optimization is not used for

the literal, answers are returned for the generated subgoal.
5. For each answer a returned for a subgoal [[] on a literal I, Prolog* evaluation does the following:

Conceptually, a must be unified with [[f], where 6 is the binding saved (conceptually) in Step 3. The
unification is done implicitly by Prolog evaluation when generating the answer a. (We do not assign any

cost to this conceptual unification.) Let §' be the mgu of a and {[f].

If there are more literals in the rule body, next_literal is set to the next literal in the rule body, and 6 is

set to §'. Computation proceeds as in Step 3.

If there are no more literals in the body of the rule, the return-point subgoal has been solved. gr[f] is

returned as an answer to the return-point of g.

The above model is a simplified description of Prolog evaluation, and omits many details such as how
control flow is directed. The details of control flow are important as far as the actual costs of Prolog evaluation
are concerned. However, since our goal is to obtain a lower bound for the cost of Prolog evaluation, and
the cost of implementing control flow is not counted in our model, we can ignore the details. We can get
the depth-first search strategy used by Prolog by using the procedure describing subgoal evaluation as a
coroutine. Control passes to the procedure whenever a (new) answer is required for the subgoal, and the
procedure returns control to its calling point when an answer is generated, and also when no (more) answers
can be generated.

The important point to note is that each of the steps described is assumed to take Q(1) time, and
the computation can be viewed as a sequence of such steps. We refer to each of these steps in a Prolog*
evaluation as an action performed in the evaluation. We often view the step where an answer is returned to

a return-point subgoal as two actions — the first action being the “generation of an answer” and the second
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action being the return of the answer to the point where the subgoal was generated. This view is valid, since
we assign Q(1) cost to each step, and the sum of their costs is still Q(1).

The above model is used in Section 4.3 to show that Prolog* evaluation of a query performs at least as
many actions as the number of attempted derivations made by bottom-up evaluation of the MGU MTTR
rewriting of the program and the query.

To incorporate the time cost of evaluation into the comparison, we need to assign costs to each step.
We assume that all the steps above, except the unification of a query with a rule head in Step 1, take unit
time. (This assumption provides a lower bound on their cost.) Step 1 performs a unification, and may
take more than O(1) time; when comparing Prolog* evaluation with bottom-up evaluation, we show that for
each unification action performed by bottom-up evaluation of an MGU MTTR rewritten program, Prolog*

evaluation performs a corresponding unification.

4.1.1 Tail Recursion Optimization

Tail-recursion optimization and its benefits are described in Section 2.3. In many implementations of Prolog,
tail-recursion optimization would be performed only if the last literal in a rule was recursive with the head,
since this is case where it offers the maximum benefit. We assume for simplicity that it is done always.
Further, in many implementations of Prolog, tail-recursion optimization is actually done only under more
stringent conditions, when the space allocated for the call to R can be deallocated. Such an optimization,
although often loosely associated with tail-recursion optimization, is better termed last-call optimization
[MW88]. Last-call optimization helps reduce space utilization; however, we concentrate on time utilization

in this thesis, and do not take the space savings into account in our model.

4.2 A Model for Semi-Naive and Not-So-Naive Evaluation

We now consider a model for the actions in Semi-Naive and Not-So-Naive bottom-up evaluation of an MGU
MTTR rewritten program (or an MGU Magic Rewritten program). We assume that the body of each rule
has at most two literals. Rules in MGU Magic and MGU MTTR rewritten programs are in this form. We
use the term evaluable predicate to refer to a base predicate whose set of facts is not stored explicitly, but is
computed using imperative code.

Let us denote the rewritten program as PM@U-T Step 1 of Algorithm SN_Iterate (described in Sec-
tion 2.2.3) derives facts using rules that have no derived predicates in their bodies. There is only one such
rule, Q g1, and it performs only one derivation.

We model the actions performed in Step 2.1 of Algorithm SN_Iterate as a sequence of uses of derived
facts to derive other facts, as shown below.

As noted in Section 2.2.3, we assume that a left-to-right nested-loops join with indexing is used to evaluate
Semi-Naive rewritten rules. Consider a call Apply (Rs,I) in Step 2.1 of Algorithm SN_Iterate. Procedure
Apply performs a nested-loops join. Procedure Make_Inferences(Rs, p;(a;)), shown below, is a model of
the actions in a single iteration of the outer loop of the nested-loops join. The model also incorporates

subsumption-checking actions.
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Make_Inferences(R, p;(a;)).

1. Standardize apart p;(a;) from R, i.e., make variable names in p;(a;) distinct from those in R by renaming

variables if required.?

2. Compute an mgu 6, of (the renamed version of) p;(@;) with the first literal in the body of (the renamed

version of) R.

3. If R has only one body literal, set 63 to 6;.
/* Else R has two body literals */

Else perform the following actions:

(a) Let the second literal of (the renamed version of) R be p;(t;). Index the relation p;, to fetch facts that
unify with p;(#;)[f:1] (in case the predicate is an evaluable predicate, a query is set up and evaluated
instead).

(b) When each fact is fetched, standardize it apart from the (renamed versions of) R and p;(a@;).

(c) Compute an mgu 6 of the fetched fact and p;(t;)[61]. Let 3 = 6,[65].

4. Let the head literal of (the renamed version of) R be p(t). Create a fact p(#)[f3] for each mgu 65 as above.

5. Check if p(t)[3] is subsumed by previously generated facts for p. If it is not subsumed, discard all p facts
that are subsumed by it, insert it into the p relation, and mark it as a newly derived fact. (In the case of
Not-So-Naive evaluation, the subsumption check is omitted, and the fact is inserted into the relation even

if it is subsumed.) The newly derived fact p(#)[f5] is not used for making inferences until the next iteration.

We split the computation described above into ‘attempted derivation steps’, which we define below. This
lets us allocate the cost of evaluation to different attempted derivation steps. We split attempted derivation
steps into two cases, depending on whether the derivation is successful or unsuccessful. In the case where
successful derivations are made using a fact, we split the computation into ‘successful derivation steps’,
one for successful derivation. In the case that no successful derivation is made using a fact, we have an

‘unsuccessful derivation step’. We define these formally below.

Definition 4.2.1 (Derivation Steps) Consider a call Make_Inferences(R, p;(@;)). The following actions
are performed in the call.

Steps 1 and 2 of Make_Inferences attempt to unify the fact p;(a;) with the literal p;(%;).

1. If the unification in Step 2 of Make_Inferences fails, the actions performed by Steps 1 and 2 with the

given fact p;(a@;) constitute an unsuccessful derivation step.

2. If the unification in Step 2 of Make_Inferences succeeds, and rule R has two body literals, the other
literal in the body of R is indexed.

(a) If no fact is fetched by the indexing, the actions performed by Steps 1, 2 and 3a with the given

fact p;(@;) constitute an unsuccessful derivation step.

3We can standardize apart R and p;(@;) by renaming one of them. We do not specify which one.
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(b) If facts are fetched by the indexing, for each fetched fact p;(a@;), Steps 3b, 3c, 4 and 5 are
performed.
The actions performed in Steps 1, 2 and 3a with fact p;(a;), and the actions in Steps 3b, 3c, 4

and 5 with facts p;(@;) and p;(a;) constitute a successful derivation step.

3. If the unification in Step 2 of Make_Inferences succeeds, and rule R has only one body literal, a head
fact is created, and inserted into the appropriate relation. The actions performed in Steps 1, 2, 4 and

5 with the given fact p;(a;) constitute a successful derivation step.

A successful derivation step in an SN evaluation can be identified? by the rule R used in the step, and the
fact used for each body literal of R. Each successful derivation step has associated with it the fact derived
by the derivation step.

An unsuccessful derivation step in the evaluation can be identified by the rule R used in the step, and
the fact p;(a;).

An attempted derivation step is either a successful or an unsuccessful derivation step.

In the case of NSN evaluation, we assume that facts are labeled with integers.” We extend the definitions
above, to the case where the facts used in the derivation steps are labeled facts, and thereby define labeled
successful derivation steps, labeled unsuccessful derivation steps, and labeled attempted derivation steps. We

then identify® successful and unsuccessful derivation steps as above, but using labeled facts. O

For all Semi-Naive rewritten rules other than the rule gy, the first literal in the rule is a literal of
the form dp. Hence, any fact used for such a literal must be ‘newly derived’ (i.e., derived in the previous
iteration), and all derivation steps (other than those involving rule Q1) use a ‘newly derived’ fact for the
first literal.

The actions performed in Steps 1, 2 and 3a may be identified with several successful derivation steps,
and may hence be double counted. When counting the cost of evaluation (in Section 5.7) we recognize this,
and avoid double counting.

The definitions of derivation steps above are in terms of rules in the Semi-Naive rewritten version of
PMGU-T We often talk of derivation steps using rules from PM@U-T rather than from the Semi-Naive
rewritten version of PMGU-T  Whenever we do so, we specify which literal is used first in the derivation
step, and this uniquely identifies which Semi-Naive rewritten version of the rule is used.

All the actions in making inferences, given a fact for the first literal in a Semi-Naive rewritten rule, have
been allocated to attempted derivation steps as described above. We still have to account for two other
kinds of actions in Semi-Naive evaluation: (a) checking if there is a fact for the first literal in a Semi-Naive
rewritten rule — this is done once per rule in each iteration and (b) the Semi-Naive update steps, executed
once in each iteration. We now consider how to map the costs of these actions to attempted derivation steps,

so that we need not consider the costs of these actions in the rest of the thesis.

1. The cost of checking if a rule can be used in Step 2.1 of SN_Iterate in an iteration is O(1). Since

we assumed that the number of rules is a constant, we map this cost to the cost of the derivation of

4Uniquely, as we shall show.
5The integer labels are used to distinguish repeated occurrences of a fact, since subsumption-checking is not performed.
6Uniquely, as we shall show.
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some (labeled) fact in some relation of the form §p°'?. (There must be some such fact, else Semi-Naive
evaluation would have terminated after the previous iteration.) Since any such fact is present in the ¢
relation for at most one iteration, the cost of the derivation does not increase by more than a constant,

and the increase can be ignored.

2. Subsumption checking actions have been accounted for by the model above. Apart from subsumption-
checking, Semi-Naive update actions move facts from one relation to another. This is done at most
a constant number of times per fact, and we assume this can be done at unit cost per fact (which is
reasonable, assuming hash-based indices are used). We map the cost of moving a fact between relations
to the derivation step that derived the fact; this does not increase the cost of the derivation step by

more than a constant, and can be ignored.

Thus the cost of Semi-Naive evaluation is at most a constant times the cost of attempted derivation steps
(assuming that the size of the program is a constant). In the rest of this thesis, we shall treat the cost of

attempted derivation steps as synonymous with the cost of Semi-Naive evaluation.

4.2.1 The Non-Repetition Property

Due to Semi-Naive rewriting, no attempted derivation step is repeated within an iteration. Every attempted
derivation uses at least one fact from a ¢ relation. The Semi-Naive updates ensure that each fact is in a
0 relation for precisely one iteration. Hence, Semi-Naive evaluation has the property that no attempted
derivation step is repeated in the evaluation. We call this property of Semi-Naive evaluation the non-
repetition property (see e.g., [MR89, RSS90]).

Not-So-Naive evaluation has a weaker non-repetition property. Each fact can have several occurrences,
derived by different successful derivation steps. In the case of Not-So-Naive evaluation, we give an identifier
to each successful derivation step, and label each occurrence of a fact with the identifier of the derivation
step that derived it. There can thus be two or more occurrences of a fact, but each occurrence has a distinct
label. Each labeled fact is in a § relation for exactly one iteration. Not-So-Naive evaluation has the property
that no labeled attempted derivation step is repeated in the evaluation. We formalize this property through

the following theorem.

Theorem 4.2.1 (Non-Repetition) Consider a Semi-Naive (resp. Not-So-Naive) evaluation of a program.

No attempted derivation step (resp. labeled attempted derivation step) is repeated in the evaluation. O

4.2.2 Discussion

We made the assumption above that the size of the program is a constant; we do not take the size of
the program into account in our time complexity analysis, even though it may contribute to the cost of
evaluation. There are essentially two places where this assumption is used. First, each iteration of Semi-
Naive evaluation applies all the rules, but may find the § relations empty for all but one rule. To keep the
number of rule applications proportional to the number of attempted derivations, and independent of the
number of rules in the program, we can devise a rule indexing scheme. We discuss the rule indexing scheme

briefly in Section 5.9. Second, there may be many relations, but semi-naive updates may be required only for
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a few of them, if only a few facts are derived in each iteration. To avoid the cost of checking which relations
need to be updated, we keep track of which § relations are non-empty, and perform Semi-Naive updates only
for these relations. Thus the cost of updates can be kept proportional to the number of facts derived, and

independent of the number of predicates in the program.

4.3 Bottom-Up Evaluation vs. Prolog® — Number of Inferences

In this section we present a high-level comparison (based on the number of “actions” performed) of bottom-
up evaluation using MGU MTTR rewriting with Prolog* evaluation. In Chapter 5 (Section 5.7), we extend
this comparison by taking into account the cost of each action.

The comparison is performed essentially by mapping each attempted derivation in bottom-up evaluation
to a corresponding action of Prolog* evaluation, and showing that not more than a constant number of
attempted derivations map on to the same Prolog* action. We prove this by showing how to construct such
a mapping, given a derivation sequence for the MGU MTTR rewritten program.

In order to specify the mapping, we assume that each attempted derivation step has a unique identifier,
and we label facts derived by SN evaluation with the identifier of the derivation step that generated the fact.
In a similar fashion, we label actions (such as generation of a query or answer) performed by Prolog* in order
to distinguish between multiple occurrences of the action. Thus the mapping is in terms of labeled derivation
steps; if a derivation step is repeated (as is the case if subsumption-checking is not performed), each repetition
of the step uses facts with different labels, due to the non-repetition property of NSN evaluation.

The mapping is somewhat intricate, and we build it up inductively. We assume that we have a mapping
with the required properties for an initial part of a derivation sequence, and show how to extend it in a
manner such that the required properties are preserved. We present details of the mapping in Appendix B.
The mapping is defined using a case analysis on the types of rules in the rewritten program. The mapping

for Type 2 rules of the form
supli(...): —supji—1(...),answer(ID,p(...)).

is the critical part of the mapping. We show that for each successful derivation using such a rule with some
facts supj,i—1(hid, 7, id, ans) and answer(id, p(a)), (1) Prolog* evaluation returns an answer p(a@) for a query
on the ith literal of rule R;, and (2) the bindings of rule variables in the Prolog* evaluation when the query
was generated are the same as the bindings stored in 7, and (3) the (instantiated) return-point query in
Prolog* evaluation, when the query on the i’th literal was generated, is equal to ans. We then have the

following theorem, whose proof is presented in Appendix B.

Theorem 4.3.1 Let P be a definite clause program, and Q be a query on the program. There are constants
c1 and co (that may depend on the size of P) such that the following is satisfied.

Let PMGU-T be the MGU MTTR rewriting of (P,Q). Given any database, let the number of labeled
attempted derivation steps performed by a Semi-Naive evaluation (with or without subsumption checking)
of PMGU-T be . and let the number of actions performed by Prolog* evaluation of query Q with the same

database be m. Thenn < ¢y -m+cy. O
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There may be many actions of Prolog* evaluation that are not in the image of any attempted derivation
step of bottom-up evaluation. Thus, the theorem helps establish an upper bound on how much worse (in
terms of number of actions) Semi-Naive evaluation using MGU MTTR rewriting can be compared to Prolog*
evaluation. In contrast, no such bound exists for the opposite direction. For queries on the following simple
program to detect reachability in a graph, Prolog* may not terminate if there are cycles in the edge relation,

whereas Semi-Naive evaluation of Py;gy_r always terminates if the edge relation is finite.

reachable(X,Y) : — edge(X, Z),reachable(Z,Y).
reachable(X,Y) : — edge(X,Y).
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Chapter 5

Evaluation of Non-Range-Restricted

Programs

In this chapter we consider the efficient evaluation of programs that have been rewritten using MGU MTTR
rewriting. In Section 5.1 we motivate the need for bottom-up evaluation of programs that generate non-
ground facts; to the best of our knowledge, no efficient bottom-up evaluation schemes for such programs were
known in the past. We develop a term representation using “persistent versioned” binding environments
(Section 5.3). We then develop an evaluation technique that keeps extra information with facts, and uses
this information to reduce the cost of some unifications (Section 5.4).

The evaluation technique we develop is quite efficient in terms of time complexity. We show in Section 5.7
that given a program and a query, if Prolog* evaluation of the query on a database takes time ¢, the bottom-
up evaluation of the MGU MTTR rewritten program using our evaluation technique, on the given database,
without subsumption checking, takes time O(¢-loglogt). (The size of the program is not taken into account in
the time complexity measure.) If subsumption checking is used, in many cases bottom-up evaluation is much
more efficient than Prolog query evaluation. We discuss some extensions of our techniques in Section 5.9.
In Section 5.10 we summarize earlier results of ours on the evaluation of a restricted class of programs that

have been rewritten using MTTR rewriting. We discuss related work in Section 5.11

5.1 Introduction

Programs that generate non-ground terms are of considerable importance. For instance, difference-lists! are
used in Prolog to append lists in constant time; they are an instance of a more general technique for creating
data structures top-down, filling in “holes” as computation proceeds. One such application is the parsing of
Definite Clause Grammars — it is natural to create the outer structure of the parse tree, and fill in fields as
computation proceeds. By doing so, attributes of one part of the parse tree are available for reference when
another part of the tree is being constructed. Meta-interpreters, partial evaluators, abstract interpreters and

other such programs operate on data structures that contain variables. Memoing of goals and answers is very

IDifference lists are a form of representation of lists. dlist(L, X) is such that L is a list that contains variable X at the end,
rather than “nil”. See Example 5.1.1 for a more detailed description.
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important for some of these programs [War92]. For instance, chart parsing of DCGs is naturally supported
using memoing, and can be much more efficient than top-down parsing in some situations. It is therefore
necessary to support efficient memoing evaluation of programs that generate non-ground facts.

In the absence of non-ground facts, bottom-up evaluation using MGU MTTR rewriting is as fast (up to
a data-independent constant factor) as Prolog, as discussed in Sudarshan and Ramakrishnan [SR92b] (see
Section 5.10). However, for logic programs that can generate non-ground facts there is a significant overhead
per inference for unoptimized bottom-up evaluation techniques; the overhead is no longer within a constant
factor of Prolog.

In this chapter we present an efficient evaluation mechanism for programs that have been rewritten
using MGU MTTR rewriting. This evaluation mechanism is of particular use for programs that generate
non-ground facts. We call this evaluation mechanism Opt-NG-SN evaluation (which stands for Optimized
NonGround Semi-Naive evaluation). We use the term Opt-NGBU query evaluation for the query evaluation
mechanism that first rewrites programs using MGU MTTR rewriting, and evaluates the rewritten program
using Opt-NG-SN evaluation.

Using the Opt-NGBU evaluation mechanism, we show the following: modulo the cost of subsumption-
checking, the overhead of actually memoing goals and facts and “looking up” the answers that correspond
to a given goal is quite small (O(loglogm), where m is bounded by the cost of Prolog evaluation). (To be
more precise, we show that given a program and a query, if Prolog evaluation of the query on a database
takes time ¢, then Opt-NGBU query evaluation on the given database, without subsumption-checking, takes
time O(t - loglogt). The size of the program is not taken into account in the time complexity measure.)
In essence, our results show how to memo non-ground facts “almost” as efficiently as ground facts. An
important consequence is that memoing techniques can always perform “almost” as efficiently as Prolog
(often, much better). This result assumes that the size of the program (but not the database) is a constant.

Checking whether a goal (similarly, an answer) is already memoed can be expensive. The cost of
subsumption-checking must be balanced against the cost of recomputation. (See Section 5.8 for a more com-
plete discussion.) Opt-NGBU evaluation can be faster if some redundant computation is avoided through
subsumption-checks; in fact, the time complexity of evaluation may be significantly better. There are many
programs where Prolog evaluation and Opt-NGBU evaluation without subsumption-checking run for ever,
but Opt-NGBU evaluation with subsumption-checking terminates.

In the light of these results, the biggest difference between Prolog and Opt-NGBU evaluation without
subsumption-checking is that between “pipelining” and “materialization” [CGK89]. The constants are higher
for memoing since facts and goals are explicitly created and stored, but there are benefits in many cases due
to avoided recomputation.

However, we note that even without subsumption-checking, Opt-NGBU evaluation has several benefits.
Opt-NGBU evaluation is complete for definite clause programs — including programs with function symbols
— even without subsumption-checking. Further, much of the repeated computation in iterative deepening (a
technique used to make Prolog evaluation complete; see, e.g. [0’K90]) is avoided, even without subsumption-
checking.

As an example of the power of the optimized evaluation technique, the bottom-up evaluation of append

with non-ground lists of length n is performed in time O(n) by our optimized techniques, as against O(n?) by
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unoptimized bottom-up query evaluation. Top-down evaluation techniques that perform memoization, e.g.
QSQR extended to deal with non-ground terms, are also quadratic. (These times are under the assumption
that occur-checks and subsumption-checking — the later being unnecessary for this program — are omitted.)

We present an example (Example 5.9.2) of the benefits to be had from the use of difference-lists (which

are non-ground structures) in a program that is best evaluated bottom-up.

5.1.1 A Motivating Example

We now consider an example that motivates the results in this chapter, and illustrates the main issues

involved.

Example 5.1.1 Difference lists (see e.g., [0°’K90]) are a representation for lists. The following is an example

of a difference list.
dlist([1]2]X], X)
It represents the list [1,2]. Difference list append is defined by following rule:
dappend(dlist(X,Y),dlist(Y,V),dlist(X,V)).
A goal
?dappend(dlist([112|X], X), dlist([3|4]Z], Z), Ans)
would unify with the head of the above rule to give the structure
dappend(dlist([1|2|3]4|Z], [3]4|Z]), dlist([3|4| Z], Z), dlist([1]2|3|4| Z], Z) )
Thus Ans gets bound to
dlist([1|2]3|4|2], Z)

which is in the required format. Answering a query on dappend takes constant time in Prolog. Note that
the first argument of dappend is changed when the query is solved.?
Let us now consider what happens if we use difference lists with bottom-up evaluation. Suppose we have

the following rule for computing paths, as part of a larger program:
path(X,Y, L) : — path(X, Z, L1),edge(Z,Y), dappend(L1, dlist([Z|Y|V], V), L).

The path facts store potentially long paths represented as difference lists. The first problem in making
an inference is that if we directly use the difference list stored in the given path fact and try to append an
edge to it, the difference list in the given path fact will get damaged, and cannot be used to make further
derivations. The evaluation mechanism (Opt-NG-SN evaluation) presented in this chapter uses a term
representation with binding environments for variables, and a “persistent versioning” scheme to address the

problem of modifying shared variables without damaging stored facts (Section 5.3).3

2dappend is destructive in the sense that it changes its first input argument. In this example, the first argument can still be
interpreted as representing [1,2] by “subtracting” the second list, but it cannot be meaningfully used in further calls to dappend
until the destructive update is undone during backtracking.

3By not damaging stored facts, we get the same effect as undoing of the update on backtracking. However, persistent
versioning does not solve the problem that the first argument of dappend is changed after unification, This problem is inherent
in the difference list representation, and is present with top-down evaluation too.
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The second problem is less obvious, and is present with Magic rewriting as well as with its variants (MT-
TR, MGU Magic Templates and MGU MTTR rewriting, and Alexander Templates). The Supplementary

Magic rewriting of the given rule (ignoring queries on path and edge) is as follows:

R1:sup1o(X,Y,Z,L,L1) : —query(path(X,Y, L)), path(X, Z, L1),edge(Z,Y).

R2 : query(dappend(L1, dlist([Z|Y|V],V),L)) : —sup1,0(X,Y, Z, L, L1).

R3 : path(X,Y,L) : — sup1o(X,Y, Z, L, L1), dappend(L1,dlist([Z|Y|V], V), L).

R4 : dappend(dlist(X,Y),dlist(Y,V),dlist(X,V)) : —
query(dappend(dlist(X,Y), dlist(Y, V), dlist(X,V))).

Let us concentrate on the generation of queries and answers on dappend. The third argument of the
supi o fact is a list of nodes on a path, and can be quite large. From the sup; o fact we generate a query on
dappend. In general, we have to rename variables in facts and rules before unification, in order to avoid name
clashes. We can be smart and rename the rule and the smaller facts, and avoid renaming the larger facts.
Such a renaming works well for rules R2 and R4, and we can create an answer to the query on dappend (we
use the “persistent versioning” scheme to avoid damaging the stored path fact while doing this). But now we
have to unify two potentially large facts, one for sup; o and one for dappend with rule R3. Renaming either
fact can be linear in the size of the fact. After renaming, the problem of actually unifying the renamed facts
with the rule still remains.

We call the step of unifying an answer fact and a supplementary fact with a rule body as answer-return
unification. Prolog evaluation does not perform any unification when an answer is returned to a query, and
hence does not perform any unification equivalent to the answer-return unification. In general, unification
takes time linear in the size of the terms. (For the case of ground terms, we can use hash-consing to store
precomputed values to speed up unification; no such technique is known for the general case.)

To reduce the cost of answer-return unification, Opt-NG-SN evaluation stores part of the state of the
computation along with each fact, and maintains information about the state through auxiliary identifiers
stored with facts (Section 5.4). Using the stored state information, it is able to reduce the time cost of
answer-return unifications performed by bottom-up evaluation to almost a constant per unification in many

cases (in all cases, if subsumption-checking is not used). O

Table 2 shows a comparison between various costs in unoptimized bottom-up evaluation of an MGU
MTTR rewritten program and Prolog evaluation. After presenting our optimization techniques, we present

a similar comparison of Prolog with optimized bottom-up evaluation.

5.2 Basics

In this chapter we consider query evaluation on definite clause programs.* As the first stage of bottom-up
query evaluation, the given program and query are rewritten using MGU MTTR rewriting (Section 3.4).

Our evaluation mechanism is designed to evaluate the rewritten programs efficiently.

4We can extend this class to cover certain forms of negation such as stratified negation [CH85, ABWS88] or modular nega-
tion [Ros90], by using our optimizations in conjunction with evaluation techniques such as “Ordered Search” [RSS92a]. We do
not discuss this issue.
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| Operation | Bot. Up (No Opt.) | Prolog |
Unification
a. Answer-return O( size of terms ) 0O(1)
b. Other O( size of terms ) O( size of terms )
Indexing
a. Answer-return O(_ facts size of fact ) | O(1)
b. Other facts Size of fact ) | O3, ., size of fact )
Subsumption Checking — —
Creation of head fact O( size of fact ) O(1)
(Cannot instantiate
shared variables)

Table 2: Bottom-Up Evaluation using MGU MTTR rewriting vs. Prolog

We note that programs rewritten using MGU MTTR rewriting contain the meta-predicate goal.id. The
semantics of such programs was discussed in Section 3.2. We use the term program predicate to denote base
predicates (i.e. those defined in a database) as well as derived predicates (i.e. those defined in the program);

meta-predicates (i.e., the goal_id predicate) are not considered program predicates.

5.2.1 Preprocessing

To make our discussion and analysis simpler, we assume that all non-equality literals in rules of the program
have as arguments only distinct free variables. This can be achieved by the following straightforward trans-
formation, without any increase in the time complexity of either Prolog evaluation of bottom-up evaluation.

Suppose we have a rule:

R :p(tog,to2, .. tomo) : — @it b, -y tint)s @2(t2,t2.2, s tam2)s oo s Gk (B, th2s oo s thnk)-

We transform the above rule into the following rule, where each X ; is a new variable, distinct from any
variables in the rule.
R: p(Xo1,X02,..,Xon0): —Xo0,1 =to,1,X0,1 =t0,2,-5X0,n0 = to,n0;
Xig=t,, X110 =t . Xipt =tin, (X110, X012, .0, X1 n1),
Xog =ta1,X01 =t22,..., Xon1 =ton1,q2(X2,1, X22,..., Xo n2),

It is straightforward to verify that this transformation does not result in any increase in the time com-
plexity of Prolog* evaluation.® In particular, it does not affect the use of tail-recursion optimization. This
transformation introduces equality literals. We assume that equality is a base predicate with a single fact
“=(X,X)”. Further, we assume queries are not generated for the equality predicate, and instead the opti-
mization of MGU MTTR rewriting for uses of base predicates (described in Section 3.4.1) is applied to occur-
rences of the equality predicate. This optimization allows the replacement of occurrences of answer(ID, q(%))
by ¢(t) in the bodies of rules, if ¢ is a base predicate. No queries are generated for literals where this re-

placement is performed.

5We assume that the size of the program is fixed. Thus, although the above transformation can defeat rule indexing
techniques used by Prolog, the loss of speed is by at most a constant factor.
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As a result of this preprocessing, body occurrences of literals of the form sup; ;(t;), answer(ID, p;(t;))
or query(p;(t;), ID) are such that #; is a tuple of distinct variables. This preprocessing is not critical, but

simplifies the discussion considerably.

5.3 Representation of Terms and Facts

The representation used for terms is important in bottom-up evaluation. Subterms are shared between
different goals and answers, both in bottom-up evaluation and in Prolog evaluation. Prolog uses a tuple at a
time backtracking strategy, and hence it can destructively modify variable bindings, and on backtracking it
can undo the modifications in order to perform further derivations. On the other hand, bottom-up evaluation
can generate several facts from a given fact (for instance, several query facts may be generated from a a
given query fact), and the facts may need to co-exist. Thus several instantiations of a variable may also
need to coexist. Hence destructive modification of variable bindings is ruled out. We note that this problem
also exists for non-depth-first evaluation strategies such as parallel implementations of Prolog. We describe
below the term representation we use in our evaluation mechanism. The core of the representation is a
“fully-persistent versioned” binding environment for variables.

A binding environment (bindenv) stores bindings for variables. A variable in bindenv may be free, or
may be bound to a structure structure’ (which is possibly an atomic value). Variables within structure’ are
also interpreted in bindenv. A bindenv differs from a substitution in the way in which it is interpreted. A

variable X in the binding environment
(X = f01),Y - a}

is interpreted as being bound to f(a) by dereferencing variables completely, whereas a variable X in a
substitution {X/f(Y),Y/a} is interpreted as being bound to f(Y).

We represent a fact as a pair (structure, bindenv). Here bindenv is a binding environment that records
the current binding of each variable present in structure (and perhaps other variables as well). The following
is an example of our term representation:

(W, ), {Y = X, Z -4, W = f(Z,2)})
This represents the fact g(f(4,4), X).

During rule application we allow variable bindings to span bindenvs; such bindings are of the form
(structure’, bindenv'). Variables within structure’ are interpreted in bindenv’. We do not allow such bind-
ings in facts, for reasons that we note later in this section.

Given a fact f, we use f.structure to refer to the structure of f, and f.bindenv to refer to the bindenv of
f. Thus f = (f.structure, f.bindenv). We use the notation (s, e), where s is a term, to denote s interpreted

in bindenv e.

Definition 5.3.1 We say that terms (s1,el) = (s2,e2) if both terms represent exactly the same term.
Given a fact f = (f.structure, f.bindenv), the variables in f.structure are said to be directly accessible

from f.structure. By looking up the bindings of these variables in f.bindenv, more variables are reachable

(transitively). All such variables are said to be accessible from f.structure. Note that f.bindenv may contain

bindings for variables are not accessible (directly or indirectly) from f.structure.
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The variables in the fact f are those variables that are accessible from f.structure. The free variables in
the fact f are those variables that are accessible from f.structure, and are free. The bound variables in the

fact f are those that are accessible from f.structure, and are bound. O

Binding environments are implemented using “fully persistent versions of data structures” [DSST86,
Die89]. When applied to bindenvs represented as arrays, a fully persistent versioning scheme permits us to

carry out the following operations efficiently:

1. Create a new child version of an existing bindenv (which itself may have been created as a child version
of another bindenv, and so on). The new version has the same bindings as the old version when it is

created, but any changes made to the new version will not affect the old version.
2. Add a new variable to a version of a bindenv.
3. Lookup the binding of a variable in a version of a bindenv.

4. Change the binding of a variable in a version of a bindenv.

Variable names (internally) are just numbers, and looking up the binding of a variable is achieved by indexing
the array. A null entry in the array represents a variable that is not bound. Adding a variable is equivalent
to extending the array by adding a new variable binding. We assume that each version of a bindenv keeps
track of the highest numbered variable in it, so that new variables can be added to a bindenv version.

In this chapter, whenever we consider the time complexity of evaluation, we assume that the versioning
scheme of Dietz [Die89] is used. Using Dietz’s scheme, operation (1) can be done in constant time, and
operations (2), (3) and (4) can be done in time O(min(loglogm,logn)), where m is the total number of
versions of bindenvs that have been created and n is the number of versions of the variable that have been

modified. For brevity, where several variables are versioned, we use the notation V (defined below).

Definition 5.3.2 (V) Consider an evaluation of a program. Let {V;,V5,...} be the variables used in the
evaluation. Let n; denote the number of versions of V; that have been modified, and let m denote the total

number of versions of bindenvs that have been created. Then V denotes max;(min(loglogm,logn;)). O

We do not discuss the details of representation of versioned bindenvs, and refer the reader to [DSST86,
Die89]. We noted earlier that the representation we use for facts does not allow bindings of the form
(structure, bindenv). This restriction is because do not know how to create versions of facts efficiently using
the representation without this restriction — the problem is related to the problem of confluent versioning
(see, e.g., [DSTI0]).

5.3.1 Context Identifiers for Facts

With each supplementary and initial_query fact we store two identifiers. The first identifier field is called
cont_id, which stands for “context identifier”. Loosely speaking, this field stores a unique identifier for the
supplementary / initial_query fact. The semantics of this field are made more precise later. The second
identifier field is called par_id, which stands for “parent context identifier”. Again loosely speaking, this
field is used to store the context identifier of the context (i.e., the supplementary /initial_query fact) that
resulted in the generation of a query, and where answers to the query will be used. With all facts other than

supplementary and initial_query facts, we store only the par_id field.
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5.3.2 Discussion

We did not require updates on a parent version of a bindenv to be seen by child versions that have been
created earlier. However, such a feature could be useful for lazy path-compression on chains of variable
bindings. Such path-compression can be implemented if desired (at no extra cost) using the fully-persistent
versioning schemes described in [DSST86, Die89).

There is a variant of Dietz’s versioning scheme ([Die89]), with an access cost of logn for each variable,
where n is the number of versions of the variable that have been modified. This scheme has lower constant
costs than the V access cost scheme. An alternative way of implementing bindenvs is as a balanced search
tree. Searching for or modifying a variable binding takes O(logn) time, where n is the number of variables
in the bindenv. Search trees can be made fully persistent using the techniques or Driscoll et al.[DSST86],
at no extra access cost. The idea is fairly simple — whenever a node is changed by an operation, the path
from the root to the node is copied, so that the changes are not seen by other versions of the bindenv.

There is a “virtual copy” scheme due to D.H.D. Warren ([War83], cited in [Per85]) that allows creation
of versions of bindenvs represented as tries. It differs from the schemes mentioned above in that it is not
“fully persistent” — if you make an update on a parent version, it will not be seen by any child versions
created earlier. However, it is simpler than the fully-persistent versioning techniques. We have implemented
this scheme in the CORAL deductive database system [RSS92b].

Several schemes have been proposed for representing variable bindings in the context of OR-Parallel
Prolog evaluation. It is pointed out in [GJ90] that efficient implementation of the following operations is
important for OR-parallel Prolog evaluation: (1) access time to find variable bindings, (2) environment
creation time, and (3) task switching time. Each of these operations has an analogue in BU-evaluation. (We
note that task-switching as described in [GJ90] differs from the analogous operation in BU-evaluation, in
which rule instantiations can be carried out essentially independently, except for some concurrency control
to prevent conflicting updates to persistent bindenvs. Hence, it appears that the lower bounds on the costs
of these operations shown in [GJ90] do not apply to BU-Evaluation.) Using Dietz’s versioning scheme, we

get bounds of O(V) for operations (1) and (2), and constant time for (3).

5.4 How to Apply a Rule

The basic operation in bottom-up evaluation is the application of a rule to produce new facts. In this
section we present an algorithm to apply a rule, with several optimizations to handle non-ground facts more
efficiently. We assume that the rules to be evaluated are those generated by the MGU MTTR rewriting
presented in Section 3.4. The conceptual steps in applying a rule using a single fact were described in
Section 4.2. In this section we concentrate on the details of how these steps are implemented.

Procedure Apply_Rule is shown below. It essentially performs a left to right nested loops join. We
describe informally some of the procedures that it uses, and present the details of these procedures later in

this section.

Procedure ApplyRule( R ).
Let the rule to be applied be:

60



R:p(t): —ql(t)[, q2(F2)]-
/¥ ] denotes an optional argument */

1. Let r_env = a new empty (non-persistent) bindenv for the variables in the rule.
2. Fetch facts for q1. /* q1 must be a base/derived predicate */
For each fetched fact (strl, envl) do the following:
2.1. Set envl’ = new version of envl.
2.2. Unify ( (q1(t1),r-env), (strl,envl’)).
During this unification, variables in the rule are bound preferentially.
2.3. If the unification in the Step 2.1 succeeds, Then
2.3.1. If q2 is a program predicate, Then
a. Fetch ¢2 facts that unify with (q2(%5), r_env).
b. For each fetched fact (str2,env2) do the following:
Execute Smart_Unify (R, (strl, envl), (str2, env2), (R, r_env')).
If Smart_Unify failure, continue with the next fetched fact.
Else Insert_Head_Fact( (R', r_env'))
2.3.2. Else
Rename_and_Reunify( R, (strl,envl), (R’ ,r_env'))
If ¢2 is a meta-predicate, evaluate ¢2(%2).
/* Else the rule has only one literal */
Insert_Head_Fact( (R',r_env')).
2.4. Undo bindings in r_enwv.
end Apply_Rule.

An important point to note in Apply_Rule is the creation of versions of bindenvs. Version creation ensures
that the unification operations do not affect any stored facts. We do not present details of Unify, but describe
it informally. Unify unifies its two arguments — bindings in the two environments are updated to create the
unified result. During unification, variables in its first argument are bound preferentially.® Details of the
indexing technique used to retrieve facts are discussed later.

Smart_Unify unifies the two fetched facts with their respective body literals. Notice that the fact bindenvs
that it is called with are the original fact bindenvs, that do not incorporate the changes due to the unification
in Step 2.1 of Apply_Rule. The same is true for Rename_and_Reunify. Unification in Step 2.1 of Apply_Rule
creates variable bindings that cross bindenvs. Since we do not allow such bindings in facts, we ignore the
bindings created in Step 2.1 once facts have been fetched in Step 2.3.1.a. Smart_Unify incorporates our main
optimization ideas, and is described in detail in Section 5.4.1. Renaming of variables in the rule and the
facts may need to be done in the course of Smart_Unify. Smart_Unify returns a renamed and instantiated
version R’ of the rule R. (Instead of renaming rule variables during rule application, their renaming may be

deferred to the point when the head fact is created. We discuss this optimization in Section 5.9.)

6Tn other words, if two free variables, one from the left argument and one from the right argument are to be unified, the
variable from the left argument is bound to the other variable.
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In the case when there is only one non-meta literal in the body of the rule, Smart_Unify is not called.
Rename_and_Reunify is instead used to rename rule variables in a manner similar to Smart_Unify, and to
create a renamed and instantiated version R’ of rule R.

In general, the rule can contain the meta-literal goal_id. Such a literal is evaluated after the literal to
its left has been evaluated (it is important that meta-literals are evaluated after literals to their left are
evaluated). The goal_id literal generates a single answer each time it is evaluated. Insert_Head_Fact creates
a head fact, and inserts it into the appropriate relation. It checks for subsumption of the fact (if required;
in some cases subsumption-checking is not used) before inserting it.

Let us now consider procedure Smart_Unify.

Procedure Smart_Unify (R, (s1,envl), (s2,env2), (R',r_env')).

/** Due to MGU MTTR rewriting, any rule with two program predicates
has a query/supplementary/initial_query literal and an answer literal in
its body. Hence one of (s1,envl) and (s2,env2) is a query/
supplementary/initial_query fact, and the other an answer fact.

*x |

1. If {s1,enwvl) is the query/supplementary/initial_query fact,
set s = (s1,envl),a = (52, env2)
else set s = (s2,env2),a = (s1, envl).

2. If R is a supplementary (Type 2) rule,

Then execute Return_Unify (R, s,a, (R',r_env')).
If it succeeds, return success.

3. Return Rename_Fact_and_Unify(R, s, a, (R',r_env')).

end Unify.

Smart_Unify makes use of knowledge about MGU MTTR rewriting. In a MGU MTTR rewritten program,
any rule with two program predicates in its body must be either a Type 2 (supplementary) rule or a Type
6 (base fact) rule. In either case the body of the rule has a query/supplementary/initial_query literal and
an answer literal. Let us ignore for now the call to Return_Unify, and assume that Smart_Unify calls
Rename_Fact_and_Unify (we will come back to Return_Unify later).

Rename_Fact_and_Unify renames variables so that the variable names used in the two facts and the rule
are disjoint. First consider the case that the rule is not a Type 0 rule @ g3. The main optimization here is
that variables in the query/supplementary fact are not renamed. Variables in the rule and in the answer fact
are renamed instead. The reason for renaming facts in this manner is discussed later. After the variables
are renamed, the (renamed) facts are unified with the renamed rule. The renamed rule R’, interpreted in
bindenv r_env’ is the result of unifying the facts with the rule. Note that since both the facts and the rule
used the same bindenv after renaming, all bindings in the bindenv are local to the bindenv (and hence in
the form required in Section 5.3).

If the rule is a Type 0 rule Q g3, a further optimization is used. Such a rule creates answers for the user’s
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query from facts for answer, and is of the following form:

QRB :

Note that the arguments of initial_query are all “don’t care” (‘) except for the ID argument. The value

stored in the ID argument is an integer, and the variable ID gets bound to this value. Hence no renaming

q(A): —initial_query(_, ID, ), answer(ID,q(A)).

is needed for initial_query facts used in the rule.

Note that r_env’ is the bindenv from the versioned query/supplementary fact, and hence a version
descendant of the bindenv of the original query/supplementary fact. The identifiers stored in the bindenvs
of facts are updated by Update_Context_Ids. We discuss details of updates to the identifiers later. The

values in these identifier fields are used in Return_Unify.

Procedure Rename_Fact_and_Unify(R, s, a, (R',r_env'))

1.
2.
3.

Set r_env’ = a new version of s.bindenv.
Set s’ = (s.structure,r_env').
If Ris not a Type O rule Qg3
Set a’ to be a fully dereferenced version of a, with free variables renamed
with numbers starting from just above the highest numbered variable
in r_env’.
Add all new variable to r_env’.

Set a’.bindenv = r_env’.

5. Let R’ be a renamed version of R with variable names starting

8.
9.

from after the highest numbered variable in r_env’.
Add all variables in R’ to r_env'.
Unify the query/supplementary literal in (R’ r_env') with ',
preferentially binding variables in R'.
Unify the answer literal in (R', r_env’) with a’,
preferentially binding variables in R'.
If the unifications fail, Then return failure.
Update_Context_lds( R',r_env’, s).

10. Return success.

end Rename_Fact_and_Unify.

In the case that Smart_Unify is not called from ApplyRule, Rename_and_Reunify is called instead. Re-
name_and_Reunify renames the variables in the rule so that they are disjoint from the variables in the sole

body fact, and redoes the unification performed in Step 2.2. The bindenv r_env' is now a child of the bindenv

of the fact (strl, envl).

Insert_Head_Fact inserts the derived fact into the appropriate relation, after performing subsumption-

checking if required. Before doing so, it dereferences variables in the fact.

Procedure Rename_and_Reunify(R, (str1, envl), (R’ r_env'))

63



1. Set r_env' = new version of envl.
2. Let R' be a renamed version of R with variable names starting
from after the highest numbered variable in r_env’.
Add all variables in R’ to r_env’.
3. Unify the body literal of (R’ r_env') with the fact (strl, r_env').
4. Update_Context_lds( R',r_env’, (strl, envl)).

end Rename_and_Reunify

Procedure Insert_Head_Fact( (R',r_env'))
1. If subsumption-checking is to be done, and the head fact of
(R',r_env') is subsumed by an existing fact
Then return.
3. Set h to be a dereferenced version of the head of R’
5. Insert (h,r_env') into the appropriate relation.

end Insert_Head_Fact.

Ignoring the call to Return_Unify, it is not hard to see that Apply_Rule is correct (i.e., it generates all
and only those facts that follow (using mgus) from the rule and the given facts). In all cases, versions of fact
bindenvs are created so that existing facts are not affected by the actions of Apply_rule. Since rules in the
MGU MTTR rewritten program have at most two body literals, and the first literal is either a base or derived
literal, for all such rules Apply_Rule performs the unification of facts with the rule in a fairly straightforward
manner if we ignore Return_Unify. We describe the actions of Return_Unify and prove correctness in a more

formal fashion later.

5.4.1 Context Identifiers and Return-Unification

The unification of the answer fact with the answer literal in rules that use supplementary predicates (Type
2 rules) has no counterpart in Prolog. This answer-return unification is done implicitly by Prolog while
generating the answer fact, since answer facts are not shared by different calls; Prolog does not have to
perform a unification on returning an answer. In bottom-up evaluation answer facts have to be explicitly
unified with a rule in order to generate new facts. It is important that this operation be done efficiently in
bottom-up evaluation; else bottom-up evaluation could be much slower than Prolog.

Procedure Return_Unify performs answer-return unification in O()) time whenever it succeeds. It uses
information stored with facts, that is maintained by procedure Update_Context_Ids. We describe the proce-
dures below. We refer to the test made in Step 1 of Procedure Return_Unify as the test for return-unification,

and the actions performed by Return_Unify as return-unification.

Procedure Update_Context_lds( R’',r_env’, fact)
Let head be the head of (R, r_env').
1) Switch Type(R):
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Type 0: /* Initialization rules*/
Set head.par_id = 0;
If the head of R is initial_query

Set head.cont_id = new Context identifier.

Else set head.par_id = fact.cont_id.

Type 1. /* supplementary rule from query; fact = query fact*/
Set head.par_id = fact.par_id
Set head.cont_id = new context identifier.

Type 2. /* supplementary rules; fact = supplementary fact */
Set head.par_id = fact.par_id.
Set head.cont_id = new context identifier.

Type 3: /* answer rules; fact = supplementary fact */
Set head.par_id = fact.par_id.

Type 4. /* query rules, except for last literal;

fact = supplementary fact */

Set head.par_id = fact.cont_id.

Type 5: /* query rules, for last literal; fact = supplementary fact */
Set head.par_id = fact.par_id.

Type 6: /* answer rules, for base predicates; fact = query fact */
Set head.par_id = fact.par_id.

end Update_Context_lds

We shall show several interesting properties about the propagation of context identifiers. The essential
idea is that each supplementary fact (which can be viewed as a “context”) has a distinct cont_id value. For
Type 4 rules, the par_id of the query fact generated is set to the cont_id of the body supplementary fact.
Such query facts will result in answers being generated for the query, and used with the body supplementary
fact. Answers that have this value in their par_id fields will be used with this supplementary fact, and share
bindenvs with it in a manner made precise later. The par_id value, in some sense, identifies the representation
of the fact. There can be more than one copy of each fact, each with its own representation and its own
par_id value. With subsumption-checking, all but one copy of each fact are eliminated.

For Type 5 rules, the par_id of the query fact generated is set to the par_id of the body supplementary
fact. Such a query implements tail-recursion, and any answer generated will not be used with the body
supplementary fact. Instead it will be used with a parent context (supplementary /initial_query fact) whose
cont_id is equal to the par_id of the body supplementary fact.

The context identifiers are quite different from the lcont and lcid identifiers used in QSQR. evaluation
[Vie86, Vie88]. We discuss the differences in Section 5.11.

Procedure Return_Unify (R, s, a, (R',r_env"))

/* s is a supplementary fact, and a an answer fact. */
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1. If s.cont_id # a.par_id
Then return failure.
2. Set r_env’ = new version of a.bindenv.
3. Let R' be a renamed version of R with variable names starting
from after the highest numbered variable in r_env’.
Add all variables in R’ to r_env'.
4. Bind each variable in the supplementary literal of (R',r_env')
to the corresponding argument of s.structure.
/* This step is well defined as described below. */
5. Bind each variable in the answer literal of (R',r_env')
to the corresponding argument of a.structure.
/* This step is well defined as described below. */
/* This may change some variable bindings that were made in Step 4. */
6. Update_Context_lds( R',r_env’, s).
7. Return success.

end Return_Unify

Each argument of the supplementary literal is a distinct variable. Hence the concept of having for
each variable in the supplementary literal a “corresponding argument” in the fact (Step 4 of Return_Unify)
is well-defined. It is harder to see that the concept is well-defined for Step 5. Such a literal is of the
form answer(ID,q(X)), where X is a tuple of distinct variables, due to the preprocessing described in
Section 5.2.1. The concept is well defined only because all facts used with the above literal are of the form
answer(id,q(@)).” The arguments “corresponding” to the variables in X are the arguments of ¢(@) in the
above fact.

The bindings created by Return_Unify when it succeeds are such that (s,r_env’) is the same as the
supplementary literal of (R',r_env'), and (a,r_env') is the same as the answer literal of R', r_env’. That is,
the actions of Return_Unify compute a unifier for the (renamed) rule, the (renamed) supplementary fact and
the answer fact. Further, the unifier is a most general unifier. Return_Unify makes use of the information
about the fact representation that is stored in the par_id and cont_id fields, in order to compute the unifier
efficiently.

The idea is roughly as follows (we prove correctness formally later). When a query fact ¢ is generated
from a supplementary fact s, g.bindenv is a new version of s.bindenv. Hence it inherits all variable bindings
that are in s.bindenv. Suppose computation proceeds and an answer is generated for the query fact. If the
test in Step 1 of Return_Unify succeeds, then the bindenv of the answer fact is a descendant of the bindenv
of the supplementary fact (as we shall show). The updates to the bindenv are such that a free variable may
become bound, but once a variable is bound, its binding does not change. Thus, if we replace the bindenv of
the supplementary fact s by a.bindenv, the resultant fact s’ is an instance of s. Thus bindenv replacement
unifies the supplementary and answer facts with the rule body. Most importantly, bindenv replacement can

be done very fast — in O(V) time. A full unification (which would have to be done in the absence of the

71f we had facts of the form answer(id,Y), the concept of corresponding arguments for the variables in X is ill-defined.
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information about the fact representation) could take time linear in the size of the terms to be unified.

5.4.2 Examples

We now present examples of the use of our techniques in the evaluation of the dappend and append programs.

Example 5.4.1 Appending two difference lists can be done in time O(V) with our term representation. We
illustrate the use of Return_Unify using the following program. We have added a literal test(1) to the end of
the rule in order to suppress tail-recursion optimization for the call to dappend; the addition of this literal

helps illustrate our techniques better.

path(L1, L2, L) : — dappend(L1,L2, L), test(1)
dappend(dlist(X,Y), dlist(Y,V),dlist(X,V)).

The preprocessed form of the above program is as follows:

path(L1, L2, L) : — dappend(L1, L2, L), test(1).
dappend(V1,V2,V3): = V1 =dlist(X,Y), V2 = dlist(Y,V), V3 = dlist(X, V).

The MGU MTTR rewriting of this part of the program is as follows (we have applied some optimizations
to simplify the program; in particular, we have unfolded some uses of goal_id and =; also, we leave out Type

0 rules for simplicity).

R1:supio(HId,L1,L2,L,ID,A) : —query(path(L1,L2,L),ID, A),
goal_id(dappend(L1,L2,L),ID).

R2 : query(dappend(L1,L2,L),ID,answer(ID,dappend(L1,L2,L))) : —
sup1o(HId,L1,L2,L,ID, A).

R3: supy 1 (HId,L1,L2,0,A): — sup1o(HId,L1,L2,ID, A),answer(ID, dappend(L1, L2, L)).

R4: A :— sup11(HId,L1,L2,0, A), test(1).

R5: A : — query(dappend(V1,V2,V3),ID, A),
V1=dlist(X,Y),V2=dlist(Y,V),V3 = dlist(X,V).

Suppose we have a query fact
query(path(dlist([alb| X], X), dlist([c|Y],Y), P),0, answer(P)) : 0

and a base fact test(1). Evaluation of the program on these facts is depicted in Figure 7. The par_id of each
fact is shown following the fact. For supplementary facts, the cont_id is shown following the par_id. We
use pointers from facts to their bindenvs in the figure. Several facts point to some of the bindenvs — this
notation should be interpreted as each fact having its own version of the bindenv, and is done only to keep
the figure concise.

The main points to note in the figure are the following. When using rules R1, R2, and R5, there is
only one derived predicate in the rule body. No renaming is done except for rule variables. Unification is
straightforward, and the facts shown are created. The bindenvs get progressively refined, and more variables

are added to the bindenv (we have used the optimization of deleting rule variables if they are not referred

67



Iteration Rule Fact Derived
dlist([a]b|X],X) dl ) answer(P)

ist([c|Y],Y

4‘ __________ SIXYPLIL2L

/||

2 R2 query(,, 1, ): 1~

dappend( ' , 7/, P) agswer( 1, dappend(® \ ,P

XY PL1IL2L

3 R5 answer(1, '):
R 1 N\

5  R3 sp 110, ,, , 0y %02~
\\answer(P)

6 R4 answer( |) 0 -ereeeereeeee

Figure 7: Evaluation of Program That Uses dappend
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to in the head fact created after dereferencing). The par_id fields are shown for all facts. The cont_id fields
are shown for supplementary facts.

We now come to the use of rule R3. Return_Unify succeeds on this rule since the par_id of the answer
fact is equal to the cont_id of the supplementary fact. The bindenv of the answer fact is such that if the
original supplementary fact is interpreted in the new bindenv, the variable P is bound to the result of
dappending the two given lists. This is because X and P have been bound appropriately in the answer fact
bindenv. Since Return_Unify succeeds, no renaming is required, and unification takes O(V) time. This step
would have taken time proportional to the size of the difference lists, had bottom-up evaluation without our
optimizations been used. Finally rule R4 is used to create an answer to the query we were given. Here, the
base fact test(1) would have been renamed if it had variables. The supplementary fact is not renamed.

Overall, the time cost of the evaluation shown is O(V), regardless of the sizes of the difference lists. O

Example 5.4.2 The append program is defined as follows.

append([], X, X).
append([H|T|, L,[H|L1)) : — append(T, L, L1).

Preprocessing generates the following program (we have simplified the program a little to keep the example

concise):

append(X1,X2,X3): — X1=[],X2=X3.
append(X1,L,X2) :— X1=[H|T),X2=[H|L1],append(T, L, L1).

The MGU MTTR rewriting of the original program was discussed in Section 3.4.2. The MGU MTTR
rewriting of the modified program is very similar, provided we treat the equality literals as base literals. We
omit the program for brevity.

We note that each rule in the rewritten program has only one derived literal in the body. Hence only rule
variables are renamed. Unification costs are O(V) per inference® — the derived literals all have as arguments
distinct variables, and the unifications performed by the equality literals are all straightforward. Return
unification is not important for this program, but variables in the query facts are modified and the versioned
term representation is critical for efficiency. Overall the cost of evaluation of a query on append is O(n - V),

where the first argument of the query is a list of length n. O

5.5 Correctness of Apply_Rule

We present a sequence of lemmas that are used to show that the actions performed by Return_Unify are
correct, and hence Apply_Rule is sound. We first show that given a supplementary fact s, if for any fact f,
f-par_id = s.cont_id, then f.bindenv is a descendant of s.bindenv. Further, we show that there is a query ¢
generated from the supplementary fact, and any variable that is not accessible from ¢ has the same bindings
in f.bindenv as in s.bindenv. This property is proved formally in Lemmas C.1.1 and C.1.2 in Appendix C.1.
The idea is to show using induction on lengths of derivation sequences, that if par_id value of a fact is

inherited from the cont_id field of a supplementary fact, then so is the bindenv.

8We assume that occur checks are not used.
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Lemma 5.5.1 Suppose that there is a query fact
q = query(pi(@;), idl, answer(idl, p;(@;)))

generated by a Type 4 rule (i.e., from a non-tail-recursive literal), and an answer fact a = answer(idl, p;(b;)).

Suppose also that q.par_id = a.par_id. Let q_str2 denote the last argument of q.structure. Then

(q-str2,a.bindenv) = {(a.structure, a.bindenv)

The detailed proof is presented in Appendix C.1. The basic idea is to show that if the conditions of the
lemma hold, the structure in the answer fact is a dereferenced version of the structure in the query fact. The

formal proof is by induction on lengths of derivation sequences, and uses a case analysis of the different rule

types.

Lemma 5.5.2 Suppose that Return_Unify succeeds on rule R with facts s and a. Then (R',r_env') is an

mgu of R' with (a renamed variant of )s and a. O

The detailed proof is presented in Appendix C.1. The idea is that if Return_Unify succeeds, the instan-
tiated rule generated is generated by a most general unifier. We show that the instantiation is a unifier
essentially by using Lemma 5.5.1. We then show that it is a most-general unifier by showing that any

bindings introduced by the unifier are necessary for unification.

5.5.1 Soundness and Completeness of Evaluation

By Lemma 5.5.2, Return_Unify performs unification correctly. The rest of Apply_Rule is relatively straight-
forward. Note that whenever we modify variables in a fact bindenv, we have ensured that the version we

use is a new version, and hence none of these steps affect stored facts. Thus we have the following theorem.

Theorem 5.5.3 Let PMCGU-T pe o MGU MTTR rewritten program and R a Semi-Naive version of a rule
in PMGU-T " Then a call to Apply_Rule(R) generates all and only those facts that follow from R using the

set of facts available in the relations. O

We call a version of Semi-Naive evaluation (described in Section 2.2.3) that uses procedure Apply_Rule to
perform rule application as Opt-NG-SN evaluation. We call the query evaluation technique that first rewrites
the program and query using MGU MTTR rewriting, and then evaluates it using Opt-NG-SN evaluation as
Opt-NGBU evaluation.

From the above theorem, and the soundness and completeness of Semi-Naive evaluation, we have the

following result.

Theorem 5.5.4 Let PMGU-T be o MGU MTTR rewritten program. Then Opt-NG-SN evaluation of PMGU-T
is such that (1) any fact generated is subsumed by facts in the least model of PMEU-T and (2) every fact in

the least model of PMGU-T s subsumed by the facts generated. O

From the soundness and completeness results of MGU MTTR rewriting (Theorems 3.4.1 and 3.4.2), we

then have the following theorem.

70



Theorem 5.5.5 Let P be a program and QQ a query on the program. Let PMGU-T be the program generated
from P and Q by MGU MTTR rewriting. Then Opt-NG-SN evaluation of PMGU-T is such that (1) Every
fact generated as an answer for Q is an answer to Q, and (2) Every answer to Q is subsumed by the set of

answers generated.

5.6 Cost of Optimized Evaluation

We now examine the costs of the basic steps in bottom-up evaluation that are not present in top-down
evaluation without memoing. Note that the extra costs mentioned below are also incurred by top-down
evaluations that perform memoing. We have discussed versioning and its cost, in Section 5.3, and have
looked at the cost of extra unifications, in Section 5.4.1.
Indexing of Facts: We index supplementary and answer facts using hash-indices on the goal-id fields.
The indexing was discussed in Section 3.3.4. Retrieving facts can be done in constant time per indexing
operation and retrieved fact, and fetches only facts that will unify. Inserting facts into the index can be done
in constant time.
Subsumption Checking: For the purpose of comparison of Opt-NGBU evaluation with Prolog* evaluation,
we assume that no subsumption-checking is done.

Subsumption-checking of non-ground facts is in general costly, but provides benefits by avoiding repeated
computation, and is is important in many cases. We discuss the costs and benefits of subsumption-checking

in Section 5.8.

5.6.1 Cost of Inferences Using Apply_Rule

We now examine the costs associated with inferences made using Procedure Apply_Rule. In general, when
unifying a variable with a term, we need to perform an “occur check” to ensure that the variable is not
present within the term. Most implementations of Prolog do not perform the occur check, and unifying a
variable with a term takes constant time. In our context, the unification would take O(V) time. However,
if we do perform occur checks in a naive fashion, Return_Unify would take time linear in the size of the
facts. But we can show that an occur check is not necessary for soundness in Return_Unify. This is because
the rule literals have distinct variables that are not present in the facts; all the unification operations in
Return_Unify bind a rule variable to a term in one of the facts, and hence no occur checks are needed.

The following proposition is straightforward.
Proposition 5.6.1 Procedure Return_Unify runs in O(V) time. O
We also have the following lemma.

Lemma 5.6.2 Suppose that an MGU MTTR rewritten program is evaluated using Opt-NG-SN evaluation

without subsumption-checking. Then every call to Return_-Unify succeeds. O

The proof is presented in Appendix C.2. The essential idea is that the goal-id values and par_id values
are propagated through facts in lock-step if subsumption-checking is not used. A supplementary fact and

an answer fact unify only if their goal-id values are the same. We show that if they are the same, then the
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cont_id of the supplementary fact will be the same as the par_id of the answer fact, and hence Return_Unify
will always succeed.

As a result of the preprocessing, every body occurrence of literals of the form sup; ;(t;) or answer(ID, p;(
t;)) is such that #; is a tuple of distinct variables. Arguments similar to those for Return_Unify then show
that occur checks are not needed for Rename_and_Reunify. Hence procedure Rename_and _Reunify can be
implemented to run in O(V). Inserting facts into a hash-index on the goal-id field takes constant time. Hence
procedure Insert_Head_Fact runs in time O(V) + the cost of subsumption-checking (if it is performed). In all
cases below, we assume that the cost of renaming a rule and adding its variables to the appropriate bindenv
is O(V).

Suppose Return_Unify is called, and succeeds on a rule instantiation. Then the time taken by Apply_Rule
for that rule instantiation, ignoring the time taken for subsumption-checking, is O(V).

If Return_Unify is not called, or is called and fails, there are four cases based on the type of the rule.

1. The first case is when there is only one literal in the rule body. In this case, the cost of evaluation is
essentially the cost of unification of the fact and the literal. Due to our preprocessing, the arguments

of the literal are distinct variables, and evaluation takes O(V) time.

2. The second case is when the second literal in the rule body is an answer literal. If no subsumption-
checking is performed, Return_Unify always succeeds for this case. We discuss the costs if subsumption-

checking is performed, in Section 5.8.

3. The third case is when the second literal in the rule body uses the meta-predicate goal_id. If subsump-

tion-checking is not performed, the meta-predicate goal-id runs in constant time per call.

The first literal in the rule uses a supplementary predicate, and has as arguments distinct variables.
Hence unification for this literal can be done in time O(V). The total cost of rule instantiation is O(V)

in the absence of subsumption-checking.

4. The fourth case is when the second literal in the rule body is a base literal. Rename_Facts_and_Unify
renames the base fact. Prolog evaluations based on structure copying make copies of base facts when

using them, and have the same overhead. Typically, base facts is assumed to be of constant size.

5.7 A Comparison With Prolog*

We now perform a detailed comparison of the costs of Opt-NGBU query evaluation (i.e., MGU MTTR
+ Opt-NG-SN evaluation) without subsumption-checking and Prolog evaluation. We make the following
simplifying assumption:

A1: Given terms a, al and b, if a is equivalent to al then the time taken to unify a and b is the same as
the time taken to unify al and b.

Two terms may be equivalent, but may be represented by different structures. The actual structures
created depend on the details of the unification algorithm; for instance, if the unification algorithm delays
dereferencing of variables when performing unification, the resultant representation is different from the
representation if dereferencing is always used. The main tradeoff is that in some cases dereferencing of

unused terms is avoided by delayed dereferencing, but on the other hand some variables may have to be
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dereferenced several times. We do not factor this low level decision into our comparison. We also ignore
the effects of path-compression when dereferencing variables. Path compression can result in a substantial
improvement in speed for some programs, if it is performed. Most Prolog implementations do not perform it,
since it complicates the maintenance of trail information. Path compression can be implemented in bottom-
up evaluation using fully-persistent bindenvs (see Section 5.3.2). We assume it is not done in either case, in
order to simplify the discussion.

We also assume that bottom-up evaluation as well as Prolog* evaluation use the same indexing technique
for base relations.

Attempted derivations in Opt-NG-SN evaluation are split into cases based on the rule type, and we use
the same mapping that was used to prove Theorem 4.3.1, to show that for each derivation in Opt-NGBU
query evaluation (without subsumption-checking), Prolog evaluation has an action of “almost” the same
cost.

The details of the comparison are presented in Appendix C.3. We sketch the basic idea below. Attempted
derivations using Type 0, Type 3, Type 4 and Type 5 rules are shown to take O(V) time each. If there are
n such derivations, the mapping shows that Prolog performs (n) actions, each of at least unit cost. The
cost of an attempted derivation using such a rule is primarily the cost of evaluation of the equality literal.
We show that Prolog* evaluation performs an equivalent unification action. For Type 2 rules that have an
answer literal in the body, Return_Unify always succeeds, and hence the cost of an attempted derivation
O(V). For Type 2 rules that have a goal_id literal in the body, the cost of an attempted derivation is O(V),
which is mapped to an action of Prolog* evaluation that takes at least unit time. For Type 2 rules that have
a base literal (for e.g., an equality literal) in the body, we show that any attempted derivation is mapped to
an action of Prolog* evaluation that performs the same indexing operations and unification. Thus the loss of
speed of due to Opt-NGBU evaluation is at most a factor of O(V) in this case. We then have the following

theorem.

Theorem 5.7.1 Let P be a program, and Q) a query. Given any database, suppose the cost of Prolog*
evaluation of Q is t units of time.” Opt-NGBU evaluation without subsumption-checking evaluates the query
on the given database in time O(t - V). (The size of the program is not taken into account in this time

complexity measure.) O

The proof of the above theorem is presented in Appendix C.3.

Table 3 summarizes a comparison of the cost of various steps in Opt-NGBU evaluation without subsump-
tion-checking with the corresponding costs in Prolog evaluation. This table may be contrasted with Table 2
to see the benefits of Opt-NG-SN evaluation.

With Dietz’s versioning technique [Die89], V is O(loglogt) for the following reason. As we noted in
Section 5.3, V is O(log log n), where n is the number of versions of bindenvs that are created. Each attempted
derivation creates at most three bindenv versions. The number of actions performed by Prolog* evaluation
is at most ¢ since each action has at least unit cost. Hence the number of attempted derivation steps is at
most ¢ -t + cg, for constants ¢; and ¢y that are independent of ¢ (Theorem 4.3.1). The O(loglogt) bound

on V then follows.

9Where each action of Prolog* evaluation takes at least unit time.
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| Operation | Bot. Up (Opt.) | Prolog |

Unification

a. Answer-return o) 0(1)

b. Other O(V- size of terms ) O( size of terms )
Indexing

a. Answer-return O(1) 0(1)

b. Other OV - 3~ acts size of fact ) | O(X 4,4, size of fact )
Subsumption Checking — —

Creation of head fact 0(1) 0(1)

Table 3: Opt-NGBU Evaluation (without subsumption-checking) vs. Prolog

Corollary 5.7.2 Let P be a program, and QQ a query. Given any database, suppose the cost of Prolog*
evaluation of Q is t units of time. Opt-NGBU evaluation without subsumption-checking evaluates the query
on the given database in time O(t -loglogt). (The size of the program is not taken into account in this time

complexity measure.) O

The above result shows that the cost of memoing facts (ignoring the cost of checking for subsumption)
can be made quite small, in the sense of time complexity. The optimization techniques we developed in this
chapter are of considerable theoretical importance, since they help us establish the above result. This result
assumes that the size of the program is a constant, We can relax the assumption that the size of the program
is constant, as discussed briefly in Section 5.9.

The question of how bottom-up and top-down methods compare is considered important, and has been
under investigation by several researchers [Ull89a, Bry90, Ram88, Sek89]. Most of this research, with the
exception of [Ull89a], has restricted itself to comparisons in terms of the number of facts generated or the
number of inferences made. Our result carries the comparison of top-down and bottom-up methods farther
than the results of Ullman [Ul189a].

1. Our result extends the class of programs considered from safe Datalog to full logic programs.

2. Our result compares bottom-up evaluation with a sophisticated model of Prolog evaluation, which

incorporates tail-recursion optimization, unlike earlier work.

We remind the reader that our analysis ignores constant costs, and the effect of factors such as virtual

memory.

5.8 Subsumption Checking in Bottom-Up Evaluation

In general, subsumption-checking is a costly operation, and we are not aware of efficient subsumption-
checking techniques for the case of arbitrary non-ground facts. However, there are special cases for which
subsumption-checking can be done efficiently.

For ground facts, subsumption is the same as equality, and hash-consing [Got74, SG76] can be used to

perform subsumption-checking in constant time in many cases.!® In Section 5.10 we discuss an efficient

0Efficient hash-consing requires that the ground terms are built up from smaller ground terms. This is not true if ground
terms can be created by instantiating variables within an existing non-ground term.
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subsumption-checking technique for a restricted class of non-ground facts. We use this technique to optimize
Semi-Naive evaluation for a restricted class of programs.

Without subsumption-checking, Semi-Naive evaluation is still sound and complete. However, derivations
can be repeated, and in the worst case a computation that terminates with subsumption-checking may loop
for ever, repeating derivations, if subsumption-checking is not used.

Subsumption-checking can be done for some predicates and not for others, and need be done only if the
benefits from avoiding repeated computation and possible avoiding of infinite loops is worth the cost. For
instance, there are cases where query facts (after adornment as in [BR87b]) are ground, although answer
facts may not be ground. In many such cases, it suffices to perform subsumption-checking on the ground
query facts.

If subsumption-checking is performed, Return_Unify may fail for for some answer-return unifications.

These unifications occur with Type 2 rules of the following form:
oot =supji(...,ID, A),answer(ID,...).

Our indexing scheme ensures that any answer fact and supplementary facts fetched by indexing will unify
with the rule. Suppose facts sup; ;(7,id, ans) and answer(id, p(b)) are fetched by indexing. If Return_Unify
does not succeed with these facts, it means that the answer fact was generated from a query fact that is
equivalent to (but not the same as) the query fact that was generated using sup;;(@, id, ans). This means
that the query fact generated from sup; ;(@, id, and) was eliminated by subsumption-checking.

Prolog would have solved the above repeated subgoal, whereas bottom-up evaluation with subsumption-
checking avoids the repeated computation. The benefit of avoiding repeated computation has to be balanced
against the cost of checking for subsumption, and the cost of rule application when Return_Unify fails. The
second of these costs is as follows.

Let n be the size of the answer fact. Then the fact can be renamed in time O(n - V). Unification can
be done in time linear in the size of the result of unification, and the overall cost of rule instantiation is V
times the size of the answer fact after unification. If the computation of the answer fact would have taken
more time than ) times the size of the answer fact after unification, copying the fact is no more expensive
than recomputing it. To decide if subsumption-checking for goals is useful in a given context, we also have

to include the cost of subsumption-checking.

5.9 Optimizations and Discussion

The evaluation technique we described can be extended and optimized in several different ways. The tech-
niques described in this chapter can be adapted in a straightforward manner to work with the MGU Magic
Templates rewriting instead of MGU MTTR rewriting. In fact, MGU Magic Templates can be considered
a special case of MGU MTTR rewriting where the last literals in the rules are not treated as tail-recursive
(and Type 4 query rules generated for these literals instead of Type 5 query rules). The proofs of correctness
change a little due to the differences in the form of the query facts generated.

We can use adornments (see e.g. [BR87b]) with MGU MTTR rewriting (or with MGU Magic rewriting)
under some restrictions on how adornments are generated. The idea is as follows. Consider any argument

of a literal that is a a free variable that appears nowhere else in or before the literal in the rule. Any query
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fact created from this literal will have a distinct free variable in such an argument. Only such arguments
may be considered free when adorning a literal. Arguments adorned f are projected out of the query literals
and facts. The proof that Return_Unify works correctly becomes a little more complicated, but Opt-NG-SN
evaluation does work correctly if the adornment is done subject to the above restrictions.

Rule variables are added at the end of bindenv of the head fact. We dereference head variables before
creating the head fact. This often (always, in the case when the program generates only ground facts) results
in none of the rule variables being referenced from the head fact that is created. In case none of the rule
variables are referenced from the created head fact, we can drop these variables from the versioned bindenv
(and the number of the highest numbered variable in the bindenv changes appropriately).

Dropping rule variables from the bindenv of the head fact can be quite useful for the following reason.
Throughout our discussion we assumed a loss in efficiency of O(V) compared to Prolog* evaluation. In the
case of range-restricted programs, where no non-ground facts are generated, the optimization of removing
unreferenced rule variables from the bindenv results in bindenvs that have no variables at all. Such bindenvs
need not be stored explicitly. Hence we can evaluate such a program without any O()) overhead. Similarly,
if if variables in non-ground facts are not instantiated (for example in the append program on non-ground
lists), O(V) reduces to O(1).

In the discussion earlier, we assumed that the rule is renamed during Apply_Rule. The renaming need
not be done explicitly, but can be achieved by a two step process. During rule application we maintain
a separate bindenv for rule variables. During unification we maintain a trail of variable bindings. When
creating the head fact, we add the rule variables to the bindenv of the head fact, and use the trail to back-
patch all variables that were bound to rule variables. We can combine this optimization with the optimization
mentioned above, to avoid creating slots for rule variables in the bindenv of the head fact.

The creation of a new version of envl in Step 2.1 of Apply_Rule is not really necessary in a sequential
implementation. Unify binds variables in its first argument preferentially. For preprocessed MGU MTTR
rewritten programs, in the call to Unify in Step 2.2 of Apply_Rule, only variables in the rule get bound;
variables in the fact bindenv are not affected. Thus we do not need to create a new version of env1 in this
step; if required, a version of env1 is created later by Rename_Facts_and_-Unify.

Theorem 5.7.1 assumes that the size of the program is a constant. The primary reason for this assumption
is that each iteration of Semi-Naive evaluation applies all the rules, and may make only one derivation. The
mapping of costs described in Section 4.2 depends on this assumption.

We can relax this assumption using a rule indexing scheme for MGU MTTR (and MGU Magic Templates)

old

rewritten programs. We do not go into details, but the idea is as follows. We keep track of ép;

7'¢ relations

that are non-empty, and use these to index rules that can be used to make derivations using these relations.
There are only a constant number of Type 0 rules, and we do not need to index them. For Type 1 and Type 6
rules, we can use any indexing technique that Prolog uses to find rules that unify with a subgoal. For Type 2
rules that use an answer literal, we can use the goal-identifier field to directly index supplementary or answer
facts, and use only rules for which matching supplementary and answer facts are available. Other Type 2
rules have only one derived relation — the supplementary relation. We use the non-empty § supplementary
relations to index such rules. Semi-naive rewritten Type 3, Type 4 and Type 5 rules always succeed in making

an inference if there is a fact for the § relation in their body; indexing such rules using the non-empty
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relations is straightforward.

Using this rule indexing technique for MGU MTTR and MGU Magic Templates programs, along with
the optimizations described in Section 4.2.2, we can (a) extend Theorem 4.3.1 to remove the assumption that
the size of the program is a constant, (b) extend the model of Semi-Naive evaluation to show that the cost of
evaluation can be completely mapped to the cost of attempted derivations, even without the assumption of
constant program size, and (c) extend Theorem 5.7.1 to remove the assumption that the size of the program

is a constant.

5.9.1 More Example Programs

We present a brief analysis of the benefits of our optimization techniques on some example programs. We
have implemented our optimization techniques on the CORAL deductive database system [RSS92b], and we

present some preliminary performance figures.

Example 5.9.1 Consider the well-known program to append lists (Example 3.4.1), with a query involving
non-ground lists.

The following table presents performance numbers on lists of the specified lengths. The number of distinct
variables in the list is shown in parentheses. The column “Unoptimized” refers to evaluation without the
Apply_Rule optimizations we described in this chapter. The column “Optimized” refers to evaluation using
the optimizations described in this chapter but with MGU Magic rewriting. The column “Tail-Rec” refers
to evaluation using MGU MTTR rewriting and the optimizations described in this chapter.

Dataset Unoptimized | Optimized | Tail-Rec
Length 25 (3 vars) .31 19 .08
Length 50 (3 vars) 0.98 .35 15
Length 100 (3 vars) 3.85 .67 .30
Length 100 (25 vars) 3.87 .69 .30
Length 100 (ground) 44 .55 .30

The numbers show that for ground lists, optimized evaluation with MGU Magic rewriting is not much
worse than unoptimized evaluation, while optimized evaluation using MGU MTTR rewriting is faster than
both these. For non-ground lists, the time cost of optimized evaluation grows linearly with the size of the

lists, while for unoptimized evaluation, the cost grows approximately quadratically. O

Example 5.9.2 This program illustrates the use of difference lists in a program that is best evaluated

bottom-up. We assume that the query is ?path(1, X, C, P) (the single source shortest path problem).

path(X,Y, C,dlist([Y|D], D)) : — edge(X,Y,C).

path(X,Y,C1+ C2,P) : — path(X, Z,C1, P1),edge(Z,Y,C2),dappend(P1, dlist([Y|D], D), P).
@aggregate_selection groupby(path(X,Y,C, P)[X,Y],min(C)).

dappend(dlist(X,Y), dlist(Y,V),dlist(X,V)).

This program keeps track of the vertices in paths that it computes, and stores the list as a difference list
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to allow efficient concatenation of edges to the list. Prolog is not suitable for evaluation of this program (or
other path programs) since it can get into infinite loops with cyclic data.

The use of the aggregate_selection annotation and its efficient implementation is discussed in Chapter 6.
We discuss this example ahead of that chapter in order to illustrate the use of non-ground data-structures

in a program that is best evaluated bottom-up. The annotation
Q@aggregate selection groupby(path(X,Y,C, P)[X,Y], min(C))

in the program specifies that for answer facts for the predicate path, for each value for X and Y, only facts
with minimum value for C' should be retained.

For the sake of brevity, we omit the rewritten version of the program, but assume that the aggregate
selection on path is also used for answer facts for path (i.e., facts of the form answer(id, path(...))). We
use MGU Magic Templates with adornments; tail-recursion optimization is not useful for this program since
for the rules defining path, the last literal is not recursive to path.

Due to the use of adornments, query facts for path are ground, and store only bindings for the first
argument of path. We use subsumption-checking for such facts. Further, supplementary facts generated
from these query facts are ground, and as a result, we do not need to rename path facts when applying
rules in the rewritten program.'! The aggregate selection is used to prune answer facts for path; no other
subsumption-checking is done for answer facts. Subsumption-checking is not done for dappend facts either.

Without the use of difference-lists, we could either generate the paths in reverse order using list cons,
which is unappealing, or we could use append instead of dappend, which would cost O(V') time per append.
Let the evaluation time of a version of this program using ordinary lists, and cons instead of append be
O(f(E,V)).'2 Then the evaluation time of the program using append would be O(V - f(E,V)), which is
considerably slower if V' is large.

If we used a naive version of rule application, the cost of creating new lists by dappending two difference
lists will take time linear in the size of the lists, which can be O(V'). This would lead to a time complexity
of O(V - f(E,V)).

Using our optimizations, each query generated for dappend is solved using the rule for dappend in time
O(V), and Return_Unify succeeds for the answer-return unification, when answers to queries on dappend are
generated, and takes time O(V). This leads to an overall time complexity of O(V - f(E,V)).

The number of versions of bindenvs that are created is O(f(E,V)), and the number of path facts that are
computed is O(f(E,V)). Hence, if we use Dietz’s versioning scheme, V is O(loglog f(E,V)). Each bindenv
has O(V') variables since the maximum path length is O(V'). Hence, if we use Warren’s versioning scheme
(as we do in our implementation) V is O(log V). In either case, the time complexity is not much worse than
the time complexity of evaluation using ground lists with cons, and has the benefit of generating path lists
in the correct order.

We ran two variations of this program on the CORAL system. Both variations used the query ?path(X,

Y). The first used a difference list representation, and the second used an ordinary list representation, but

1 Our implementation detects which facts are ground and tries to avoid renaming non-ground facts. Hence this optimization
is incorporated automatically.

12The time complexity depends on the number of distinct shortest paths between pairs of nodes. If we store only one shortest
path between each pair of nodes, f(E,V) = E -V, as we show in Example 6.6.2. This can be improved to E - log V by using
other optimizations, as we show in Example 6.6.3.
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used cons rather than append. The second variation generated only ground facts, but generated path lists in
reverse order. The ground program ran in 0.6 seconds on a sample dataset, while the non-ground program
ran in 0.8 seconds. Thus the loss of speed due to the non-ground data-structure is reasonably small (33%),

while providing the benefit of printing out paths in the correct order. O

5.10 Bottom-Up vs. Prolog* for a Restricted Class of Programs

In this section we present a summary of results from Sudarshan and Ramakrishnan [SR92b] that compare
bottom-up evaluation using MTTR rewriting with Prolog* evaluation for a subclass of range-restricted
programs. All facts generated by a range restricted program are ground. However, MTTR rewriting (as
also MGU MTTR rewriting) of a range-restricted program results in a program that is not range-restricted
(even if the adornment step of [BR87b] is performed). The comparison is presented in two parts — the first
in terms of number of derivations, and the second in terms of time complexity for programs that generate
only a restricted kind of non-ground facts.

In Section 3.1 we showed that Magic rewriting could perform some unnecessary inferences if non-ground
facts are generated. However, if only ground facts are generated, an equivalent of Theorem 4.3.1 holds for
the case of MTTR rewriting, provided subsumption checking is used in the evaluation. This is shown by the
following theorem, from [SR92b].

Theorem 5.10.1 [SR92b] Let P be a range-restricted program and Q a query on P. Let PT be the MTTR
rewriting of P with query Q. Then there is a mapping M of derivations in the Semi-Naive evaluation of
PT to actions of the Prolog* evaluation of Q on P, such that not more than three different derivations of

bottom-up evaluation of PT are mapped to the same action of Prolog* evaluation. O

Theorem 4.3.1 showed that even if subsumption-checking is not performed, Semi-Naive evaluation of an
MGU MTTR rewritten program performs no more than a constant factor worse than Prolog* in terms of
number of actions. However, Semi-Naive evaluation without subsumption checking of an MTTR rewritten

program could loop when Prolog terminates, as the following program (adapted from [NR91]) illustrates.

Example 5.10.1 Consider the following program.
(1() P p(a),p(a),r(a).
p(a).
r(a).

Query: 7-q().

The MTTR rewritten form of the above program has (among other rules) the following rules.

R1: query(q(),q())-
R2 : query(p(a), p(a)) : — query(q(), A).
R3: A : — query(p(a), A).
R4 : query(p(a), p(a)) : — query(q(), A), p(a).
A query fact query(p(a), p(a)) is generated using rules R1 and R2. If subsumption-checking is not performed,
rules R3 and R4 enter into an infinite loop. Rule R3 uses the newly generated fact query(p(a),p(a)) and
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generates fact p(a). Rule R4 uses the newly derived fact p(a)'?® (which is not eliminated since subsumption
checking is performed), and generates a fact query(p(a),p(a)). This fact is not eliminated either, and the

cycle repeats. O

We now define a class of facts that we call NGSF facts, and define a class of programs that we call
NGSF programs, that generate only NGSF facts. Later in the section we summarize details of an evaluation

technique for NGSF programs.

Definition 5.10.1 (NGSF Facts and Programs) [SR92b] Let p be a predicate in program P. A fact
p(t) is said to be non-ground structure free (NGSF) iff each argument of the fact is either a ground term or
a variable. The definition is easily extended to tuples %.

We extend this definition to allow limited forms of structure introduced by MTTR rewriting (similar ex-
tensions can be used with MGU MTTR rewriting). A fact of the form query(p(t), ¢(3)) (resp. sup; ;(@,q(3)))
is said to be NGSF iff p() and ¢(3) (resp. w and ¢(3)) are NGSF.

We say that a program is non-ground structure free (NGSF) iff every fact derived in an NSN evaluation'4

of the program is non-ground structure free. O

For example, p(f(a,g(b)),X), query(p(X,Y),q(X,Y)), sup; ;(f(a),p(f(a), X)), and p(X, g(c, g(c, 9(c))),
X) are non-ground structure free, but the facts p(f(X)) and query(p(f(X)),q(X)) are not.

For the class of NGSF programs, one can perform each of the basic operations in bottom-up evaluation
(unification, indexing and subsumption-checking) at unit cost, as described in Sudarshan and Ramakrishnan
[SR92b]. Since variables are present only at the outermost level of facts, renaming of variables can be done
with unit time cost. Unification is then done at unit cost by using hash-consing [Got74, SG76]. A scheme
for indexing based on “pattern-forms” that encode the patterns of variables in each fact is presented in
[SR92b], and it is shown that indexing of relations can be done at unit cost per retrieved fact for NGSF
programs. The same basic pattern-form scheme is used for subsumption-checking, and it is shown that for
NGSF facts, subsumption-checking can be done at an amortized cost of O(1) per fact. Finally, these results
are put together, and the model of semi-naive evaluation presented in Section 4.2 is used to show that the
cost of evaluation is O(1) per fact derived.

We now define a class of programs form which the MTTR rewriting is NGSF.

Condition Strongly NGSF Evaluable: We say that a program P with query @ is strongly NGSF

evaluable if P satisfies the following condition:

1. P is range restricted

2. For every rule in P, for every literal p(f) in the body of the rule, any variable that appears with an

enclosing function symbol in p(%) also appears in a literal to the left of p(%) in the rule.

3. Those variables in the head of the rule that appear only in the last literal in the body of the rule do

not appear with enclosing function symbols in the head of the rule.

4. The query on the program does not have any variables that are enclosed in function symbols. O

13Recall that if a rule R has a derived literal in its body, in Semi-Naive evaluation each derivation that uses R must use a
newly generated fact for one of the derived literals in the body.

14The order in which derivations are made in a bottom-up evaluation is not deterministic. This leads to a non-determinism
in the set of facts computed, if subsumption-checking is used. To avoid this problem, we use NSN evaluation in this definition.
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The intuition behind this condition can be understood as follows: First, all facts produced by the program
are ground. Second, evaluation of the query on the program will not create any subgoal containing non-
ground structures. Third, when tail recursion optimization is used on these programs, structures in answers
to subgoals on tail-recursive predicates will not be used to “build” larger structures in the head of the rule.
Without the restriction provided by the Part 3 of Condition Strongly NGSF Evaluable, PT may compute
facts with large non-ground structures that are hard to handle in bottom-up evaluation.

If P with query @ is Strongly NGSF Evaluable, then P (the MTTR rewritten version of the program)
is non-ground structure free. (The definition of strongly NGSF evaluable is overly strict, since it does not

make use of bindings provided by queries, and can be weakened.) We then have the following theorem.

Theorem 5.10.2 [SR92b] Suppose we are given a program P that is Strongly NGSF Evaluable. Let tp be
the running time of a Prolog* evaluation of P, and let tg be the running time of Semi-Naive evaluation of
PT (the MTTR rewritten version of the program). Then there is some constant c, that is independent of tp
and tg (but may be dependent on the arity of predicates in P, and the textual size of P) such that tg < cxtp.
O

The above result also holds using MGU MTTR rewriting, although only the case of MTTR rewriting is
considered in [SR92b].

Contrast the above theorem with Theorem 5.7.1. The above theorem shows that for a subclass of range-
restricted programs (that properly contains range-restricted Datalog), bottom-up evaluation with subsump-
tion checking, in the worst case, can be only a constant factor slower than Prolog*. Theorem 5.7.1 provides
a weaker bound, but applies to all definite clause programs. It is easy to find examples (in the subclass) for
which the behavior of Prolog* is much worse than that of bottom-up evaluation (for some programs Prolog*

does not terminate, although bottom-up evaluation does).

5.11 Related Work

We are not aware of any work related to optimizing semi-naive evaluation for the case when non-ground
facts are generated. However, there has been some related work in the area of top-down evaluation with
memoization, and in the linguistics community.

D. S. Warren [War89] describes the XWAM, an implementation of memoization for Prolog. The XWAM
uses a depth-first search, coupled with memoization of subgoals and answers to avoid repeated computation.
The techniques described there are for the case of ground Datalog programs. There is a brief mention of
possible extensions to the scheme to programs that generate variables, by using bindarrays. However, no
details are provided.

Pereira [Per85] describes an implementation of parsers for unification based grammer formalisms. In these
parsers, complex phrase types are built by incremental refinement of phrase types. A naive implementation
copies phrase types; by using “virtual copy memory” (i.e., versioned memory), Pereira shows how to reduce
the cost of copying the phrase types. There is a problem in this context that corresponds to the renaming
problem; for special cases of grammers, “renaming” can be avoided, but in general it must be performed.

Thus there is no equivalent in this context to the return unification optimizations that we present.
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The context identifiers we use are quite different in function from the lcont, and Icid identifiers used in
QSQR evaluation [Vie86, Vie88]. The lcont and lcid identifiers correspond to the goal identifiers that we
use. If a goal is generated more than once, it is given the same goal-id. The goal-id of the supplementary
fact (context) is that of the goal that is generated from it, and the goal-id of an answer is the goal-id of the
goal that generated it. In contrast, each supplementary fact has a different cont_id. The par_id of a query is
inherited from a supplementary fact that generated it. But since a query may be generated independently
from several different supplementary facts, only one of the copies of the query (with its associated par_id

value) is retained, if subsumption-checking is used. The same is true of par_id values for answer facts.

5.11.1 Memoization for Other Evaluation Schemes

The optimizations described in this chapter work at the level of rule application, and are essentially indepen-
dent, of the control strategy used during evaluation. They can be applied to other memoing evaluation schemes
such as QSQR [Vie86, Vie88] and Alexander [RLK86, Sek89]. They can also be used in conjunction with tech-
niques that order the inferences made in a bottom-up evaluation (e.g., [RSS90, RSS92a, GGZ91, SR91]).'?

It is also possible to use the idea of persistent versioning to implement memoization of goals and answers
in Extension Tables [Die87].1¢ However, since Extension Tables uses the basic tuple-at-a-time depth-first
mechanism of Prolog, the connection between goals and answers is implicitly maintained and “return uni-
fications” are not explicitly performed. (A negative consequence is that the method is not complete even
though it does memoing.) Since variables in the run-time stack and the heap may have to be versioned, it
appears that fairly large portions of memory have to be versioned. In Opt-NGBU evaluation, we can avoid
versioning rule variables in most cases, and for programs that (with adornment) generate only ground facts
and queries, all bindenvs are empty, and have no versioning costs. While these considerations do not affect
the asymptotic cost of versioning, the constant overheads for versioning are likely to be higher for Extension
Tables.

QSQR (like its extension QoSaQ) is a top-down evaluation strategy that is closely related to the bottom-
up evaluation of Supplementary Magic programs. QSQR is set-oriented, and represents goals and answers
explicitly, much like Supplementary Magic. QSQR has been implemented for Datalog, for which versioning
is not important since large data structures are not created. However, there appears to be no inherent
problem in using QSQR for general logic programs. The techniques we developed in this chapter (as well as

the corresponding analysis) can be applied with minor modifications to QSQR.

5.12 Conclusion

The results in this chapter are significant in two ways. First, they provide an efficient memoing technique for
programs that generate non-ground facts. This is significant since naive techniques for handling non-ground
facts in memoing evaluations are inefficient, and we do not know of any other optimizations that are useful

in this context. The cost benefits are illustrated by the programs that we discussed. Second, they extend

153ome of these techniques modify Magic rewriting in minor ways. Corresponding changes may need to be made in our
optimization technique.

16We discuss the ET;perp algorithm since it has better asymptotic properties; similar remarks apply to the ET* algorithm,
which additionally repeats some computation.
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our understanding of the similarities between top-down and bottom-up further than previous results, which
considered only programs that generated only ground facts. We have shown that bottom-up evaluation is
asymptotically close to Prolog even in the worst case (within a factor of loglogm, where m is bounded by the
cost of Prolog evaluation). There is much current research in the area of persistent versioning schemes. If a
more efficient versioning scheme is developed, we can reduce the overheads in our scheme correspondingly. We
have implemented the optimization techniques described in this chapter (modulo tail-recursion optimization)
on the CORAL deductive database system.
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Chapter 6
Optimization of Aggregation

In this chapter we develop an optimization technique for bottom-up evaluation, using a notion of relevance
of facts to some aggregate operations such as min and maxz. Our notion of relevance (Section 6.3) can be
seen as an extension of the notion of relevance used in optimizations such as Magic sets rewriting [BMSUSG,
BR&7b, Ram88]. The optimization technique consists of two parts — a rewriting technique that “pushes”
aggregate selections into rules in the program (Sections 6.4 and 6.5), and an evaluation technique that makes
use of aggregate selections when evaluating the rewritten program (Section 6.6).

The optimization technique is able to detect many facts as irrelevant, and avoids using them to make
derivations. As an example of the power of our techniques, we start with a naive program to find shortest
paths, and show how our optimization techniques deduce the “optimality principle” for this program. The

optimized evaluation of this program is equivalent to Dijkstra’s algorithm (Example 6.6.3).

6.1 Introduction

Database query languages such as SQL provide aggregation operations that let one compute aggregate values
over sets of answers. The use of aggregation with recursive queries has been considered by several researchers
(e.g., [BNR*87, MPR90]), and has been implemented in LDL [NT89]. Generalized forms of transitive closure
with aggregation are a restricted form of recursive queries with aggregation (and can be expressed using the
notation of LDL [NT89]). Several researchers (e.g., [RHDM86, ADJ88, CN89, Ede90]) have considered
optimizations for this special class of programs. The advantages of the richer language of recursive queries
with aggregation is clear, but unless effective optimization techniques are developed, the performance of
specialized systems based on supporting the limited class of generalized transitive closure queries cannot be
matched. In this chapter we consider optimizations of recursive queries with aggregate operations.
Consider the (very naive) program shown in Figure 8, for computing the lengths of shortest paths between
nodes in the relation edge(X,Y, C'), where C is the length of an edge from X to Y. It essentially enumerates
all path lengths and chooses shortest path lengths among them. The notation s_p_length(X,Y, min((C))) in
the head of rule R1 denotes that for each value of X, Y all possible C values that are generated by the body
of the rule are collected in a set, and the min aggregate operation is applied on the set of values. For each

value of X and Y, an s_p_length fact is created with the result of the min operation as the third argument.
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R1: s_plength(X,Y,min(C)): —path(X,Y,C).

R2 : path(X,Y,C1) : — path(X, Z,C),edge(Z,Y, EC),C1 = C + EC
R3 : path(X,Y,C) : — edge(X,Y,C).

Query: 7-s_p(X,Y,C).

Figure 8: Program Simple_ShortCost

R1 : shortest_path(X,Y, P,C) i — s_plength(X,Y,C), path(X,Y, P,C).

R2 : s_plength(X,Y, min{(C)) i — path(X,Y, P,C).

R3 : path(X,Y,ledge(Z,Y)|P],C1) : — path(X, Z, P,C),edge(Z,Y, EC),C1 = C + EC.
R4 : path(X,Y, [edge(X,Y)|nil],C) : — edge(X,Y,C).

Query: 7-s_p(X,Y, P,C).

Figure 9: Program Simple_ShortPath

The formulation of the program as above is desirable since it is declarative, can be queried in many
different ways and is easy to write. It is easily augmented with additional constraints such as “the edges all
have a given label” (for instance, flights on United Airlines alone must be considered), or “there must be
no more than three hops on the flight”. The standard bottom-up evaluation of such a program is extremely
inefficient since it constructs paths of every possible length in the graph, and generates an infinite number
of facts with cyclic graphs. In contrast, the above problem can be solved in polynomial time using either
Warshall’s algorithm or Dijkstra’s shortest path algorithm (see [AHU74]). It can also be evaluated efficiently
if it is expressed using specialized operators for transitive closure ((RHDMS86, ADJ88, CN89)).

We propose an optimization technique for bottom-up evaluation, using a notion of relevance of facts to
some aggregate operations such as min and maz. Our notion of relevance can be seen as an extension of
the notion of relevance used in optimizations such as Magic sets rewriting [BMSU86, BR87b, Ram88]. To
demonstrate the power of our techniques, we use a more complex version of the shortest path program, that
actually computes paths (Figure 9), and informally present some of the basic ideas behind our optimization

technique, in the following example.

Example 6.1.1 Consider Program Simple_ShortPath (Figure 9). The predicate path(X,Y, P, C) is defined
to compute paths between each pair of nodes X,Y, with P being a list of nodes on the path, and C being
the length of the path. The predicate s_p_length(X,Y,C) defined in rule R2 finds the length C of the
shortest path from X to Y for each pair of nodes X,Y. The use of s_p_length in rule R1 selects path facts
corresponding to shortest paths.

Aggregate operation min has the property that non-minimal values in a set are unnecessary for the
aggregate operation on the set. Using this property, we can deduce that a fact path(a, b, pl, cl) is relevant to
the rule defining the query predicate shortest_path only if there is no fact path(a, b, p2, ¢2) such that ¢2 < cl.
We use tests called aggregate selections to check whether a fact is relevant; conditions such as the above are
used in the tests.

The rewriting (automatically) deduces an aggregate selection on the occurrence of the predicate path

in rule R2; only facts with minimum length values satisfy the aggregate selection. It then “pushes” this
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aggregate selection into rules that define path, and propagates the selections through the program.

The rewriting algorithm outputs a program containing aggregate selections on the predicates. For Pro-
gram Simple_ShortPath, the main difference between the rewritten program and the original program is that
every occurrence of path in the rewritten program has an aggregate selection that selects shortest paths. We
discuss the rewritten program after introducing the notation used to express aggregate selections.

The evaluation phase of our technique makes use of the aggregate selection on path, and deletes facts
on which the aggregate selection test fails (namely all non-minimal paths for each pair of nodes). We can
optimize the evaluation further by ordering the use of facts in the evaluation: we hide newly generated facts,
and expose after each iteration the path fact with minimum length among all hidden path facts.

Ordering the use of facts as above, reduces the time complexity to the same as that of Dijkstra’s algorithm
(O(E -log V') on a graph with E edges and V nodes), if we store only one shortest path between each pair
of nodes. We discuss details in Section 6.6.2. The evaluation mechanism also works (with a higher time

complexity) when edge lengths are negative, so long as there are no negative length cycles. O

Recently Ganguly et al. [GGZ91] independently examined Datalog programs with min or maz aggregate
operations. Their work addresses problems that are similar to those that we consider, but the approaches are
different and the techniques are complementary. We present a comparison of our techniques with those of
Ganguly et al. in Section 6.8.1, and describe several advantages of our approach. Knuth [Knu77] generalizes
Dijkstra’s algorithm to deal with a class of “superior context free grammers”. Our evaluation technique
generalizes Knuth’s techniques in a very natural manner, and the algorithms reduce to Knuth’s algorithms
in the special case of “superior context free grammers”. We discuss this issue briefly in Section 6.8.1.

We note that the evaluation techniques presented in this chapter are orthogonal to the optimization
techniques for non-ground facts that were presented in Chapter 5, although we restrict the use of non-
ground terms with aggregation. We discuss this issue briefly in Section 6.8. There are programs, such as the
program in Example 5.9.2, where both optimizations are of use.

The rest of the chapter is organized as follows. We present basic definitions and background material in
Section 6.2. Our notion of relevance is developed in Section 6.3, where we also introduce aggregate selections
and constraints as a way of specifying relevance information. Techniques for propagation of aggregate
selections and constraints through single rules are developed in Section 6.4. In Section 6.5 we present an
algorithm to rewrite programs by propagating aggregate selections through the program, starting from the
query. In Section 6.6 we show how to evaluate rewritten programs. We discuss extensions and related work

in Section 6.8.

6.2 Definitions and Background Material

We use Vars(t) to denote the set of variables that occur in a term ¢. Similarly, Vars(f) denotes the set of
variables that occur in a tuple of terms Z. Given a domain D, we use the notation M (D) to denote multisets'
of elements from D.

We define the predicate dependence (PD) graph of a program as the digraph whose nodes are the predicates

of the program, and whose edges are defined as follows: There is an edge from predicate a to predicate b if

L Also referred to as bags.
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there is a rule defining b that uses predicate a in its body. The strongly connected components (SCCs) of a
program are the strongly connected components of its predicate dependence graph. The reduced PD graph of
a program is defined as the result of collapsing together all nodes in the PD graph that belong to the same
SCC. The reduced PD graph is acyclic, and defines a partial ordering of the SCCs of a program. We say
that an SCC S1 is lower than SCC S2 if S1 precedes S2 in the partial ordering defined by the reduced PD
graph.

Example 6.2.1 Consider the following program.

R1 :p(X) T Q(Y)ad(X,Y)
R2: Q(X) T p(Y),e(X,Y).
R3:p(X): — r(X).

This program has four SCCs — one containing ¢ and p, one containing d, one containing e, and one
containing r. We use the set of predicates in an SCC to refer to the SCC. The partial ordering of the SCCs
is as follows: each of {d}, {e} and {r} precedes {p,q}. O

We view an aggregate function as any function agg_f : M (D) — D1 for some domains D and D1. Note
in particular that D1 could be the same as D, as is the case for most aggregate functions we consider, such
as min, maz, sum etc. We also allow D1 to be M (D), thereby allowing aggregate functions such as leasty,
that returns a multiset of the least k elements from a given multiset. Note that if we consider the domain to
be 27 i.e., sets of elements from D rather than multisets of elements from D, the aggregate functions are
still applicable, since 2P c M (D).

The cardinality of an element in a multiset is defined in a straightforward manner. Multiset membership

is defined using cardinality:
s € S = cardinality(s,S) # 0
Similarly, multiset containment is defined as

S1C S2 =Vs € 51, cardinality(s,S1) < cardinality(s, S2)

w_»

Other set operations C,D, D and = are similarly extended to multisets. Set difference is extended to

multisets by the following definition:

Vs, if cardinality(s, S1) — cardinality(s, S2) > 0,
then cardinality(s, S1 — S2) = cardinality(s, S1) — cardinality(s, S2)
else cardinality(s,S1 — S52) = 0.

We also define a binary operation \ as follows:

Vs € S2, cardinality(s,S1\52) =0
Vs & S2, cardinality(s, S1\S2) = cardinality(s, S1)

In this chapter we consider definite clause programs extended with the aggregation operations that we

describe later in this section. We assume that the programs are range-restricted.? This means that only

2That is, every variable in the head of each rule also appears in the body of the rule, and all facts are ground.
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ground terms can be generated, which is reasonable for the most part in the context of aggregate functions,
since the result of aggregate functions (consider, for example, min) on non-ground values is usually not
well-defined. Non-ground terms are useful in arguments of facts that are not aggregated upon, and in
Section 6.8 we discuss how the above restriction can be relaxed in some cases. We assume that program
transformations such as Magic Sets have already been carried out; their use is largely orthogonal to the
optimizations described in this chapter.

In order to define the semantics of a program, we have to first define a universe for the program. In
this we follow [BNST91, BRSS92], where extended Herbrand universes are defined. Such universes allow
terms that are sets; the universes are easily extended to allow multisets (for instance by encoding multisets
as sets of ordered pairs (element, cardinality)). Note that although we allow the generation of multisets
through aggregation, we assume that the relations in the program are sets of facts, and not multisets (i.e.,
duplicate elimination is done when evaluating the program). It is not hard to relax this assumption, but
this assumption simplifies the discussion.

The syntax that we use for aggregation with set/multiset grouping is very similar to that used in

LDL [NT89] for grouping. The syntax is as follows.

p(t,agg-f(Y)): —q(...).

We refer to the argument agg_f(Y') as the grouping argument, and Y as the grouping variable. The variables
in ¢ are referred to as group-by variables. For simplicity in describing our algorithms, we assume that there is
at most one grouping argument in the head of a rule, and we usually show the grouping argument as the last
argument of the head of the rule. These restrictions are easy to relax since every program can be rewritten
to be in the required form. For simplicity, we also assume that there is at most one literal in the body of a

rule that uses aggregation. This assumption can be relaxed using a straightforward rewriting.
Definition 6.2.1 We say that the fact p(a,v) follows from a rule

p(t,agg-f(Y)): —q(...).
and a given set of facts I if the following holds:

1. Let S be the set of instantiations of the variables in the rule s.t. the instantiation of ¢(...) is in I. Let

X = Vars(f), and T an instantiation of the variables in X that maps 7 to @.

Then myox_-S # 0, and v = agg_f(nyox_;S), where 7 is a multiset projection (i.e., it does not do

duplicate elimination).

2. The set of facts I contains all true ¢ facts, (and all other ¢ facts are false).

Given a rule R that uses aggregation, and a set of facts I, we define Tr([) as the set of all facts that
follow from R and I. O

Example 6.2.2 Suppose we have a rule
p(Xa Ya mm(C’)) _Q(Xz Ya C)
Given that the set of all true ¢ facts is {q(1,2,3),¢(1,2,5),q(1, 3,4)}, the facts p(1,2,3) and p(1, 3, 4) follow

using the rule. O
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The semantics used in LDL differs from the above in that 7 is a set projection operator. For aggregate
operations such as maz or min the difference in semantics is irrelevant. For other aggregate operations such
as sum, we can get the set projection semantics by using agg-f(set(Y)) instead of agg_f (V).

A program is said to be stratified if for every rule in the program that uses aggregation in the head, every
predicate used in the body is in a lower SCC than the SCC of the head predicate.

Example 6.2.3 The following program is a minor variant of the program in Example 6.2.1. The SCCs of

this program are the same as those of the program in Example 6.2.1.

R1: p(X) :—q(Y),d(X,Y).
R2: ¢(X) = p(Y),e(X,Y).
R3 : p(min(X)) : — r(X).

This program is stratified since in rule R3, the body predicate r is in a lower SCC than the head predicate
p. If we replaced r by ¢, the program would not be stratified, since p and ¢ in rule R3 are in the same SCC.
O

We make the following assumption:

AO0: All programs considered in this chapter are stratified.

Definition 6.2.1 requires that the set of all true facts for the body predicate be available before aggregation
can be used. For stratified programs, this can be done in a fairly straightforward fashion. We describe the
semantics of stratified programs informally below. See [BNST91] for a formal definition. We define the
semantics SCC by SCC, proceeding in a total order consistent with the partial ordering of the SCCs. The
semantics for each SCC defines the set of true facts for predicates in the SCC. The semantics of base
predicates is given by the set of facts in the database. Now consider an SCC S;, and suppose we have defined
the semantics for all lower SCCs. Definition 6.2.1 now defines Tz for rules in S; that use aggregation, since
the set of all true facts for lower SCCs is fixed by the semantics of the lower SCCs. For other rules, Ty is as
defined in Section 2.1.3. Define

Ts, (I) = URes; TR(I)

The semantics of SCC S; is defined to be the least fixpoint of T's,, given the set of facts for lower SCCs.?
The semantics of the program is defined to be the union of the semantics of each SCC in the program.

A stratified program can be evaluated using Semi-Naive evaluation, an SCC at a time, in a total order
of SCCs that is consistent with the partial order of the SCCs [BNST91, BNR*87]. We describe this process
briefly. Assume that all SCCs that precede a given SCC S; have been evaluated. This is trivially true for
SCCs that have only base predicates. We can now evaluate SCC S; using Semi-Naive evaluation as follows.
For all predicates in lower SCCs, the fixpoint has been evaluated, and all such predicates are considered
as base predicates for the purpose of Semi-Naive evaluation. Rule application is generalized to handle
aggregation in a straightforward fashion, since all body predicates in a rule with aggregation are defined
in lower SCCs, and hence are treated as base predicates. Semi-Naive rewriting and Semi-Naive evaluation
are performed as usual, for the rules in SCC S;. Semi-Naive evaluation of the program terminates when all

SCCs in the program have been evaluated.

3We can show that T's, is monotone and continuous, and hence it has a least fixpoint [BNST91].
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Semantics can be given to programs that use non-stratified aggregation, and there are evaluation mech-
anisms for several such classes of programs. We do not explore this issue here, but refer the reader to
[Ros90, KS91, RS92, BRSS92, RSS92a, Van92] for more details.

6.3 Views of Relevance In Logic Programs

The idea of relevance of facts to a query is used by Prolog and other top-down evaluation techniques, as well

as by program rewriting techniques such as Magic [BR87b, Ram88]. Suppose we have a rule

R:p(): —q1(t1), q2(82), - - - an(tn)-

Assume for simplicity that we have a left-to-right rule evaluation (in the fashion of Prolog). Then a fact

qi(a;) is relevant if there is an instantiation

R':p(a): —qi(a1),q2(a2), ..., qi(a;).

of (the head and first ¢ body literals of) R such that the head fact p(a) is relevant, and all instantiated facts

that can instantiate it.

In contrast, in the shortest path problem we can decide that a particular fact path(a, b, p1, cl) is irrelevant
if a shorter path (fact) has been found. Such information is “global”, in the sense that relevance depends
on facts other than those used to instantiate a rule. We develop this notion of relevance for programs
with aggregate operations in the rest of this section, in three steps. (1) If agg_f is an aggregate function
and S a multiset of values, we consider when some values in S can be ignored without affecting agg_f(S)
(Section 6.3.1). (2) We use the ideas of step 1 to define when a fact is relevant (Section 6.3.2). (3) We
introduce aggregate selections and aggregate constraints as a way of explicitly identifying irrelevant facts
(Section 6.3.3).

6.3.1 Relevance and Aggregate Functions

Given a multiset of values and an aggregate function on the multiset, not all the values may be needed
to compute the result of the aggregate function. For instance, if the aggregate function is min, no value
except the minimum value is needed. We now formalize the notion of values being unnecessary for aggregate

functions.

Definition 6.3.1 (Incremental Aggregate Selector (IncSel) Functions) Let agg_f be an aggregate
function agg-f : M(D) — D1, for some domains D and D1. We say that agg_f is an incremental aggregate
selector (IncSel) function if there exists a function unneccagy_ s : M (D) — 2P such that

1. VS € M(D),VS1, (S\unneccagy £(S)) CS1C S = agg-f(S1) = agg-f(S)
unnecc.gq_f is monotone. i.e., ¥S1 C 52, s.t. S2 € M(D), unneccqgg ¢(S1) C unneccqagq_f(52)

VS € M(D),unneccegq_s(S) = unneccagqg_r(S\unneccqgq_r(S))

L

unneccqgq_r does not map all elements of M (D) to 0.
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)

Given a multiset of facts S, the set of facts unneccsgq_f(S) is “unnecessary” in the following sense:
Values in unneccqq9_¢(S) can be dropped from S without affecting the result of agg-f(S), due to Part 1 of
the above condition. Part 2 of the above condition lets us detect unnecessary values before the entire multiset
of values is computed—when we have computed some S1 C S, any value detected as unnecessary for agg_f
on S1 is also guaranteed to be unnecessary for agg_f on S; a value that is necessary for S1 may however
be unnecessary for S. Part 3 of this condition ensures that if a value is detected to be unnecessary for an
aggregate operation on a multiset, it will continue to be detected as unnecessary if we discard unnecessary
values from the multiset®. Part 4 of the condition ensures that the definition of IncSel functions is not
trivialized by the use of a trivial unnecc,g4_y function.

Consider an IncSel function agg-f on domain M (D). There may be more than one possible function

unneccqqq_s as required by the definition of IncSel functions.

Definition 6.3.2 (unnecessarya.ge ¢) For each incremental aggregate selector function agg-f that is
allowed in our programs, a function unneccqgq_ s (as above) is chosen, and is denoted by unnecessaryqgg -

The function necessaryay,_r : M (D) — 2P is defined as

necessaryagg f(S) = set(S\unnecessaryqgy_r(S))

We do not consider how this choice is made, but assume it is made by the designer of the system based
on the following criterion. Given two such functions f and g, we say f >' ¢ iff VS C D, f(S) D g(95); clearly
>’ (the strict version of >') is an (irreflexive) partial order. Preferably, a function that is maximal under
the (irreflexive) partial order >’ is chosen.

Note that unnecessaryagy_r(S) could be infinite. We do not construct unnecessaryaqq4_¢(S), but require

that we can efficiently test for the presence of a value in unnecessaryqgq_f(S), for finite S.

Example 6.3.1 The function min on reals, with unnecessarymi»n(S) = {zx € D | x > min(S)} is an IncSel
function. The function maz on reals with unnecessary,., symmetrically defined is also an IncSel function.
Other examples (with the functions unnecessaryq,,_s appropriately defined), include the aggregate function
that selects the kth largest element of a multiset for some constant k, and the aggregate function that sums

up the k largest elements of a multiset. O

Assumption 6.3.1 In the rest of this chapter we assume that the optimization techniques are applied only

on IncSel functions. O

We also assume that a suite of IncSel functions and the corresponding functions unnecessaryqgq_s are
given to us. In an actual implementation we would expect the system implementor to define such as suite

of functions.

4Part 3 of Condition IncSel is used in Theorem 6.6.1 to show that inferences are not repeated. None of the other results
require aggregate functions to satisfy this condition.
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6.3.2 Relevance of Facts

We now use the notion of necessity with respect to an aggregate function in defining our extended notion of
relevance of facts. The semantics for a program defines a model for the program, and our notion of relevance

is defined with respect to this model (which we call the intended model of the program).

Definition 6.3.3 (Relevance of Facts) Consider a program P with a query on it. A fact ¢(@) is relevant

to the query iff one of the following is true:

1. ¢(@) is an answer to the query, or

2. g(a) occurs in the body of an instantiated rule without aggregation in the head such that every literal

in the body is true in the intended model, and the head fact of the rule is relevant to the query, or

3. There is a (ground) fact p(a,v) that is relevant to the query, and a rule R in the program

R :p(t,agg-f(Y))): —a(t1).
such that

(a) Let S be the set of all possible substitutions ¢ such that ¢;[o] = ar, and ¢(#1)[o] is true in the
intended model. Let Y[S] denote the multiset of values for Y generated by substitutions in S.

Then v = agg-f(Y[5])).
(b) Thereis a o € S s.t. ¢(@) = q(t1)[o], where Vo] € necessaryqqgqy_f(Y'[S]).

O

A fact is said to be irrelevant to the query if it is not relevant to the query. In future, we simply say relevant

(resp. irrelevant) when we mean “relevant to the query” (resp. “irrelevant to the query”).

Example 6.3.2 Consider a program with one rule
R:p(X,min(Y)): —q(X,Y).

and facts ¢(5,4),q(5,6) and ¢(5,3). Let the query on the program be ?p(X,Y"). Fact p(5, 3) is generated as
an answer. With X = 5, the set of facts that match the body of the rule have Y values of 3,4 and 6, of
which only 3 is necessary for min. Hence ¢(5, 3) is relevant to the query. ¢(5,3) is a base fact, and no facts
are used to derive it. Therefore there are no other relevant facts. Hence ¢(5,4) and ¢(5,6) are irrelevant to
the query, while ¢(5,3) is relevant.

Also, by the above definition, for the shortest path length program (Figure 8) all path facts, except those
corresponding to shortest paths, are irrelevant. This can be seen by working backwards from answers to
the query. Facts for the predicate s_p_length are the only facts that are directly relevant (by Part 1 of the
definition). Of the path facts used to derive these facts, the only relevant ones are shortest paths (by Part
3 of the definition). By examining the rules for path, we can verify that any path fact that is used to derive

a shortest path, and is relevant by Part 2 of the definition, is itself a shortest path. O
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Our extended notion of relevance is very tight, and in general we may not be able to determine the
relevance of a fact without actually computing the intended model of the program. The techniques we
present will use sufficient but not necessary conditions to test for irrelevance. During the evaluation of some
programs we may generate a fact, and later discover that it is irrelevant, for instance when some other
“better” fact is generated. Once a fact is found to be irrelevant, by “withdrawing” the fact we may be
able to determine that other facts generated using it can no longer be generated, and hence can also be
“withdrawn”. The cost of such cascading withdrawals could be very high, and so we confine ourselves to
only discarding irrelevant facts. Although not “withdrawing” computation could result in some additional
irrelevant computation, the gains in efficiency from our optimization without “withdrawing” computation

can still be significant.

6.3.3 Aggregate Constraints and Selections

We now introduce some concepts that allow us to specify relevance information. Informally, sound aggregate
selections are used to specify tests for relevance of facts—if there is a sound aggregate selection on a predicate
in our rewritten program, and a fact for the predicate does not satisfy the selection, the fact is irrelevant.
Aggregate selections are introduced by our rewriting algorithm and the information is used by our evaluation
algorithm. The syntax (using a variant of Starburst SQL groupby) and semantics of aggregate selections are

described in the next few definitions.

Definition 6.3.4 (Atomic Aggregate Selection) An atomic aggregate selection has the following syn-

tax:

c(w) : groupby(p(t), [X],agg-f(Y))

Here c() denotes a literal or a conjunction of literals, and X a set of variables such that X C Vars(#). We
must have Y € Vars(t), and agg_f must be an IncSel function.

Consider a program P with an associated intended model. Given the set of facts for predicate p in the
intended model of P, we have a set of instantiations of 7. Since X C Vars(?) and Y € Vars(?), for each
value d of X in the set of instantiations of , we have a corresponding multiset of values for Y; we denote
this multiset by S5. We construct (conceptually) a relation unnecc-agg(X,Y’) with a tuple (d, e) for each d,
and each e € unnecessaryayy_r(S7)-

Let ¢(@) be a ground conjunction. We say that c(a) satisfies the atomic aggregate selection s; iff there exists
a substitution o such that (1) ¢(@) = c(@)[o], (2) o assigns ground terms to all variables in Vars(@)UX U{Y},
and (3) (X,Y)[o] is not in unnecc_agg ®. O

In the above definition, the variables in [X] are called group-by variables and the variable Y is called the
grouping variable in the atomic aggregate selection. The variables in the set ((Vars(f) — X) — {Y'}) are local

to the groupby, and cannot be quantified or instantiated from outside the groupby.

5Note that the relation unnecc-agg could be infinite. To actually perform the test, we could take an instantiation of Y, and
test if it is in unnecessary,qq_s(X)[o] without actually constructing the whole (possibly infinite) set unnecessaryqqq_r(X)|[o],
or the (possibly infinite) relation unnecc_agg.
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Example 6.3.3 The following is an example of an atomic aggregate selection:
path(X,Y, P,C) : groupby(path(X,Y, P1,C),[X,Y],min(C))

In the above atomic aggregate selection, the group-by variables are X and Y, and the grouping variable is
C. We have not specified where the literal path(X,Y, P,C) occurs — it could be, for instance, a literal in a
rule body, or it could be taken to refer to facts for the predicate path; we shall make the use of the literal
more precise in succeeding definitions.

Suppose the set of facts in path is

path(a, b, [a, ¢, b], 20).
path(a, b, [a,b], 30).
path(a,c,[a, c], 10).
path(e, b, [c,b], 10).

The ground literal path(a,b,[a,b],30) does not satisfy the aggregate selection — the literal binds the
group-by variables X, Y to a, b, and the C values for this group are 20 and 30; hence, 30 is irrelevant for the
min aggregate function on this group. However, path(a, b, [a, c, b],20) satisfies the aggregate selection. The
ground literal path(d, e, [d, e],200) satisfies the selection, since there is no fact, in the set of facts for path,
that binds the group-by arguments X,Y to d, e, and hence no value is classified as irrelevant for this group.
O

Definition 6.3.5 (Aggregate Selection) An aggregate selection s is a conjunction of atomic aggregate
selections, s = (s1 Asa A ... A sy). A ground conjunction c¢(a) satisfies an aggregate selection s = (s1 A sa A

... N\ sp) iff it satisfies each of the atomic aggregate selections s; individually. O

We use the short form c(u) : g1 A g2 to denote (c(u) : g1) A (c(u) : g2). We often say “the aggregate
selection s on the body of R” to denote the aggregate selection ¢() : s, where ¢(u) is the body of rule R.
Note that a conjunction of aggregate selections is also an aggregate selection.

Our approach to rewriting the program consists of placing aggregate selections on literals and rule bodies
in the program in such a fashion that if a fact/rule instantiation does not satisfy the aggregate selection it

is guaranteed to be irrelevant. Hence we define the concept of sound aggregate selections formally below.

Definition 6.3.6 (Sound Aggregate Selection) An aggregate selection s is a sound aggregate selection
on the body of a rule R iff only irrelevant facts are produced by instantiations of the body of R that do not
satisfy s.

An aggregate selection s is a sound aggregate selection for a literal p(t) in the body of a rule R iff only
irrelevant facts are produced by instantiations of R that use for literal p(f) any fact p(@) that does not satisfy
s.

An aggregate selection s is a sound aggregate selection on a predicate p iff any fact p(a) is irrelevant if it

does not satisfy s. O

Given a sound aggregate selection on a literal/rule, we can (partially) test during an evaluation whether
a fact or an instantiated rule satisfies it. The extension of each predicate p at that point is a subset of the

extension of p in the intended model of the program. Since the aggregate functions are incremental aggregate
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selectors, an answer of “no” at that point means that the answer would be “no” in the intended model of the
program, and hence the fact/instantiation is irrelevant. However, an answer of “yes” is conservative, since

the fact/instantiation may be detected to be irrelevant if all facts in the intended model were available.

Example 6.3.4 Consider an aggregate selection
path(X,Y, P,C) : groupby(path(X,Y, P,C),[X, Y], min(C))

Suppose we have two facts path(a, b, -, 2) and path(a, b, -, 3) at a point in the computation. Then we know that
path(a,b, -, 3) does not satisfy the selection. Later in the computation we may derive a fact path(a,b,_,1).
At this point we find that path(a,b, -, 2) also does not satisfy the selection. O

We define sound aggregate constraints next—they differ slightly from sound aggregate selections, and we

use them in our rewriting algorithm to generate aggregate selections.

Definition 6.3.7 (Sound Aggregate Constraint) An aggregate selection s is a sound aggregate con-

straint for predicate p iff every fact that can be derived for p satisfies the aggregate selection s. O

The following are technical definitions that we use primarily to ensure that the aggregate selections that
we generate can be tested efficiently. The motivation is that the fact/rule instance on which we have an

aggregate selection must bind all the variables in the aggregate selection.

Definition 6.3.8 (Free Variables) The free variables of an atomic aggregate selection

c(w) : groupby(p(t), [X],agg-f(Y))

are the variables in the set (Vars(X)U{Y}). The other variables in an atomic aggregate selection are bound
variables (since the semantics of atomic aggregate selections quantifies these variables within the scope of
the atomic aggregate selection).

The free variables of aggregate selection s = s; A ... A s, are those variables that are free in at least one

of the atomic selections aggregate s;. O

Definition 6.3.9 (Restrictions of Aggregate Selections) An atomic aggregate selection s; is said to
be restricted to a given set V of variables if every free variable in s; occurs in V. Let s = (s1 Asa A... A sy).
Then

restriction(s,V) = A{s; | s; is restricted to V} O
Example 6.3.5 Consider the following selection:
s = c(u) : groupby(path(X,Y, P,C),[X, P],min(C))
A groupby(path(X,Y, P, C),[X,Y],min(C))
The free variables of s are X,Y, P and C, and

restriction(s,{X,Y,C}) = c(u) : groupby(path(X,Y, P,C),[X,Y],min(C)) O
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R1 : shortest_path(X,Y, P,C) i — s_plength(X,Y,C), path_s1(X,Y, P,C).
R2 : s_plength(X,Y,min(C))) i — path_s1(X,Y, P,C).
R3 : path_s1(X,Y,edge(Z,Y)|P],C1) : — path_s1(X,Z, P,C),edge(Z,Y, EC),C1 = C + EC.

R4 : path_s1(X,Y, [edge(X,Y)|nil],C) : — edge(X,Y, C).
Selections::
s1 = path_s1(X,Y, P,C) : groupby(path_s1(X,Y, P,C),[X,Y], min(C)).

Figure 10: Program Smart

6.4 Generating Aggregate Constraints and Selections

We present a quick overview of the next few sections of the chapter . We develop our algorithm for prop-
agating relevance information in two steps. (1) In this section we present a collection of techniques for
generating sound aggregate selections. (2) In Section 6.5, we present our main rewriting algorithm, Algo-
rithm Push_Selections, which uses these techniques as subroutines. In Section 6.6, we examine an evaluation
mechanism that can take advantage of sound aggregate selections on predicates that are generated by the
rewriting mechanism.

As a preview of what the techniques can achieve, consider Program Simple_ShortPath (Figure 9). The
result of rewriting is Program Smart, shown in Figure 10. The rewritten program uses a new predicate
path_s1 which is a version of path, with the sound aggregate selection sl on it. The predicate path itself
is not present in the rewritten program. The other predicates have no aggregate selections on them. The
selection s1 tells us that path_s1 facts that are not of minimum length between their endpoints are irrelevant.
Deleting such facts during the evaluation leads to considerable time benefits, and is discussed in Section 6.6.2.

In the first part of this section we describe an initial set of techniques for generating aggregate constraints
and selections. The techniques are shown below. Technique C1 describes a way of deducing sound aggregate
constraints on predicates. Techniques BS1, BS2 and BS3 describe three ways to generate sound aggregate
selections on the bodies of rules. Technique LS1 describes a simple way of deducing sound aggregate selections
on literals. In Sections 6.4.1 and 6.4.2 we present a more sophisticated analysis that helps us to derive
further sound aggregate selections on body literals. We note that this set of deduction rules is not complete;
in Section 6.4.3 we show that it is undecidable in general whether a body literal satisfies a sound aggregate

selection.

Technique C1: (Generating Aggregate Constraints)

Suppose that there is only one rule defining p, and it is of the form:

p(t, agg-f(Y)): —q(ts)
Let X = Vars(t), and let agg_f be an IncSel function such that

VS € M(D),agg-f(S) = necessaryqgq_s(S)

Then p(t,Y) : groupby(q(ty),[X],agg_f(Y)) is a sound aggregate constraint on p.

Technique BS1: (Generating Aggregate Selections from Aggregate Constraints)
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Suppose we have a rule of the form

head(ty): —c(t), p(?)
and suppose there is an aggregate constraint on p of the form: p(#;) : s where all free variables in s are
included in Vaars(t,). Suppose there exists a renaming o of variables in ¢; such that p(¢) = p(¢1)[c]. Then
s[o] is a sound aggregate selection on the body of the rule.

Technique BS2: (Generating Aggregate Selections from Aggregate Operations)

Suppose we have a rule of the form

p(t, agg-f(V)): —q(ts)
where agg_f is an IncSel function. Let X = Vars(f). Then

groupby(q(), [X], agg-f (V)
is a sound aggregate selection on the body of rule R.

Technique BS3: (Generating Aggregate Selections from Other Aggregate Selections)

Consider a rule of the form

p(Fn): —body(Fy).
Suppose the head predicate p has a sound aggregate selection p(%) : s on it, where all free variables in s are
included in Vars(?).

Suppose there exists a renaming o of free variables in s, and a substitution € of other variables in ¢ such

that p(t,) = p(t)[o][f]. Then s[o] is a sound aggregate selection on the body of the rule.

Technique LS1: (Generating Aggregate Selections On Literals)

Let s be a sound aggregate selection on the body of a rule R, and let p(f) be a literal in the body of R.
Then

p(t) : restriction(s, Vars(t))

is a sound aggregate selection on the literal p(f) in the body of R.

The intuition behind Techniques C1 and BS2 is straightforward. Techniques BS1 and BS3 use an existing
aggregate selection/constraint to generate a new aggregate selection. To translate an aggregate constraint
p(t1) : s on a predicate p into an aggregate selection on a rule that uses the predicate in the body, one
can compute an mgu 6 of p(f;) with a literal in which the predicate is used. The selection s[f] is a sound
aggregate selection on the body of the rule, since every fact that is used for the literal must unify with the
literal, and must satisfy the aggregate constraint (see Theorem 6.4.1 for a formal proof). In fact, Technique
BS1 uses a renaming o on variables in the aggregate selection/constraint, rather than an arbitrary mgu o.
The use of renamings is not needed for correctness, but is done in order to restrict the set of aggregate
selections that can be generated by our rewriting technique, thereby helping us ensure that our rewriting

algorithm terminates.
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Given an aggregate selection p(#1) : s on a predicate p, we can compute an mgu 0 of p(Z;) with the head
of a rule that defines p. Any fact generated by the rule must unify with the head, and if it does not satisfy
the aggregate selection, it is irrelevant. Hence s[f] is a sound aggregate selection on the body of the rule (see
Theorem 6.4.1 for a formal proof). Technique BS3 generates aggregate selections as above, but restricts the
mgu to be a renaming, for the same reasons as those described for Technique BS1.

We have the following theorem showing soundness of the above deduction techniques. A formal proof of

the theorem may be found in Appendix D.

Theorem 6.4.1 The aggregate selections generated by Techniques C1, BS1, BS2, BS3, and LS1 are sound

aggregate selections. O

Example 6.4.1 Consider Program Simple_ShortPath (Figure 9). Using Technique C1 and rule R2 we get

the aggregate constraint
s-plength(X,Y,C) : groupby(path(X,Y, P,C),[X,Y], min(C))

on the predicate s_p_length. Using this aggregate constraint with rule R1, Technique BS1 deduces the

following sound aggregate selection on the body of rule R1:
groupby(path(X,Y, P,C),[X,Y],min(C))
Using Technique BS2 we get the following sound aggregate selection on the body of rule R2:
groupby(path(X,Y, P,C),[X,Y],min(C))
If we had a sound aggregate selection
path(X,Y, P,C) : groupby(path(X,Y, P,C),[X,Y], min(C))

on the head predicate of rule R3, Technique BS3 would derive the following sound aggregate selection on
the body of rule R3:

groupby(path(X,Y, P,C1),[X,Y],min(C1))

From these sound aggregate selections on the bodies of R1 and R2, using LS1, we deduce the sound

aggregate selection
path(X,Y, P,C) : groupby(path(X,Y, P,C),[X, Y], min(C))

on the literal path(X,Y, P,C) in the body of the rule R1, and the sound aggregate selection
path(X,Y, P,C) : groupby(path(X,Y, P,C),[X, Y], min(C))

on the literal path(X,Y, P,C) in the body of the rule R2. O
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6.4.1 Pushing Aggregate Selections

We now look at another way of generating aggregate selections on rule body literals. But first we present
some definitions. Aggregate functions such as min and functions as + or * interact in a particular fashion,

and we use this interaction to generate sound aggregate selections on literals in the bodies of rules.

Definition 6.4.1 (Distribute Over) Let fn be a total function fn: D x D x ... x D — D that maps
n-tuples of values from D to a value in D. Define s_fn(U) = |J{fn(?) |t € U}. Let agg_f be an aggregate
function agg-f : M(D) — D1. Let S1,S5,...S, be elements of M (D), and let S =57 X Sy X ... x Sy.

unnecessaryqgq s is said to distribute over fn iff for every (wl,w2,...,wn) € S, and for every i, 1 < i <

w; € unnecessaryagg £(Si) = fn(wl,w2,...,wn) € unnecessaryagqy (s-fn(S))

O

Example 6.4.2 For example unnecessarym,;, distributes over “+” for reals and integers, and over x for
positive reals and positive integers, but does not distribute over * for arbitrary reals.

unnecessarymi, also distributes over the function min(a,as,...,a,), and further, surprisingly, also
over maz (a1, as, . ..,a,). In fact, min distributes over any function that is monotone non-decreasing on its
arguments. unnecessarymq. behaves exactly like min on the above functions. Let sum_highest_k denote
the aggregate function that sums the highest k values (for some fixed k). Then unnecessarysum nighest_

distributes over “+” on reals. O

We assume that the system implementor provides a set of pairs (agg-f, fn) for common aggregate func-
tions agg_f and arithmetic functions fn such that unnecessaryqq,_¢ distributes over fn. We discuss briefly
in Section 6.8 how to extend the idea of distributes over to allow different aggregate functions for each S; in
the above definition.

Technique PS1 shows a way of deriving aggregate selections on literals in rule bodies by making use of

distribution of aggregate functions over ordinary functions.

Technique PS1: (Generating Aggregate Selections on Literals)
Let R be a rule of the form
R: pp(tn): —...,pi(t;, Wi),....Y = fn(W1,...,Wn)
such that there is no aggregate operation in the head of R. Suppose

1. There is a sound atomic aggregate selection on the head of R, of the form
groupby (p(r), [X], agg-f (V)

2. unnecessaryqqq_r distributes over fn,

3. Each of W1,...,Wn,Y are distinct variables,

4. Each Wi appears exactly once in the literal p;(Z;,W1), and appears in no literal other than ¥ =
fm(Wil,...,Wn).

5. Y does not appear in any other literal in the body of the rule, and does not appear in X.
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Then for each literal p;(#;, Wi) in the body of the rule, the following is a sound atomic aggregate selection

on the literal:
pi(Z,W;) : groupby(pi(Z, Wi), [Z],agg-f (Wi))

where Z is a tuple of distinct variables of the same arity as %;.

Theorem 6.4.2 Technique PS1 is sound. O
The proof of this theorem may be found in Appendix D.

Example 6.4.3 Suppose we have a sound atomic aggregate selection
groupby(path(X,Y,C),[X,Y],min(C))

on the head of the following rule:
path(X,Y,C): —path(X, Z,C1),edge(Z,Y,C2),C = C1 + C2.

Technique PS1 derives a sound aggregate selection of the form
groupby(path(X, Z,C1),[X, Z], min(C1))

on the body literal path.

Now suppose we have a sound atomic aggregate selection
groupby(path(X, Y, P,C), [X, Y], min(C))

on the head of rule R3 of Program Simple_ShortPath. Technique PS1 derives a sound aggregate selection
of the form groupby(path(X,Z, P,C),[X, Z, P],min(C)) on the body literal path(X, Z, P,C) in rule R3.

However, this literal has a “stronger” sound aggregate selection groupby(path(X,Z, P,C),[X, Z], min(C)).

In Section 6.4.2 we see how the stronger selection can be derived. O

6.4.2 Extended Techniques for Pushing Selections

The selections generated by Technique PS1 are too weak in the following sense. Often there are arguments
of literals that need not be introduced in the group-by variables of the aggregate selection generated, as
is illustrated in Example 6.4.3. The deduction technique can be extended using the following idea. In
the proof of Technique PS1, we partitioned the multiset Sy based on the values of variables other than
{W1,...,Wn,Y}, and we showed that within each partition we have a cross product of the Sy; values.
This cross product is important for distributing agg-f over fn. We can make the partitions of coarser
granularity by not including some variables in the partition, and yet have a cross product as above. We can
then generate stronger sound aggregate selections on body literals. We first present some definitions that

help in the generalization.
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Definition 6.4.2 (Cross-Partitioning Variables) Consider a rule
R:pn(tp): —...,pit;,Wi),....Y = fa(W1,...,Wn).
with an aggregate selection
groupby (pu(tn), [X], agg-f(¥))
that satisfy the conditions of PS1. A set of variables V is said to be cross-partitioning if

L {Y,W1,W2,... Wn}nV =0

2. Given any instantiation of the variables in V U X:

(a) Let S denote the set of instantiations of (W1, W2,...,Wn) generated by successful instantiations
of the rule with the given binding for VU X.

(b) Let Sw; denote the set of instantiations of Wi generated by successful instantiations of p;(t;, W)
with the given binding for V U X.

Then either S is empty, or S = Sw1 X Swa2 X ... X Swn-

The set of all variables in the rule other than {Y,W1,W2,...,Wn} is a cross-partitioning set, as is
shown by the proof of soundness of Technique PS1. However, there may be smaller sets of cross-partitioning

variables.

Example 6.4.4 We continue with Example 6.4.1. Suppose we have a sound atomic aggregate selection
groupby(path(X,Y, P,C1),[X,Y],min(C1)) on the head of rule R3:

R3 : path(X,Y,ledge(Z,Y)|P],C1) : — path(X, Z, P,C),edge(Z,Y, EC),C1=C + EC.

Then the set of variables {X,Y, Z} forms a cross-partitioning set. The reason is that with a given value
for X,Y, Z, whatever values one finds for C' using path can be used with whatever values that one gets for

EC using edge. The value of P does not affect the cross-product. O

We discuss the issue of automatically determining sets of variables that are cross-partitioning, in Sec-
tion 6.4.2.

Technique PS2: (Extended Technique For Generating Aggregate Selections on Literals)

Consider a rule R that with an aggregate selection satisfies the conditions of Technique PS1. Suppose
some set V of variables is a cross-partitioning set. Define an argument of p;(t;, Wi) to be a partitioning

argument if

1. it is not a variable, or
2. it is a variable that appears elsewhere in the same literal, or
3. it is a variable that is in X U V.
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Let Z be a tuple of distinct variables of the same arity as #;. Let Z' be the set of variables in Z that
correspond to partitioning arguments. Then the following is a sound atomic aggregate selection on literal

pi(Z,W;) : groupby(pi(Z,Wi),[Z'],agg-f (Wi))

Theorem 6.4.3 Technique PS2 is sound. O
The proof of this theorem is presented in Appendix D.

Example 6.4.5 We continue with Example 6.4.4. Using Technique PS2, we deduce the following sound

aggregate selection on the literal path:
path(X,Y, P,C) : groupby(path(X, Z, P,C), [ X, Z], min(C))

This selection is “stronger” than the selection generated by Technique PS1, since it selects the minimum
cost for each X, Z pair, rather than for each X, Z, P triple. O

Detecting Sets of Cross-Partitioning Variables

We now see how to determine a set of cross-partitioning variables for a rule. We first present some definitions.
The idea behind the following definitions is that if a variable in a literal does not appear elsewhere in the
rule or in the aggregate selection, we get a cross-product of Sy; sets as in Definition 6.4.2, even if we do not

include the variable in the cross-partitioning set.

Definition 6.4.3 (Strongly Non-Constrained Arguments) Suppose we are given a rule and an ag-
gregate selection on the rule. Consider any literal in the rule. The strongly non-constrained arguments of
the literal as those arguments that are distinct variables that (1) occur nowhere else in the body of the rule,

and (2) do not appear as a free variable in the aggregate selection. O

Definition 6.4.4 (Strongly Non-Constrained Variables) Consider arule R and an aggregate selection
s as in Technique PS1. A variable in R is strongly non-constrained if it occurs in a non-constrained argument
of some literal p;(¢;, Wi). O

Proposition 6.4.4 Consider a rule R and an aggregate selection s as in Technique PS1. Let V denote
the set of all variables in the rule. Let N denote the set of non-constrained variables in the rule. Then
C=V-N—-—{W1,W2,...,Wn,Y} is a cross-partitioning set for rule R. O

The proof of this proposition may be found in Appendix D.

Example 6.4.6 We revisit Example 6.4.4. Suppose we have a sound atomic aggregate selection

groupby(path(X,Y, P,C1),[X,Y],min(C1))
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on the head of rule R3:
R3 : path(X,Y,[edge(Z,Y)|P],C1) : — path(X, Z, P,C),edge(Z,Y, EC),C1 = C + EC.

Then the third argument of path(X, Z, P,C) is a non-constrained argument since it is a variable that
does not appear elsewhere in the rule body. Hence P is a non-constrained variable. The set of variables

{X,Y, Z} forms a cross-partitioning set, as required by Proposition 6.4.4. O

6.4.3 An Undecidability Result

We note that the set of deduction rules we presented for sound aggregate selections is not complete. De-
pending on the actual facts for a predicate, it is possible that a literal has a sound aggregate selection on
it, but the sound aggregate selection cannot be deduced syntactically. The following theorem shows that no

set of deduction rules can be complete.
Theorem 6.4.5 It is undecidable whether an aggregate selection is sound.

Proof: Consider a rule
p(X,C): —q(X,C),test(C).
and suppose we have a sound aggregate selection
p(X, C) = groupby(p(X, C), [X], min(C))
Then
4(X, C) : groupby(q(X, C), [X], min(C))

is a sound aggregate selection on the literal ¢ iff for every X, the minimum value of C in ¢(X,C) satisfies
test(C). However, with arbitrary logic programs, satisfiability is undecidable [SS82], and hence it is undecid-
able if the aggregate selection on the literal is sound. The theorem can be extended to aggregate selections
on predicates, by letting the given rule be the only one that uses of ¢q. O

It is conceivable that we can derive a set of rules that are complete for the class of deductions that use
only (local) syntactic criteria. However, such a set of rules would be too weak in practise, as is illustrated
by the program in Example 6.4.3. Here, distribution of min over + depends critically on the semantics for

+. Hence no deduction rule that used purely syntactic criteria would deduce the required selection.

6.4.4 Strength of Aggregate Selections

An aggregate selection s is stronger than an aggregate selection ¢ (denoted as s > t), if whenever ¢ classifies
an instantiation as irrelevant, then so does s. Selections s and ¢ are equivalent (in symbols, s = t) if s > ¢
and s > t. Note that the ordering > (i.e., the strict version of >) is an irreflexive partial ordering. It is not
a total ordering since aggregate selections may be incomparable.

The following are sufficient conditions for an aggregate selection s to be stronger than ¢.

Compare_Aggregate_Selections(s, t):
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1. Suppose s and t are atomic aggregate selections of the following form:
s = cl(...) : groupby(p(?), [X1], agg-f(Y))

t=c2(...) : groupby(p(f), [X2], agg-f(V))

(a) Ifcl(...) =¢c2(...), and Vars(X1) C Vars(X2) then s > t.
(Note that the first and third arguments of the above groupby's must be the same.)
(b) If there is some substitution o on the variables of ¢1(...) such that cl(...)[o] = ¢2(...), and s[o] is

stronger than ¢, then s is stronger than ¢.

2. Suppose s =cl(...) 1 as1 Aasa A...ANasy and t = c2(...) 1 at1 Aata A ... A at, where each as; and at;

is atomic. Then s >t if for each at; there exists an as; such that c1(...) : as; > ¢2(...) : at;.

Proposition 6.4.6 The conditions in Compare_Aggregate_Selections(s,t) are sufficient conditions for s to

be stronger than t. O

The formal proof of the above proposition may be found in Appendix D.

6.5 The Aggregate Rewriting Algorithm

In this section we present a rewriting of the program based on the propagation of sound aggregate selections.
The rewriting algorithm is somewhat similar to the adornment algorithm used in Magic sets rewriting (see
[Ul189b]). When it detects that an occurrence of a predicate p in the body of a particular rule has a sound
aggregate selection s on it, it creates a new labeled version p_s of p and notes that predicate p_s has aggregate
selection s on it. That occurrence of predicate p is replaced by p_s, and by using aggregate selection s, (copies
of) rules defining p are specialized to define p_s.

The rewriting algorithm is shown below. In Step 7 of the algorithm, s is a sound aggregate selection
on the head of R', and this, along with any aggregate constraints on body predicates, may be used with

techniques from Section 6.4 to generate new aggregate selections.

Algorithm Push_Selections(P, P*¢ )

[nput: Program P, and query predicate query_pred.

Output: Rewritten program P%%.

1) Derive sound aggregate constraints on the predicates of the program

using the deduction rules.

2) Push query_pred-nil onto stack.

3) While stack not empty do

4) Pop p_s from the stack and mark p_s as seen.

5) For each rule R defining p do

6) Set R' = a copy of R with head predicate replaced by p_s.

104



7) Derive sound aggregate selections for each body literal p; of R’
using the deduction rules.

8) For each p; in the body of R’ do

9) Let si denote the conjunction of sound aggregate selections
derived for p;; drop from si any atomic aggregate selections

that are weaker than other atomic aggregate selections in si.

—
(=}

If a version p;_t of p; such that ¢ < si has been seen,

[y
—
~— ~— ~— ~—

Then choose one such, and set si = ¢ ;

[u—y
N

Else push p;_si onto stack, and output selection s; on p;_s;.

—_
w

Output a copy of R’, with each p; replaced by p;_si.
End while.
End Algorithm.

Postprocessing 1: For each predicate p, for each version p_s of p, choose the weakest version p_t of p in
the rewritten program such that s > ¢. Replace all occurrences of p_s in bodies of rules in the rewritten
program by p_t. Finally, remove all rules that are not reachable from the query.

Postprocessing 2: Suppose we have a predicate ¢ in the rewritten program, with an atomic aggregate

selection s = groupby(p(t),[X],agg_f(Y)) on it. If q is a version of p with aggregate selection s on it, rename
p in the above selection to g. Otherwise, if p is absent from the rewritten program rename p in the selection
with a predicate chosen as below: if a version p_s of p with aggregate selection s, exists, choose it. If not,
select a version® p_s1 of p if any such version exists. If no p_s1 was found, p is not connected to the query

predicate—drop the selection s from predicate q.

If in the rewritten program there are two versions of p, p_s and p_t such that s > ¢, there is no point in
using the stronger version p_s — all the facts computed for p_s will be computed for p_t. Postprocessing 1
describes how to replace the stronger version of p by the weaker version.

Asg a result of the renaming of predicates followed by reachability analysis in Postprocessing 1, predicates
used in aggregate selections may not be present in the rewritten program. Postprocessing 2 describes how

to fix this problem.

Example 6.5.1 Applying this algorithm to Program Simple_ShortPath, we get the optimized program,
Program Smart shown in Figure 10. The algorithm starts with the query predicate shortest_path. Creation
of aggregate constraints, and pushing them into rules is done as discussed in earlier examples, and the
operation of Algorithm Push_Selections is fairly straightforward. As a result of the rewriting we get the rules

of Program Smart, but with path_s1 having the following sound aggregate selection on it:
path_s1(X,Y, P,C) : groupby(path(X,Y, P,C),[X,Y], min(C)).

On postprocessing, we rename predicate path in the above selection to path_s1, to get Program Smart. To

6We omit details on how to make this choice.
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get the benefits of the rewriting, the evaluation must make use of the aggregate selections present in Program

Smart. We describe how to do this in the next section. O

Theorem 6.5.1 (Correctness of Rewriting) Let P be any program, and P%® the aggregate rewritten

version of the program.

1. P% and P are equivalent in the set of answers they generate for the query predicate.

2. The aggregate selection on each predicate in P?%® is a sound aggregate selection on the predicate.

The proof of this theorem is presented in Appendix D The basic idea is that the deduction rules generate
sound aggregate selections on body literals. The rewriting technique creates copies of the predicates of
the body literals, such that all uses of the predicate have the aggregate selection on them, and hence the

aggregate selection on the literal becomes an aggregate selection on new predicate.

Theorem 6.5.2 (Termination) Algorithm Push_Selections terminates on all finite input programs, pro-

ducing a finite rewritten program. O

The above theorem shows that the generated program is finite. This is assured essentially because our
deduction techniques bound the number of different aggregate selections that can be generated. The formal
proof is presented in Appendix D.

The rewritten program could potentially be large, but, as is the case with the adornment algorithm
for Magic sets rewriting, this is very unlikely to happen in practice—the rewritten program is likely to be
not much larger than the original program. To ensure that the rewritten program is small we could adopt
heuristics such as bounding the number of atomic aggregate selections in an aggregate selection to some fixed
small value, or bounding the number of different aggregate selections on each predicate. We omit details

here; these restrictions may increase the number of facts computed, but will not affect correctness.

Proposition 6.5.3 (Stratification) If the initial program is stratified w.r.t. aggregation, then the ag-

gregate rewritten program is also stratified w.r.t. aggregation. O

Proof: We simply assign each predicate p_s to the same stratum as p. It can then be seen that every

aggregation operation in the rewritten program respects this stratification. O

6.6 Aggregate Retaining Evaluation

In this section we see how to evaluate a rewritten program making use of aggregate selections on predicates.
Essentially, once we know that a fact does not satisfy a sound aggregate selection on it we know that the
fact is irrelevant, and any use if the fact will only generate irrelevant facts.

We define Aggregate Retaining FEvaluation (Agg-retaining Evaluation) as a modification to Semi-Naive
evaluation (Section 2.2.3) : At the end of each iteration of Semi-Naive evaluation, (in Step 2.2 of Algorithm

SN_Evaluate) the following extra actions are performed:
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1. Any fact that does not satisfy an aggregate selection is marked as deleted. Any fact marked deleted is

not used in further derivations.

2. For each fact marked deleted, if

(a) there is an aggregate selection with a groupby that uses the predicate of the fact, and

(b) the fact affects the unnecessary set for the groupby,
then the fact is retained for use in that groupby. Otherwise, the fact is discarded.

Part 2 of the above may seem hard to test. In fact, it is not critical that it be tested. Retaining a deleted
fact that satisfies Part 2 of the condition above does not affect the derivations made later on. Moreover,
there are straightforward sufficient conditions for it, such as the following.

If a fact for a predicate p fails a sound atomic aggregate selection

p(t) : groupby(p(...),[--.],--.)

(i.e., the groupby uses the same predicate p) discarding the fact will not affect the unnecessary set for this
groupby. This is because Part 3 of condition IncSel ensures that if a value in a set is unnecessary for a set,
discarding it will not affect the unnecessary value for the set. If all uses of p in atomic aggregate selections
are of the above form, and a fact for p fails all the atomic aggregate selections, then discarding the fact will

not affect the unnecessary set for the groupby’s in any selection.

Example 6.6.1 Predicate path_s1 in Program Smart has a sound aggregate selection
path_s1(X,Y, P,C) : groupby(path_s1(X,Y, P,C),[X,Y],min(C)).

If a fact is generated with any value for X and Y and another fact with the same value for X and Y already
exists, we know that the one with the greater C' value does not satisfy the aggregate selection. Agg-retaining
evaluation of Program Smart discards facts with higher cost. If there is more than one stored fact with
the same value for X,Y,C, the facts can differ only in their P value. If a fact fails the aggregate selection,
it cannot affect the set of facts that are found irrelevant by the aggregate selection, and the fact can be
discarded. O

The soundness and partial completeness of Agg-retaining evaluation are fairly straightforward to show.
The main concern is termination. One might worry that Agg-retaining evaluation could discard a fact, then
recompute it, and reuse it to make derivations since it does not recognize that it was used earlier. In the
worst case, an infinite loop could result if this happens. The following theorem shows that this cannot
happen. The essential idea is to show that once a fact is found irrelevant, it continues to be found irrelevant

later in the computation. The proof of the theorem is presented in Appendix D.

Theorem 6.6.1 (Soundness, Completeness, Non-Repetition) Aggregate Retaining evaluation of
P%5 gives the same set of answers for query_pred as Semi-Naive evaluation of P, and does not repeat
any inferences. Further, the Aggregate Retaining evaluation of P%* terminates whenever the Semi-Naive

evaluation of P terminates. O
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R1: s_plength(X,Y,min{(C))) : — path_s1(X,Y,C).

R2 : path_s1(X,Y,C1) : — path_s1(X,Z,C),edge(Z,Y, EC),C1 =C + EC.
R3 : path_s1(X,Y,C) i —edge(X,Y,C).
Selections::

s1 = path_s1(X,Y, C) : groupby(path_s1(X,Y,C),[X,Y], min(C)).

Figure 11: Program Smart_ShortCost

6.6.1 Pragmatic Issues Of Testing Aggregate Selections

For concreteness, we let the set of aggregate functions that we consider in this section be the following: min,
maz, and for small integers k (up to some arbitrary number) the functions least_k, highest_k, sum_of least_k
and sum_of_highest_k.

Our selection propagating techniques ensure that all free variables in a groupby of an atomic aggregate
selection also appear in the corresponding literal on which the selection is applied. When testing an atomic
aggregate selection on a fact f, we have a unique ground instantiation of the group-by and grouping variables
of the selection; the test of the aggregate selection can be performed efficiently for all the aggregate functions
that we consider in this section.

If the test determines that fact f is irrelevant, f is discarded, else it is retained — for the aggregate
functions we consider, discarding f does not affect the set of values that are classified as irrelevant. As the
computation proceeds, the set of unnecessary values for the “group” to which f belongs (i.e., the set of facts
with the same values in the grouped arguments) could grow larger, and this might enable us to determine
that f is irrelevant, although this could not be detected earlier. By sorting the set of facts on the grouped
arguments, this “re-testing” can be done efficiently. The cost of sorting is small for the aggregate operations
we consider in this section; in the case of maz or min aggregate operations there is at most one value stored

for each group (however, there can be more than one fact with the same value).

Proposition 6.6.2 (Bounds on Performance) Given a program that uses only the aggregate operations
considered in this section, and a database, let the time for Agg-retaining Evaluation of the program on the
database be tg, and let to be the time taken to evaluate the original program on the database. There is a
constant k (independent of the database) such that tg < kxtp. O

This means that Agg-retaining evaluation of the rewritten program can do at most a constant factor worse

than Semi-Naive evaluation of the original program — the converse is not true.

Example 6.6.2 Given a graph with n nodes, the number of shortest paths between each pair of points may
be exponential in n. Hence we cannot get a worst case time bound better than exponential in n for the
shortest-path problem if we maintain all shortest paths as in Program Smart (Example 6.5.1). We instead
consider two variants of this program below.

Consider Program Simple_ShortCost, from Section 6.1. This program does not maintain path information.
The rewriting for this program is similar to the rewriting for Program Simple_ShortPath (Figure 9), and the

rewritten program, Program Smart_ShortCost, is shown in Figure 11.
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R1: s_plength(s,Y,min(C))): — path_sl(s,Y,C).

R2 : path_s1(s,Y,C1) : — path_s1(s, Z,C),edge(Z,Y, EC),C1 =C + EC.
R3 : path_s1(s,Y,C) 1 — edge(s,Y,C).
Selections::

sl = path_s1(X,Y, C) : groupby(path_s1(X,Y,C),[X,Y], min(C)).

Figure 12: Program Smart_SingleSourceCost

Due to the aggregate selection, there can be at most O(V?) path_s1 facts at any point in the evaluation.
These facts can be used with the E edge facts. Rule R2 can be thought of as extending each edge backward,
and each edge can be extended back to at most V' nodes. Rule R1 can generate at most E path facts. This
shows that E -V inferences are made per iteration, and hence there are at most E -V path facts used in
each iteration. Each iteration then takes time E -V, assuming that hash-based indices are used for path and
edge facts. There are at most V' iterations, since iteration ¢ computes all shortest paths of length i. Thus,
Agg-retaining evaluation of Program Smart_ShortCost takes time O(FE - V2).

To compute shortest paths from a single source, we can use a version of Simple_ShortCost where the vari-
able in the first argument of each path literal in the program is bound to the source node s.” We do not show
this program, but instead directly show its aggregate rewritten version, Program Smart_SingleSourceCost,
in Figure 12. An analysis similar to that for Program Smart_ShortCost shows that Program Smart_Single-
SourceCost runs in time O(E - V).

Note that the above bounds hold even if there are negative length edges, so long as there are no negative
cycles in the edge graph.

In Sudarshan and Ramakrishnan [SR92a], we discuss extensions to aggregate functions to allow the
program to specify that only one shortest path (chosen arbitrarily) is required. The rewriting algorithms are
also extended to handle these extensions to aggregate functions. It is easy to modify Program Smart to get
a program that computes shortest paths from a given source node. We can use these extensions to create a
version of this program that selects a single shortest path. The extended Aggregate rewriting of this program
generates a rewritten program that maintains at most one shortest path between the source node and each
other node. We show in [SR92a] that precisely the same time bounds as for Program Smart_SingleSourceCost

are applicable to the Agg-retaining evaluation of the rewritten program. O

6.6.2 Ordered Aggregate Retaining Evaluation

Consider the shortest path problem with a given starting point. Dijkstra’s algorithm takes O(E % log(V'))
time if we use a heap data structure to find the minimum cost path at each stage. However, Agg-retaining
evaluation of Program Smart_SingleSourceCost (Example 6.6.2) takes O(E - V) time. We can get the effect
of Dijkstra’s algorithm by extending at each stage only the shortest path that hasn’t been extended yet. In
other words, we use only the path facts that are of minimal cost among those that haven’t yet been used.

This important observation is made in [GGZ91] and is used in their evaluation algorithm (see Section 6.8.1

"The Factoring transformation [NRSU89] and the Magic Sets rewriting on Program Simple_ShortCost, with a query having
the first argument bound results is a similar program being generated. Aggregate Rewriting optimizes the resultant program
successfully.
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for a brief description). Their evaluation technique works for the class of “monotonic min programs” — see
[GGZ91] for a precise definition. The basic idea behind their technique can be applied to a class of programs
that we call cost-inflationary programs. These are defined below.

A cost domain is a domain with a partial ordering on it. A cost predicate is one with a distinguished

argument called the cost argument, that takes values from the cost domain.

Definition 6.6.1 (Cost-Inflationary Programs) A strongly connected component (SCC) of a program

is said to be cost-inflationary-min if either it has no aggregate selections, or all the following conditions hold:

1. All aggregate selections on predicates in the SCC use only the min aggregate operation.
2. Every predicate in the SCC has a cost argument.

3. For each predicate defined in the SCC, the min operation in each aggregate selection (if any) on it is

on the cost argument of the predicate.

4. Every rule in the SCC is inflationary on the cost argument, i.e., for every successfully instantiated rule,
the values in cost arguments of body predicates are less than the value in the cost argument of the

head of the instantiated rule.

An SCC is said to be cost-inflationary-maz if the conditions above hold, with min replaced with max,
and less replaced with greater.
A program is said to be cost-inflationary if each of its SCCs is either cost-inflationary-min or cost-

inflationary-max. O

We make use of an idea in [GGZ91] to derive an improved evaluation technique, Ordered Aggregate
Retaining Evaluation (Ordered-Agg Evaluation) , for SCCs that have aggregate selections, and are cost-
inflationary-min. The basic idea is to use lower cost facts before higher cost facts are used. We make use of
a mechanism called sloppy-delta iteration for adapting Semi-Naive evaluation for fact orderings, described
in [SKGB87]. All derived relations are split into a wvisible part and a hidden part containing facts that are

not used to make derivations until they are moved into the visible part.

Ordered Aggregate Retaining Evaluation:

To evaluate cost-inflationary-min SCCs, we adapt Semi-Naive evaluation as follows.
1. Newly derived facts are put into the hidden parts of the respective relations. The facts in the hidden parts
of relations are ordered based on the cost argument of the fact.

2. Whenever a fixpoint is reached with the visible parts of relations, we find the fact with the least cost from

among all the facts in the hidden parts of relations and move it into the visible part.

3. Facts from the hidden as well as the visible relations are marked deleted (and possibly discarded) when an

aggregate selection finds them to be irrelevant, as is done in Agg-retaining evaluation.

The technique for cost-inflationary-max SCCs is very similar to the above, with the ordering of elements

reversed; we omit details. A cost-inflationary program is evaluated by using the appropriate version of
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Ordered-Agg evaluation technique for each SCC, and evaluating the SCCs in a total order consistent with
the partial ordering of the SCCs.
The effect of the above evaluation is exactly the same as if Ganguly et al.’s evaluation technique were

used, for the case of cost-inflationary programs. The following example illustrates its benefits.

Example 6.6.3 The Aggregate rewritten single source shortest path cost program, Program Smart_Single-
SourceCost, is shown in Figure 12.

All path facts generated by Program Smart_SingleSourceCost have the source node s as the first argument.
Ordered-Agg evaluation of Program Smart_SingleSourceCost works as follows. First, all edges from s are
used, and path facts created using rule R3. These path facts are hidden, and a local fixpoint is reached.
Now a shortest path among the hidden path facts is selected and used. This generates new path facts, and
all these are hidden. A local fixpoint is reached, and a shortest path among the hidden path facts is selected
again. If there are two path facts to the same node, if one of them is of higher cost than the other, the
aggregate selection using min deletes the fact of higher cost.

We assume that the edge weights are non-negative. The evaluation explores paths in order of increasing
cost since edge weights are non-negative — any path fact generated must be of equal or higher cost than
the path fact used to generate it. Thus when a hidden path fact is exposed, it is guaranteed to be a shortest
path from s. Evaluation thus mimics Dijkstra’s algorithm. The time complexity analysis is essentially the
same as that used for Dijkstra’s shortest path algorithm — the analysis is as below.

Suppose we use a heap data structure. The min aggregate selection ensures that for each node, only the
minimum cost path from the source is retained. Thus only O(V') path facts are present at any time.

Finding the overall shortest path at each step therefore takes O(log(V')) time, assuming a balanced heap
is used. At each iteration a “minimal” node is chosen and the path to it is expanded. Thus some new facts
are computed and added to the heap.

For the node that is chosen to be expanded in the next iteration, there can be no shorter path from the
source, since every path that is computed hence will be longer (due to the assumption that edge weights are
non-negative). Thus that node will never be chosen again to be expanded. Thus in V steps the algorithm
terminates. At each step the edges from a node are examined, and the path to the node is expanded along
each edge from the node. This can take a total of at most O(E) time over all steps since each node is
expanded exactly once, and at most O(FE) facts are added to the heap. Thus the heap operations take
O(E -log(V)) time. Thus the total time taken by Ordered-Agg evaluation of this program is O(E - log(V)).

Note that even if edge weights are negative, the algorithm works correctly, and terminates provided there
are no negative weight cycles. However, the time taken by the program may be exponential in the worst
case.

Using the extensions described in Sudarshan and Ramakrishnan [SR92a], we can create a variant of
Program Smart that computes only paths from a single source node, and maintains only one shortest path
between each pair of nodes, and we can use the extended aggregate rewriting on this program. We show in
[SR92a] that precisely the same time bounds as for Ordered-Agg evaluation of Program Smart_SingleSource-

Cost are applicable to the Ordered-Agg evaluation of the rewritten program. O

Theorem 6.6.3 Consider the Ordered Aggregate Retaining Evaluation of a cost-inflationary-min SCC. The
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evaluation is sound, and every fact that is used in the evaluation satisfies all aggregate selections on it. Fur-
ther, the evaluation does not repeat derivations, and is complete and terminates if Agg-retaining evaluation

terminates on the SCC.

Proof: Soundness follows directly from the soundness of the aggregate selections.

At an intermediate fixpoint in an Agg-retaining evaluation, consider the fact with the least cost that
has not been used yet, and satisfies any aggregate selections on it. Since the rules in the SCC are cost-
inflationary-min, no fact with lesser cost can be derived hence. Therefore this fact definitely satisfies any
min aggregate selection on the predicate (with respect to the complete set of facts).

Consider now an SCC for which Agg-retaining evaluation terminates. Since Agg-retaining evaluation
terminates, there are only a finite number of facts that satisfy all aggregate selections present. At each
intermediate fixpoint, a new such fact is chosen. Hence there are only a finite number of fixpoints. Now
within an intermediate fixpoint, only derivations that use the selected fact can be made. Since this is a subset
of the facts derived in Agg-retaining evaluation, each intermediate fixpoint terminates. Hence Ordered-Agg
evaluation terminates on the SCC. Any deleted facts fails an aggregate selection and hence is irrelevant.
Completeness then follows from the completeness of sloppy-delta iteration [SKGB87].

As in Agg-retaining evaluation, once a fact is found to fail an aggregate selection, it will continue to fail
the aggregate selection. The non-repetition property follows from the non-repetition property of sloppy-delta
iteration. O

The above theorem also shows that Ordered-Agg evaluation never makes more derivations than Agg-
retaining evaluation for cost-inflationary programs. In turn, Agg-retaining evaluation makes no more infer-
ences than Semi-Naive evaluation.

Ordered-Agg evaluation also works on programs that are not cost-inflationary. For instance, the shortest
path program is not inflationary if there are negative cost edges. But even in this case, Ordered-Agg
evaluation of Program Smart functions correctly, and terminates if there are no negative cost cycles, although

it may not be very efficient if negative edges are present.

6.7 Examples
We now see some more examples of programs to which our techniques are applicable.

Example 6.7.1 The following program defines the earliest finish time of a task, given the finish times of

preceding tasks.

R1:e_fin(X,mazx(T)) : — fin(X,T).
R2: fin(X,T) : — precedes(X,Y), fin(Y,T1),delay(X, D), T =T1+ D.
R3: fin(X,T) i — first(X), delay(X,T).

This program can be optimized using our techniques, and in the resultant program fin is replaced by fin_s,

where s is the aggregate selection

fins(X,T) : groupby(fin_s(X,T),[X], maz(T))
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The rules and other predicates are the same, but finish facts that don’t have maximal times are deduced to
be irrelevant. We can extend this program to compute the critical path, and still apply our optimizations.

The aggregate rewritten program can be evaluated using Agg-retaining evaluation. We cannot use
Ordered-Agg evaluation since the program is not cost-inflationary — it uses max, but the cost value of
the head of a rule is greater than that of the body, whereas it should be less for cost-inflationary-max SCCs.
Note that the evaluation of the program would take time O(E - V). If we ordered the use of facts such that
a vertex is expanded only after all its predecessors have been expanded, we can do better. This can in fact
be achieved by using the Ordered Search evaluation feature [RSS92a] provided in the CORAL deductive
database system [RSS92b]. The time complexity of evaluation is then O(E). O

Example 6.7.2 Consider the following program. Predicate path2(X,Y, H, C') denotes a path where X and

Y are source and destination, H denotes hops, and C' denotes cost.

R1 :pbest(X,Y,H,C) :— pfew(X,Y, H),p_short(X,Y, H,C).
R2:p_few(X,Y,min(H)) : — pshort(X,Y, H,C).

R3 : p_short(X,Y, H,min{C)) : — path2(X,Y, H,C).

/* ... Rules for path2 ... */

Query: 7-pbest(X,Y, H,C).

The program finds flights with the minimum number of hops, and within such flights, finds those with

minimum cost. Our technique generates the sound aggregate selection on path2:
path2(X,Y, H,C) : groupby(path2(X,Y, H,C),[X,Y, H],min(C))
A groupby(path2(X,Y, H,C),[X,Y], min(H))

The rewritten program is the same as the original program (modulo renaming of predicates other than
p-best), except for having the above sound aggregate selection on path2, as well as aggregate selections
on p_few and p_best. In the evaluation of the rewritten program all paths that have more hops than the
minimum for a given start and end point, as well as all paths that are not of minimum cost for a given start

and end points and a given number of hops are discarded. O

Example 6.7.3 The following program can be used to find the cost of the cheapest three paths, and
illustrates the ability of our techniques to handle aggregate operations other than min and maz. We use
the aggregate operation least3 that given a multiset, returns a multiset containing the three least values in

the given multiset.®

R1 : shortest3(X,Y,least3(C)) : — path(X,Y,C).
/* ... Rules for path as in Figure 8 ... */
Query: 7-shortest3(X,Y,C).

Aggregate operation least3 is an IncSel function, with unnecessaryjeqasts(S) defined as all values greater
than the third lowest value in multiset S. Also, the function unnecessary;.q.st3 distributes over “+”. Hence

our rewriting technique proceeds on the rules for path in this program in a manner very similar to the shortest

8Since the Herbrand universe does not include multisets, we need to use an extended Herbrand universe when assigning a
semantics to this program [BNR*87].
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R1 nearest_sg"/(X,Y,min(D)) : —query(nearest_sg"// (X)), sg"//(X,Y, D).

R2:sg"/(X,Y,D)  : — query(sg"! (X)), up(X, 21), 59" (21, 22, D1),
down(Z2,Y),D = D1+ 1.
R3:sg"/(X, Y1) s — query(sg®?f (X)), flat(X,Y).

R4 : query(sg®? /(X)) : — query(nearest_sg®’f(X)).
R5 : query(sgt?f(Z1)) : — query(sg®?f (X)), up(X, Z1).
R6 : query(nearest_sg®/7(s)).

Figure 13: Program Nearest_Same_Generation

cost program, and the rewritten rules are similar to the rules of Program Smart_ShortCost (Figure 11). except
that min is replaced by least3. In the evaluation of the rewritten program, only the cheapest three paths

between pairs of points are retained. O

Our optimization techniques are orthogonal to Magic rewriting [BR87b, BNR'87] and are applicable to

programs that cannot be expressed using transitive closure, as the next example shows.

Example 6.7.4 Consider Program Nearest_Same_Generation (from [GGZ91]) in Figure 13, that computes
the “nearest” among all nodes in the “same generation” as a node s. Our techniques can be applied to
optimize this program. This program has been rewritten using the Magic Templates transformation, with
adornment [BR87b].?

The rewriting produces essentially the same program except that there is an aggregate selection s =
sg"’1(X,Y, D) : groupby(sg®’*(X,Y, D), [X,Y],min(D)) on predicate sg"//. In the evaluation of the rewrit-
ten program, for each X, Y pair only the fact sg®/f(X,Y, D) such that D is minimum is retained. O

6.8 Discussion

We note that the evaluation techniques developed in this chapter are orthogonal to the optimization tech-
niques developed in Chapter 5, but there are some restrictions on the use of non-ground facts with aggre-
gation. We require that for all predicates, any arguments that are aggregated upon or used as a group-by
argument of an aggregate operation or an aggregate selection must be ground. Other arguments can be
non-ground — this does not affect our evaluation technique, although it can affect our rewriting technique.
The optimization techniques developed here control the use of facts, and use tests for irrelevance. The op-
timization techniques developed in Chapter 5 work at the level of fact representation, and rule application.
Example 5.9.2 illustrates a program for which both optimization techniques are useful.

Our rewriting techniques can be implemented using sufficient conditions for various tests as we mentioned
in the course of the paper. In addition to this, our rewriting techniques provide a basis for human analysis
of a program, with the subsequent introduction of aggregate selections by a human rather than a rewriting
system. This is useful in cases where the required conditions are met, but the sufficient conditions are not
powerful enough, or in systems where the rewriting algorithm has not been implemented. We then have a

sound basis for the introduction of aggregate selections, rather than an ad hoc approach.

9The notation differs somewhat from that of Beeri and Ramakrishnan [BR87b]. Literals of the form magic_p(...) in the
rewriting of [BR87b] are written as query(p(...)) in our notation.
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Although, for simplicity, we only considered programs without negation, our results can be extended to
deal with programs that use stratified negation. The Magic rewriting of a program with stratified negation or
aggregation may not be stratified [BNR*87]. Evaluation techniques have been developed for non-stratified
programs generated by Magic rewriting of stratified programs, as well as for more general classes of non-
stratified programs (see, e.g., [Ros90, KS91, RSS92a]). We believe our rewriting techniques can be generalized
to handle some of these classes of programs, and the evaluation techniques used for these classes of programs
can be generalized to use aggregate selections, just as we generalized Semi-Naive evaluation to use aggregate
selections.

Van Gelder [Van92] considers programs with unstratified aggregation whose meaning is easier to under-
stand if aggregation is pulled out of recursion. Our evaluation techniques can be viewed as complementing
Van Gelder’s ideas, by letting the user specify a stratified program, and automatically transforming it into
one where aggregation has been pushed into recursion (through the use of aggregate selection).

In Section 6.4.1 we examined the case of unnecessaryqqq,_¢ distributing over a function. The definition
of distributes over (Definition 6.4.1) can be extended in a straightforward manner by allowing a different

function unnecessary,q,_s_i for each argument of the function. This would let us distribute unnecessarymin

R ”

through to the first argument of “—”, and get an unnecessary,,., function on the second argument of “—".
Technique PS1 generalizes in a straightforward manner.

We can extend Definition 6.4.3 by allowing the strongly non-constrained arguments to have variables
that occur as arguments of “non-constraining function” literals — functions that are total on the type of the
variable, and whose results is ‘assigned’ to a variable that does not appear in the rule body or in the groupby
variables of the aggregate selection. This can be further generalized to allow for function composition in the
rule body, where the result of a function is used as an argument of another non-constraining function, The
definition of non-constrained variables can then be correspondingly generalized by also defining all variables
that appear only in non-constraining literals to be non-constrained variables. Proposition 6.4.4 generalizes
correspondingly, and the basic idea in the proof remains unchanged.

Such an extension would be useful if, for instance, in Example 6.4.6, we had a literal
append(P, [edge(X,Y)], P1)

in the body, and P1 is used only in the head of the rule. append is a total function on the type list; this
information could let us deduce that P is a non-constrained variable. Similarly, if we had extra arguments
for path, for instance one that maintains the number of nodes in the path, we may be able to deduce that
the argument is non-constrained. Such deductions are useful in generating stronger aggregate selections as

in Example 6.4.5.

6.8.1 Related Work

Several papers in the past [RHDM86, ADJ88] addressed optimizations of generalized forms of transitive clo-
sure that allowed aggregate operations. Cruz and Norvell [CN89] examine the same problem in a generalized
algebraic framework. On the other hand, we deal with a language that can express more general recursive
queries with aggregation, and do not make use of any special syntax.

Knuth [Knu77] considers a class of problems that can be viewed in the framework of “superior context
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free grammers”. Superior context free grammers can be viewed as cost-inflationary-min programs with one
recursive binary predicate (call it g). A superior function is one whose value is greater than the values of
each of its arguments. The cost argument of the head of each rule in the program is computed as a superior
monotone non-decreasing function of the cost arguments of the body literals. The non-cost argument of p

holds the name of the non-terminal in the superior context-free grammer. The problem is to solve the query
query(X,min(C)): —g(X,C).

Our rewriting techniques apply to this program, since min distributes over any monotone non-decreasing
function, and we can use Ordered-Agg evaluation on it since the function is superior. The effect is exactly
the same as using Knuth’s algorithm. Knuth notes several applications of such grammers, such as finding
the length of the shortest path, finding the expected number of comparisons in an optimum binary search
tree (given probabilities of access of keys and gaps between keys), and optimum code-generation algorithms
for compilers. Our evaluation technique generalizes this class, since we do not require the functions to be
superior (although Ordered-Agg evaluation may not be applicable). Further, we allow arbitrary programs,
which generalize the class of superior context-free grammers. For instance, since we allow the use of function
symbols, we can find the optimum binary search tree (mentioned above), rather than just find the expected
number of comparisons in the tree.

Recently Ganguly et al. [GGZ91] presented optimization techniques for monotone increasing (resp. de-
creasing) logic programs with min (resp. max) aggregate operations. Informally, there must be a single cost
argument for each predicate in the program and the program must be monotone on this argument. They
transform such a program into a (possibly unstratified) program with negation whose stable model yields
the answers to the original program, but does not contain any irrelevant facts. They also present an efficient
evaluation mechanism for computing the stable model for the transformed program, which is essentially
equivalent to Dijkstra’s algorithm for the case of shortest-path.

Our results were obtained independently of Ganguly et al. [GGZ91]. The results of Ganguly et al.
complement this work in two important ways. Their idea of ordering of facts in the computation (which we
have adapted and extended in Section 6.6.2) offers significant improvements in time complexity, and unlike
our technique, theirs can handle monotonic min programs even if the use of min is unstratified.

Our techniques improve on those of Ganguly et al. in several ways. First, our techniques handle programs
with multiple aggregate operations including min and max, least k, etc. Thus we can handle a program
that maintains path information. Second, our techniques are applicable to stratified programs that are
not monotonic. This means that we can handle problems such as the critical path problem. However,
our techniques are not applicable to non-stratified programs. Third, we allow predicates with multiple
cost arguments and allow multiple atomic aggregate selections on the same predicate. The use of these
generalizations is illustrated in Examples 6.7.2 and 6.7.3, which cannot be handled by Ganguly et al.

We note that the rewriting techniques of Ganguly et al. only work efficiently with a version of the program
that does not maintain actual paths. There are other common examples of programs that can benefit from
our optimizations, although they cannot be handled by [GGZ91] since they are not cost inflationary. These
include the shortest path problem with edges of negative weight, and the earliest finish time problem shown
in Example 6.7.1. 10

10This program uses maz and is monotonically increasing, whereas Ganguly et al. require it to be monotonically decreasing.
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6.9 Conclusions

We believe that evaluation with Aggregate Optimization will offer considerable time benefits for a significant
class of stratified programs that use aggregate operations similar to min and maz. We believe that given a
technique such as that of Ganguly et al. [GGZ91], or of Beeri et al. [BRSS89] for evaluating special classes
of unstratified programs, our optimization techniques can be adapted for such classes of programs, and can
detect irrelevant facts using aggregate selections. Our optimization techniques may be useful for optimizing

non-recursive queries, such as SQL queries, that use aggregate operations.
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Chapter 7

Conclusion

In the first part of this thesis, we identified some problems with bottom-up evaluation of programs that
generate non-ground terms. We presented a combination of an improved rewriting technique and an improved
evaluation technique to address these problems. Our optimization techniques provide two benefits.

First, we were able to show that memoization can be done at a relatively low cost in terms of time complex-
ity (a cost of a loglog factor with respect to Prolog evaluation) if we do not perform subsumption-checking.
Whether or not to do subsumption-checking then becomes a matter of whether the cost of subsumption-
checking is paid off by savings in terms of recomputation and improved termination properties. Unlike with
the naive approach, no significant extra price (in the sense of time complexity) is paid either for storing facts,
or for implementing a fair search strategy (breadth-first search instead of the depth-first search implemented
by Prolog).

Second, the optimization techniques permit efficient bottom-up evaluation of programs that generate
non-ground facts. We presented examples of programs that are best evaluated bottom-up, and use non-
ground data-structures. This result is important since non-ground data-structures have been shown to be
very useful in the context of Prolog evaluation, and we expect them to be of importance in the context of
databases as well.

The optimization techniques' have been implemented on the CORAL deductive database system. The
extra cost added by the optimization techniques seems to be reasonably small for programs that generate
only ground facts.

There have been some extensions to bottom-up evaluation that control the order of search (Ramakrishnan,
Srivastava and Sudarshan [RSS92a]). However, it is still an open problem whether Prolog’s depth-first control
strategy can be simulated bottom-up (or by memoing top-down techniques), without a loss of efficiency for
the case where all answers are required. A related issue is that of intelligent backtracking (see, e.g., [CD85]),
which allows termination of computation for a subgoal before all answers to the subgoal have been generated.
A restricted form of intelligent backtracking can be incorporated within the evaluation of a rule in bottom-up
evaluation. The choice annotation [NT89, GPSZ91] as well as the any aggregate selection [SR92a] provide
some of the benefits of intelligent backtracking across rules, in the context of bottom-up evaluation. How to

provide the full benefits of intelligent backtracking is an open problem, and is related to the search strategy

IModulo tail-recursion optimization
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used. Another area of future work is efficient bottom-up evaluation of programs with negation in rule bodies
(see, e.g. [Ros90, KSS91, RSS92al).

In the second part of this thesis we developed optimization techniques that are useful for programs that
use aggregate operations along with grouping operations. We developed a notion of relevance that extends
the notion used by Magic rewriting, and presented an evaluation technique, based on aggregate selections,
that makes use of this extended notion of relevance. We presented a rewriting technique that can deduce
aggregate selections; it is powerful enough to deduce the “optimality principle” for the shortest path program.
The examples we presented illustrate the importance of control of deduction. We also identified a class of
programs for which there is an efficient control strategy based on ordering the use of facts. The shortest path
program falls into this class, as does the larger class of superior context free grammars, and the evaluation
technique generalizes Dijkstra’s shortest path algorithm.

Future work in this area includes studying the effect of control on evaluation. Extending the set of rules
for deducing aggregate selections is also of importance. Another area of interest is to develop techniques to
“push” aggregate operations such as sum and count into rules, even though they do not provide aggregate

selections. This could reduce the cost of evaluation considerably in many cases.
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Appendix A

Proofs From Chapter 3

A.1 Proofs From Section 3.3

Lemma 3.3.1 Let P be any program, and ) a query on P. Consider a step in a derivation sequence for

Pé"IGU such that the evaluation prior to that step has property MGU-Prop.

Suppose a supplementary fact sup; ;(id, 7;,id;11) is derived at this step. Let sup;; be a supplementary

predicate generated from a rule R; of P,

Rj:p(t): —p1(t1), pa(t2), - - -, pn(tn).

such that the body of R; is non-empty.
Then there are facts answer(idy, p1(ar)), ..., answer(id;_1,p;—1(a;—_1)), and a fact query(p(s),id), such

that

1. Each id,,,1 < m <, is the id of an mgu-subgoal generated from ?p(3s), and

2. The substitution for variables of R; specified by v;, is in

MGU((p(t). p1(t1), - .. pi-1(ti=1)), (p(3), p1(@1), - .., pi—1(@i=1)))

Proof: We prove this by induction on i (where the supplementary predicate is sup; ;).

The base case has i = 0. For this case, any supl; fact must be generated using a rule
supljo(ID,V,pi(t)): —query(p(?),ID).

Since bottom-up evaluation uses mgus, in any fact created thus p;(Z;) is an mgu-subgoal generated from
the subgoal with id ID, and the bindings of variables in V satisfies Part 2 of this lemma. The rule defining
supjo merely replaces the goal with its id. Hence the claim holds for the basis case.

Now suppose it holds for all values up to some k — 1, and consider k. Suppose a fact supl; ;(id, T, pr+1(

br+1)) is generated. It must be generated from a rule of the form:

suplix(I,V, prs1(tri1)): —supjp—1(1,V, I1), answer(I1, pg(tx)).
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using some fact sup; r—1(id, Tr_1, id;) and some fact answer(idy,pr(ar)). Hence, by inductive assumption,

there is a fact query(p(s),id), and there are facts

answer(idl, p1(ay)), . . ., answer (idg—2, pr—2(Ar—2)
that satisfy the necessary conditions, and idy, ..., ¢d;—1 are ids of mgu-subgoals generated from the subgoal
with id 1.

Further, the bindings of variables in U1 correspond to an mgu for the rule prefix, by Part 2 of the
lemma and induction hypothesis. By the statement of the lemma, pi(ar)) is an mgu-answer to the subgoal
with id idr. When making a derivation mgus are used. From this and the structure of supplementary rules

it follows that the the substitution for variables of R; specified by vy, is in

MGU ((q(t),p1(t1), - - -, o)) (a(@), p1(@1), - . ., pr(ax)))

Hence the variable bindings created satisfy Part 2 of the lemma.

Using arguments exactly the same as in the base case, the last argument of the generated supl; ; fact is
an mgu-subgoal, generated from id. And as before, the rule defining sup;  replaces the subgoal by its id.
Hence Part 1 of the lemma follows.

This concludes the induction step and the proof of this lemma. O

Lemma A.1.1 Let P be any program, and @ a query on P. Consider a step in a derivation sequence

MGU
for program Pg

such that the evaluation prior to that step has property MGU-Prop. Suppose a fact
answer(id, p(@)) is derived at this step.

Then p(a) is an mgu-answer to the subgoal with identifier id.

Proof: Such a fact can be generated using a rule of one of three forms. The first case is of rules of the form:
answer (I, h(t)): —sup;o(I,V,_).

The proof is straightforward for such rules, since the sup;o fact used in the body is generated by a most
general unification of the subgoal with identifier id with the head of a rule with an empty body from P, and
the sup; o fact stores the variable bindings in V. These variable bindings are used to create the head fact
for the same rule from program P.

The second case is of rules of the form:
answer (I, h(t)): —supjn—1(I,V,I1),answer(I1,p,(t,)).

The supplementary fact used in the body of the rule R must satisfy Lemma 3.3.1. The proof of this case
then directly parallels the arguments in the induction step of the proof of Lemma 3.3.1." We omit details,
for brevity.

The third case is of Type 6 rules, which are of the form:

answer(I, h(t)): —query(b;(X;), ID, answer(I, h(t)), b;(X;).

INote that this proof does not used induction — it merely uses the arguments from the induction step of the proof of
Lemma 3.3.1.

121



Let the query fact used be query(b;(a;), id, answer(idl, h(3)) and b;(b;). By induction hypothesis, ?b;(a;) is
an mgu-query on b;, and the rule application computes an mgu of @; and (a variant of) b;. The result of the
unification is then an mgu-answer, and by Part 2 of MGU-Prop, the result follows. O
Theorem 3.3.2 Given any program P and query (), the bottom-up evaluation of Pé”GU has property
MGU-Prop.
Proof: The proof is by induction on derivation sequences for PMGU . The theorem holds trivially for the
empty derivation sequence. Now suppose it holds prior to step m in a derivation sequence. By inductive
assumption all subgoals generated earlier are mgu-subgoals, and all answers generated earlier are mgu-
answers.

Consider first the case that a fact of the form query(p;(%;),id) is derived at step m. If the fact is generated
from an initial_query fact, it is an mgu-subgoal by definition. Otherwise the fact must be generated using

of a rule
query(p;(t:),ID): —sup;,i—1(HId,V,ID).

with some fact sup;;—1(hid,7,id). By Part 2 of Lemma 3.3.1, T contains bindings generated from an mgu
as required by the definition of mgu-subgoals. Hence ?p;(;) is an mgu-subgoal. Now id is the identifier of
the subgoal got by applying to p;(¢;) the substitution that is stored in T (using the rule defining supl; ;_1).
Hence ?p;(t;) is an mgu-subgoal, with identifier id.

Now consider the case that a fact of the form answer(id, p(a)) is derived in step m. It follows from
Lemma A.1.1 and the induction hypothesis that p(a) is an mgu-answer to a subgoal with identifier id.

This completes the induction step and the proof of this theorem. O
Theorem 3.3.3 Given any program P and query @, the bottom-up evaluation of P5'Y is complete with
respect to @), i.e., if a fact p that is an answer to () is present in the least model of P, then p is subsumed

by a fact computed in the bottom-up evaluation of Pév"GU.

Proof: We prove the following result: (p stands for any predicate, in the following) if a fact query(p(b), id)
is available to the evaluation of PA'@U, then for every fact p(a) that unifies with p(b), and is generated

by a bottom-up evaluation of program P (the original program), evaluation of Pg"GU

generates a fact
answer(id, p(¢)) such that p(¢) subsumes p(@)[mgu(@,b)]. Given this fact, an answer p(¢) will be generated
by rule @r3. The theorem then follows from the completeness of bottom-up evaluation of P.

Assume that this result is not true, and consider the shortest derivation sequence of P such that a fact
p(a’) produced in the derivation sequence contradicts this property. If p is a base predicate, a Type 6 rule
would generate the required answers using the base facts.

We now consider the case that p is a derived predicate. Let p(@) = p(b)[mgu(a’,b)]. Now, consider the

rule R; (in P) whose instance R is used to derive p(a’). Let R; and R} = R!/[mgu(a’,b)] be as follows:
Rj:p(t): —pi(t1),p2(t2), . ... pa(tn).
R :p@): —pi1(@),p2(@2), - -, pn(@n).

Let 0 be such that R} = R;[f].

Claim: If a fact query(p(b),id) is made available, such that b subsumes @, then for each 0 < i < n — 1 the

MGU
P

evaluation of generates
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(1) a fact sup;;(id, v, id;1+1) such that the variable bindings in 7; subsume the bindings of variables in 6,
and

(2) a fact answer(id;11,pivr1(Ciyr)) such that ¢;11 subsumes @;17.

Proof of Claim: We prove this claim by induction on i. The claim is trivial in case the body of R; is
empty, and we assume that this is not the case.

We consider the basis case first. The subgoal ?p(b) must unify with p(%) since @ is an instance of  as
well as an instance of b. Hence the body of the rule defining supl; ¢ unifies with query(p(b),id), and a fact
supl;o(id, Uo, p1 (dy)) is generated such that the bindings in vy subsume the bindings of variables in #. From
this fact, a fact supjo(id,To,id1) is generated, and this fact too satisfies part 1 of the claim.

A fact query(pi(di),id;) then gets generated from supjo(id, Dg,id;), such that pi(d;) is the result of
applying the substitution in vy to pi(#;). Hence p;(d;) subsumes p; (@7).

By the outer assumption, an mgu-answer answer(idy,p;(¢r)) such that p;(¢7) is at least as general as

Pév"GU. This finishes the proof of the basis case.

p1(ar) must be generated by the evaluation of
Now we look at the inductive step for this claim. Suppose that for values 0...7 this claim holds. We
then have facts sup; ;(id, 73, id;+1) and answer(id;1+1, piy1(Ciy1)) that satisfy the claim. These are then used

to get an instantiated supplementary rule of the following form:
supljiv1(id, vy, idit): —sup;i(id, v, idit1), answer(idiy1, pit1(Civr))-

This instantiated rule then generates the fact supl; ;4+1(id, Vi1, idi12). Now, piy1(Gix1) subsumes p;41(@i11),
and the bindings in v; subsume the bindings in §. Hence the unifier for the supplementary rule subsumes 6,
and these bindings are stored in T;7. This in turn leads to the generation of a fact supj, ;i1 (id, iz1, idit2)
that satisfies Part (1) of the claim.

Arguments similar to those in the base case show that this leads to the generation of a fact query(
Piva(bira),idiyo) such that pipo(bir2) subsumes piyo(@irz). As before, by the outer induction hypothesis,
an mgu-answer answer(id;ia,pit2(Ciy2)) such that p;12(¢;12) is at least as general as p;12(@;12) must be
generated by the evaluation of Pg[GU.

This completes the induction step and the proof of the claim.

End Proof of Claim.

If the body of R; is empty, the body of the rule defining sup; o unifies with query(p(b),id), and a fact
supj,o(id, Uy) with variable bindings being an mgu of p(b) with p() is generated. This mgu is used to generate
a head fact answer(id, p(c)). Hence p(¢) subsumes p(a), and both parts of the claim are satisfied.

If the body of R; is not empty, the claim above shows that there are facts sup; ,—1(id, vp_1,idy,) and
answer (id,, p,(¢,)) that satisfy the conditions of the claim. There must be a rule defining answer(ID,p(t))
using sup; ,—1 and answers for p,. Arguments similar to those in the induction step show that this rule then
derives derives a fact answer(id, p(¢)) such that p(¢) subsumes p(a).

This leads to a contradiction with the assumption, and completes the proof of this theorem. O

A.2 Proofs From Section 3.4

Proposition A.2.1 Let P be any program, and Q a query on P. In any evaluation of PMEU-T  for any

fact of the form query(p,id0,a) or of the form sup; ;(id0,7,idl,a) that is derived, argument a must be of
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the form answer(id, q(...)) for some predicate q. O

Proof: (Sketch) This result follows the structure of rules in PM“Y-T through a simple induction on deriva-
tions. O
The following lemma provides some intuition behind the variable bindings stored in the supplementary

facts.

Lemma A.2.2 Let P be any program, and Q) a query on P. Consider a step in a derivation sequence for

PMGU-T gych that the evaluation prior to that step satisfies property MGU_T-Prop.

Suppose a supplementary fact sup; ;(id,v;,id;, a) is derived at this step. Let
Rj:p(t): =p1(t1),p2(t2), ..., pu(tn).

be the rule of the original program P from which sup;; was generated.

Then there are facts answer(idy,p1(ar)),..., answer(id;—1,pi—1(a@i_1)), and a fact query(p(3),id, A),
such that

1. Each idp,1 < m <1 is the id of an mgu-subgoal generated from 7p(s), and

2. The substitution for variables of R; specified by v;, is in

MGU((IJ(Z):pl (E)/ cee ,pi71(ﬂ)>, <p(§)ap1 (a_l)/ cee :pifl(m»)

Proof: The structure of the supplementary rules is exactly the same as the structure of the

MGU
Pa

. MGU_T
in PQ

supplementary rules in , except that they carry an additional variable A. In the bodies of the supple-
mentary rules, A is used only in the supplementary literals. Thus A does not affect any of the arguments in

the proof of Lemma 3.3.1, and the proof holds unchanged. For brevity, we do not repeat the proof here. O

Lemma A.2.3 Let P be any program and @Q a query on P. Consider a step in a derivation sequence for
PMGU-T gqych that the evaluation prior to that step satisfies property MGU_T-Prop.

Then the fact generated in this step also satisfy the conditions of MGU_T-Prop.

Proof: Consider first Part 1 of MGU_T-Prop. Any fact answer(id, p(a)) must be generated using either a
Type 3 rule or a Type 6 rule. Consider first a Type 3 rule

A: —sup;o(I,V,_, A).

using some fact sup;o(hid, 7, _, answer(id, p(@))),

By Lemma A.2.2 there must be a fact query(q(3),id’, answer(id,p(a’))) such that ¥ is an mgu of ¢(3)
with the head of a rule with empty body. Thus applying the substitution specified by T to the subgoal ?¢(3),
we get an mgu-answer for 7¢(3). Hence by Part 2 of MGU_T-Prop, the result of applying the substitution
specified by ¥ to p(a’) is an mgu-answer to id. From the rule defining sup; ¢ it is easy to see that p(@) is the
resultant answer.

Next consider a Type 6 rule

A: —query(bi(z), IDa A): bl (71)
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Given a fact query(b;(a;),id, answer(idl, q(@))) and a fact for b;, the mgu 6 of the rule with the (renamed)
facts results in b;(X;) being instantiated to an mgu-answer of b;(@;). By Part 2 of MGU_T-Prop, the
instantiated g(a@) is an mgu-answer to the query with identifier id1. This completes the proof of this part of
the lemma.

Now consider Part 2 of MGU_T-Prop. Any query fact must be derived either using a Type 4 rule of the

form:
query(p;(%;), ID1, answer(ID1, p;(%))): —sup;_1(ID,V,ID1).
or a Type 5 rule of the form:
query(p,(t,), ID1, A): —sup,_1(ID,V,ID1, A).

In the case of Type 4 rules, the result follows trivially.
Consider now a fact query(p,(3),id', answer(id, g(a))) generated using a Type 5 rule. Suppose this was
generated using a fact sup,_1(id0,7,idl, answer(id,q(a))). By Lemma A.2.2, there must be some facts:
answer(idl,pi (ar)), .. .,answer(id;—1, pi—1 (TGi=1),
and a fact query(p(s'),id0, answer(id, q(a’))) such that ?p,(3) is a mgu-subgoal generated from subgoal
?p(s’). Also, it is then easy to see that with

0 € MGU((p(t), p1(11); - - -, pi1(ti1)), (P(s"), P2 (@), - -, pi1(@i1)))

answer(id, q(@)) = answer(id, q(a’))[f)].

Now if p,,(3)[v] is an mgu-answer to ?p, (5) (where « is a substitution on the variables in p,(3)), then we
would have p(s')[f][y] to be an mgu-answer to the subgoal ?p(s’). Then by Part 2 of Property MGU_T-Prop,
and the fact query(p(s’), id0, answer(id, q(a’))), answer(id, q(a’))[#][7] is an mgu-answer to the subgoal with
identifier id. But this implies that answer(id, ¢(@))[y] is an mgu-answer to the subgoal with identifier id.
This then completes the proof of this part of the lemma. O
Theorem 3.4.1 Consider any program P with query Q. Then a bottom-up evaluation of PMGU-T has
property MGU_T-Prop.

Proof: We prove this by induction on derivation sequences for PMGU-T Each step in the derivation using
rules other than Qg and Qg3 derive facts of the form sup; ;, query(...), or answer(...).

For the basis case, the first fact in the derivation sequence must be generated from rule QQr;, and
this satisfies property MGU_T-Prop. Now assume that the evaluation up to some step a in the derivation
sequence satisfies this property. By Lemmas A.2.2 and A.2.3, the fact derived in step a also satisfies property
MGU_T-Prop. This completes the induction. O

Lemma A.2.4 Let P be any program, and Q a query on P. Consider any fact p(a) generated by a bottom-up

evaluation of program P. Suppose a fact
query(p(b), id0, answer(id, q(%)))

is available to the evaluation of Pé‘"GU—T, such that p(@) unifies with p(b). Let § € MGU (p(b),p(a)) (wlog
we assume that b and t share no variables with @). Then bottom-up evaluation of PCJQVIGU-T generates a fact

answer (id, q(t))[y] such that v subsumes 6.

125



Proof: The proof is by induction on derivation sequences in P. Consider a derivation sequence, and a step
s in the sequence such that the lemma holds for every fact derived prior to s in the sequence. Let p(a) be
the fact derived in step s of the sequence.

If p(@) does not unify with p(b), the lemma holds for this step in a trivial fashion. Hence we consider the
case where they do unify.

If p is a base predicate, the lemma follows in a straightforward manner, since p(a@) would be used in a
Type 6 rule with the query fact.

We now consider the case that p is a derived predicate. Let p(a’) = p(b)[f]. Now, consider the rule R;

(in P) whose instance R/ is used to derive p(@). Let R; and R} = R//[f] be as follows:

Rj :p(t): —=p1(t1), p2(ta), ..., pn(tn)-

R; i p(a'): —pi (1), p2 (@), . ., Pu(@n).

Let o be such that R = Rj[o], so that R, = R;[0][f].

Claim: If the fact query(p(b),id0, answer(id, q(3))) is made available, then

1. for each 0 <i < n — 1 the evaluation of PY'“Y generates a fact
sup;i(id, V,id;y1, answer(id, q(3)))[0;]

such that 6; subsumes [o][f], and

2. for each 0 < < n — 2 the evaluation of P3¢V

generates a fact

answer(idiy1, pi+1(Ciy1))

such that ¢; ;71 subsumes @;11.

3. the evaluation of Pé”GU

generates a fact

query(pn(ty),idy, answer (id, q(t)))[0y 1]

where 6,1 subsumes [o][6].

Proof of Claim: The claim in trivial in case the body of R; is empty; the rest of this proof assumes that
the body of R; is non-empty. We prove Parts 1 and 2 of the claim by induction on i.

We first consider the basis case. The subgoal ?p(h) must unify with p(Z) since a’ is an instance of 7 as well
as an instance of b. Hence the body of the rule defining supl; o unifies with query(p(b),id0, answer(id, q(5)))
and a fact supl;o(id, V,pi(f1), answer(idl,q(3))[fo] is generated, such that , subsumes [o][f]. Tt is easy
to show that a fact for sup;o that satisfies part 1 of the claim will then be generated in the bottom-up
evaluation.

If p1(f1) is not the last literal in the body of the rule, it is easy to show that a fact of the form
query(p1 (t1), idy, answer(idy, p1(t1)))[6o], where 1[fo] subsumes p; (ar), is generated from this supplemen-
tary fact. By the outer induction hypothesis, an mgu-answer answer(idy, p;(¢1)) such that p; (¢7) is at least

as general as p; (a7) must be generated by the evaluation of Pév"GU. This finishes the proof of the basis case.

126



For the induction step, assume that parts (1) and (2) of the claim hold for 0 < i < k < n—1. We can
then show that Part 1 of the claim holds for ¢ = k + 1, and if kK < n — 2, we can show that Part 2 holds for
1 = k + 1. The proof parallels that used in Theorem 3.3.3, since the structure of the rules is similar except
for the rule for the last literal. We omit the details.

This completes the proof of (1) and (2). A fact of the form query(pn(t,),idy, answer(id, q(3)))[0n_1]
must be produced by a Type 5 rule. Part 3 of the claim then follows from Part 1 of the claim and from the
structure of Type 5 rules.

End proof of claim

If the body of the rule is empty, it is easy to show (in a manner similar to the base case of the above
claim) that a fact is produced for sup;o, and a Type 3 rule then generates a fact answer(id, ¢(t))[v] that
satisfies the properties required by this theorem.

If the body of the rule is not empty, the claim above shows that a fact query(p,(t,),id,, answer(id,
q(3)))[0n-1] is generated. We know that some fact p, (¢;,) that subsumes p, (G,) is generated in the derivation
sequence, before step s (wlog assume it does not share variables with other facts/rules). Hence by the
induction hypothesis, a fact answer(id, q(5))[0n—1][0] such that § subsumes mgu(p,(Cn), Pn(tn[0n-1])) is
generated. But 6,,_; subsumes [¢][f] and ¢, subsumes @, and hence [f,,_1][d] subsumes [0][f]. Let 7 be the
projection of [#,,_1][d] on the variables in 3. Hence answer(id, q(3))[y] = answer(id, ¢(3))[0,—1][0], and this
fact is generated by bottom-up evaluation. Since o does not affect the variables in 5, v subsumes 6.

This completes the induction step, and the proof of the theorem. O

Theorem 3.4.2 Given any program P and query @, the bottom-up evaluation of PéVIGU-T

is complete with
respect to @, i.e., if the bottom-up evaluation of P generates a fact p that is an answer to @, then p is
subsumed by a fact computed in the bottom-up evaluation of P5/¢V-T.

Proof: Let Q =?¢q(%), and let its identifier be id. Then rules Qg1 and Qgs generate a fact query(q(%),id, ans-
wer(id,q(t))). From Lemma A.2.4, the corresponding answer facts will be generated by the evaluation of

Pg[GU-T. The required answers to the query will then be generated by rule Qg3 using these facts. O
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Appendix B

Proofs From Chapter 4

We start by describing some assumptions we make and some notation that we use. We assume that each
derivation step has a unique identifier, and we label facts derived by SN evaluation with the identifier of the
derivation step that generated the fact. We use the notation p() : k to denote a derivation of fact p() with
label k. (This label is ignored for the purpose of subsumption-checking; if subsumption-checking is used and
a fact is generated twice (with different labels) only one copy of the fact with one label is stored and used
in derivations.) In a similar fashion, we label actions (such as generation of a query or answer) performed
by Prolog* in order to distinguish between multiple occurrences of the action.

We use the concept of labeled derivation steps and labeled attempted derivation steps (Section 4.2). In
the rest of this section, we consistently use the term derivations (resp. attempted derivations) to refer to
labeled derivation steps (resp. labeled attempted derivation steps).

The evaluation of a program rewritten using MGU MTTR rewriting generates goal-identifiers, given
goals. We denote by goal_id™! : goal-identifiers — goals as the inverse function of goal_id. That is, given
a goal-identifier generated in an evaluation, it returns the original goal. Recall that in case subsumption-
checking is not performed, the goal_id meta-predicate is defined to return a different identifier on each call,
but goal_id™! is well-defined.

We note that the mapping we specify is modulo renaming. For example, when we say that M maps a
derivation f1 = query(p(%),...) : k1 to the generation of a subgoal ?p(%) : k by Prolog*, we mean that there
is a renaming of f1 such that its first argument is equal to the Prolog* subgoal ?p(%) : k. (Note that if we
rename the Prolog* subgoal instead, we would have to perform a “global” renaming rather than just the
given subgoal. Hence we rename the facts derived in bottom-up evaluation.) We assume that the rules in
the original program are numbered R, R, .... Recall that a predicate of the form sup; ; is derived from rule
R;.

We assume in the following lemma that the basic version of MGU MTTR rewriting is used, without any
of the optimizations described in Section 3.4.1. For simplicity, the lemma assumes that the program uses no
base predicate, and hence there are no Type 6 rules. After proving the lemma, we show how the proof can

be extended to allow base predicates, and to incorporate some optimizations of MGU MTTR rewriting.

Lemma B.0.5 Let P be any (positive) logic program, and () a query on P. Assume that P uses no base
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predicates. Let PMGU-T he the MGU-MTTR rewriting of P with query Q. Then there is a mapping M

of labeled attempted derivation steps in the Semi-Naive evaluation of PT (with or without subsumption-

checking) to actions of the Prolog* evaluation of @ on P, with the following properties.

1.

Goal identifiers:

M maps each goal identifier id to the Prolog* action ?goal_id_l(id) : k1 (this action is the generation
of a subgoal).

Type 0 rules - Qr>, Type 4 and Type 5 rules:

Consider an attempted derivation using a Type 4 or Type 5 rule, or a Type 0 rule @ g>. Such attempted

derivations always succeed, and generate a fact
f1 = query(p(t), hid, answer(id, q(3))) : k

Then M maps the derivation f1 to a Prolog* action ?p(%) : k1. Further,

(a) the return point of ?p(f) : k1 is a query that is equivalent to M (id), and,
(b) q(3) is the instantiated return-point query, at the point that Prolog* generated the subgoal ?p(%) :
k1.
No two distinct labeled derivations of this type are mapped to the same Prolog* action.
Type 3 rules:
Consider an attempted derivation using a Type 3 rule. Such a derivation always succeeds.

M maps each derivation answer(id, p(@)) : k to the generation of an answer p(a) to a Prolog* query
that is equivalent to M (id).

No two distinct labeled derivations of this type are mapped to the same Prolog* action.
Type 0 rules - Qg;:

Such a rule makes a derivation
1 = initial_query(q(t), hid, answer(id, q(t))) : k

M maps f1 to the Prolog* action ?q(%) : k1.
There is only one such labeled attempted derivation, and it always succeeds.
Type 0 rules - Qg3:

Consider an attempted derivation using rule Qgs. If the derivation succeeds, it derives

fl=q(a):k

using a labeled fact f2 = answer(id, g(a)) : k1. M maps f1 to M(f2).
No two distinct labeled derivations of this type are mapped to the same Prolog* action.

If the derivation fails, it must have used a labeled fact f1 for initial_query. M maps the unsuccessful

derivation to M (f1). There is at most one such unsuccessful labeled derivation.
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6. Type 1 rules - 1:
Consider an attempted derivation using a Type 1 rule that has a predicate query(...) in the body.

Let the fact used in the body be
query(p(b), hid, answer(id, q(3))) : k1

The derivation possibly derives a fact of one of the following forms:
supjo(hid, 7,0, answer(id, g(a))) : k
supjo(hid, v, p(t), answer(id, q(@))) : k

Now for the query fact, due to induction hypothesis, it must be the case that
M (query(p(b), hid) : k1) =?p(b) : k2

M maps the labeled attempted derivation to the Prolog* action of unifying ?p(b) : k2 with the head of
R;.
No two distinct labeled (successful/unsuccessful) attempted derivations of this type are mapped to the

same Prolog* action.

Further

(a) the return point of ?p(b) : k2 is equivalent to M (id), and,
(b) g(a) is the instantiated return-point query, just after Prolog* carries out the above unification.
(c) the bindings stored in ¥ are the bindings of the rule variables of R; just after Prolog* carries out
the above unification.
7. Type 2 rules - 1:

Consider an attempted derivation using a Type 2 rule, where the body of the rule uses a fact sup; ;.

A head fact of the following form may be derived:
supli(hid, ¥, pi (5), answer(id, q(a))) :

If the derivation succeeds, M maps the labeled derivation to the Prolog* action of returning an answer

to 7p;(3) : k1, where
(a) the query ?p;(3) is generated from the ith literal of rule R;, and the literal is not the last in the
rule.

(b) the bindings stored in T are the bindings of the rule variables of R; at the point when the answer

to ?p;(5) : k1 was returned.

(c) q(a) is the instantiated version, at the point that the answer to the query is returned, of the

return-point query of the call to R;.
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No two distinct labeled derivations of this type are mapped to the same Prolog* action.

If the derivation fails, there are two cases. If the derivation fails because there are no matching answer
facts for a labeled supplementary fact s : k3, M maps the unsuccessful derivation to M (s : k3). If
the derivation fails because there are no matching facts for a labeled answer fact a : k4, M maps the

unsuccessful derivation to M (a : k4).

At most a constant number of failed labeled derivations of the above form are mapped to the same

Prolog* action.
8. Type 1 rules - 2 and Type 2 rules - 2:

Consider an attempted labeled derivation using a Type 1 or Type 2 rule where the body of the rule

has a literal supl;;. Such a derivation always succeeds, and derives a fact of the form:
f = supj i(hid, v, nid, answer(id, q(a))) : k

using a body fact of the form
f1=supl;;(hid,v,pi+1(3), answer(id, q(@))) : k1

Then M (f) is defined to be M (f1), which is the return of an answer to a query ?p;(3) : k1. Further,

(a) the query ?p;(3) is generated from the ith literal of rule R;, and the literal is not the last in the

rule.

(b) the bindings stored in T are the bindings of the rule variables of R; at the point when the answer

to ?p;(3) : k1 was returned.

(c) q(a) is the instantiated version, at the point that the answer to the query is returned, of the

return-point query of the call to R;.

(d) nid is the identifier of a subgoal ?p;(3).
No two distinct labeled derivations of this type are mapped to the same Prolog* action.

Proof: The labeled derivations in the evaluation of P are totally ordered, such that each derivation uses
only facts computed in earlier derivations. We use an induction on this sequence to prove the lemma. Note
that at many points we say that a particular action will be performed by Prolog* evaluation. Such claims
depend on the assumption that Prolog* evaluation terminates. In case Prolog* evaluation does not terminate,
bottom-up evaluation can be no worse.

The base case is for an empty derivation sequence, and the induction hypothesis holds trivially. Now
assume that there is a mapping M for labeled derivations up to step n, that satisfies the conditions of the
lemma. We extend the mapping to step n + 1. We split the derivation in step n + 1 into several cases based
on the type of the rule used.

For each rule type, we prove the corresponding claims. Goal-identifiers are generated only by the Type
0 rule QRr1, Type 1 rules subcase 2 and Type 2 rules subcase 2. We prove the claims about goal-identifiers

in the respective cases below.
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Type 0 Rules - Qr; and Qg3 : Consider a rule ;. Such a rule generates a fact
initial_query(q(t),id, answer(id, q(t))) : k

from the initial query. Let M map this derivation to the Prolog* action ?q(#) : kO corresponding to
the generation of the initial query. Further, we let M map id to the same Prolog* subgoal generation

action.

Next, consider @ g3, and suppose that the answer fact used in the body is answer(id, q(a)) : k. The
derivation is mapped to M (answer(id, q(a)) : k). Each fact answer(id, q(a)) : k is used in at most one

such derivation. By induction hypothesis, no other derivation of any fact ¢(b) is mapped to this action.

Type 1 Rules - 1 :
This case covers labeled attempted derivations using Type 1 rules with a query literal in the body.

The attempted derivation must have used a rule of one of the forms below:
Rg : supljo(...): —query(q(3),ID, A).

Rg : supjo(...): —query(q(3),ID, A).

and a fact f1 = query(q(a),idl, answer(id2,r(b))) : k1.

By induction hypothesis, f1 is mapped to a subgoal ?¢(a) : k3. Now Prolog* evaluation will attempt
to unify the subgoal ?¢(@) : k3 with the head of rule R;,! which is ¢(5). We label this unification action

as k4, and the attempted derivation is mapped to this unification action.

No other attempted derivation of this kind is mapped to this unification, since this is the only use of

f1 with this rule, and no other derivation of a query fact is mapped to ?g(a) : k3.

If the unification is successful, a fact is created in bottom-up evaluation, and Prolog* evaluation either
returns an answer (if the rule is empty) or sets up a subgoal on the first body literal. The fact created

by derivation in the two cases are respectively:
sup; o (hid, vy, 0, answer(id2, (V")) : k

and
supl; o(hid, Do, p1 (3), answer(id2,r(V'))) : k

The induction hypothesis shows that the return point of ?¢(@) : k3 is equivalent to M (id2). By
induction hypothesis, r(b) is the instantiated return-point subgoal when the subgoal ?¢(@) : k3 is set
up. The Prolog* unification of the query with the rule head ¢(3) produces the same bindings for @ and
b as the unification of f1 with the body literal of Rg. Hence r(b') is equivalent to the instantiated
return-point query after the unification of ?¢(@) : k3 with the head of R;. It is easy to show from
the structure of Rg that the bindings stored in vg are the bindings of the rule variables after Prolog*

carries out the unification.

'Rule R; is the rule in the original program from which Rg is derived.
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Type 2 Rules - 1 :

Consider an attempted derivation using a Type 2 rule, where the body of the rule uses the predicate
Supj’i,l.
First consider the case that the derivation succeeds. It must have used labeled facts of the following

form:
f1 = supj i—1(hid,v0, nid, answer(id, q(3))) : k1
2 = answer(nid, p;(a)) : k2

and a rule:

Rq : suply;(HId, Vi, piy1(fis1), A) : — supj;—1(HId, Vi, ID1, A),
answer(ID1, p;(t;)).

to derive a fact
f = suply;(hid, @, piy1(Si1), answer(id, q(3))) : kO

Since this rule defines a supl;; predicate, the original rule say R; from which the supl;; predicate
was derived must have as ith body literal p;(Z;). Also we can show that supplementary fact f1 must

have derived a query fact
13 = query(ps(s7), nid, answer (nid, pi(57))) : k3

where the goal-id of ?p;(5;) is nid. (If there is more than one derivation of this fact, all but one of

them are eliminated by subsumption-checking.)

Now, by induction hypothesis, f1 is mapped to the either the successful unification of a query with
the head of rule R, or to the return of an answer to p;—1(¢;—1), which is the ¢ — 1th literal in rule
R;. It is easy to show (from the induction hypothesis claim about variable bindings) that at this point
in the evaluation, Prolog* would have generated a query ?p;(5;) : k4 from this literal. The query is
not tail-recursive, and hence the return point of the query is the same as the point where the query is
generated. Note that the goal-id of 7p;(5;) : k4 is nid, but M (nid) may not be ?p;(5;) : k4, (although
it is equivalent), if subsumption-checking is used.

By induction hypothesis on f2, the generation of answer f2 is mapped to the generation of an answer
pi(@) : k6 to a query f3 that is equivalent M (nid). But since the queries M (nid) and ?p;(5;) : k4
are equivalent, so are f3 and 7p;(5;) : k4. Since f3 and ?p;(5;) : k4 are equivalent and both are not
tail-recursive, each answer p;(a) : k6 generated for f3 can be mapped one-to-one to the generation of
an answer p;(a) : k7 to ?p;(5;) : k4. Hence let this mapping map M (f2) to the generation of an answer
pi(a) : k8 for the query 7p;(5;) : k4.

We then define M(f) to be the return of answer p;(@) : k8 to the query 7p;(57) : k4.
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No two such distinct derivations are mapped to the same Prolog* action since by induction hypothesis,
(1) only f1 is mapped to the point in Prolog* evaluation just before the generation of ?p;(s;) : k4,
and (2) no two derivations of answer(nid,p;(a)) are mapped to the same return of answer p;(a) to
?p;i(8;) : k4 by Prolog* evaluation.

We show that the required bindings are stored in the generated answer fact as follows. By induction
hypothesis, the bindings in f1 are the same as the rule bindings in Prolog* evaluation before ?p;(37) : k4
is generated. Since the same answers are used in both cases, with the same literals, it is straightforward
to show that the generated bindings are the same in f as when answer p;(a) : k8 is returned in Prolog*
evaluation. Similar arguments also show that answer(id, ¢(3)) is the instantiated return-point query

at the point when the answer is returned.

This completes the case where the attempted derivation is successful. If the derivation fails, the
mapping defined is straightforward. Since each fact is used in at most one unsuccessful derivation
with each rule, it follows that at most a constant number of failed derivations are mapped to the same
Prolog* action.

Type 1 and Type 2 Rules - 2 :

The derivation must have used a rule

Rg : supjq(...): —supl;;(...),goalid(...).
with a fact

f1 = supl;;(hid,vg, p(3), answer(...)) : kO

to derive a fact f = sup, ;(hid, vg, nid, answer(...)) : k5.

We let M map f to M(f1). This is the only use of supl;o(7g,...) : k0. Along with the induction
hypothesis, this shows that no two distinct derivations of this kind are mapped to the same Prolog*

action.

R passes all arguments of f1 unchanged to f except that it replaces p(3) by its goal-identifier nid.
The other claims about the return point query and the query ?p;(s) are shown directly by applying

the induction hypothesis to f1, since these arguments are the same in f as in f1.

By induction hypothesis, f1 is mapped to a point in Prolog* evaluation where either a subgoal has
been unified with a rule, or an answer has been returned to a literal in the rule. In either case, p(3) is
the instantiated literal that is next in the rule, and a subgoal 7p(3) : k3 will be generated. We define
M (nid) to be 7p(3s) : k3.

Type 3 Rules: A Type 3 rule is of the form
A: —supjo(HIA,V,_, A).
Suppose a fact f = answer(id, ¢(b)) : kO is derived using such a rule along with a fact

f1=sup;o(HId,a,0,answer(id, ¢(3)) : k1
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Now supjo(a, answer(id,p(s))) : k1 is mapped to a Prolog* action that unifies a goal ?p(%) : k2 with
the head of rule R;. Let this action be labeled k2. This unification action must succeed, since the fact
supjo(@, answer(id, q(3)) was derived. Further, the body of the original rule must be empty (Type 3

rules are generated only from such rules). Hence Prolog* evaluation generates an answer at this stage.

By induction hypothesis on the sup;q fact, (1) the return point of the query ?p(f) : k2 is equivalent to
M (id), and (2) q(b) is the instantiated return-point query after the unification of ?p(%) : k2 with the

3

head of rule R; is performed. Hence Prolog* evaluation generates an answer ¢(b) : k4 for a return-point

query that is equivalent to M (id).
This is the only answer generated from f1, and by induction hypothesis, no two distinct labeled sup; ¢
facts are mapped to the same unification action. Hence no two distinct derivations of this kind are
mapped to the same Prolog* action.

Type 0 Rules - Qro, Type 4 and Type 5 Rules :

We split this into three sub-cases, based on the rule type. We first consider the Type 0 rule Qg2. This

generates a query fact
query(p(t),id, answer(id, p(t))) : k

from the initial query. We let M map the derivation to the generation of the initial query ?p(%) : k0

by Prolog* evaluation.

The return point of this query is ?p(%) : k0, and this is equivalent to M (id), since id is the goal-identifier
for p(t). This is the only derivation of this type that is mapped to this action of Prolog* evaluation.

The remaining part of the claim for this case follows trivially since ?p(#) : k0 is the return-point query.

Next we consider Type 4 rules. These correspond to non-tail-recursive literals. Such a rule is of on

form

query(p;(t;), ID, answer(ID, p;(%;))): —sup;,i—1(HId,V,ID, A).
Let the generated fact be

f = query(pi(5;), nid, answer(nid, p;(57))) : k
and let the fact used in the rule body be

f1 = sup;;—1(hid, v, nid, answer(id, ¢(3))) : k1

Now, by induction hypothesis, M (f1) is mapped to a step where a query has been unified with a rule,
or an answer has been returned for a literal, and the next literal in the rule is p;(#;). The induction
hypothesis also tells us that the variable bindings stored in ¥ above are the same as the rule variable

bindings. Hence Prolog* evaluation generates a query 7p;(5;) : k3. We let M map f to 7p;(5;) : k3.

Each supplementary fact is used in exactly one rule of this kind, and by induction hypothesis, no other

supplementary fact is mapped to the same Prolog* action. Hence no other derivation of this type is
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mapped to the same action as Prolog* evaluation. The return point of this query is the query itself,
since the literal is not tail-recursive, and the induction hypothesis on f1 shows that nid is the goal-id
of ?p;(5;). Hence the claims about the return point and the instantiated return-point query follow in

a straightforward manner.

Finally we consider Type 5 rules. Such a rule is of the form
query(p;(t;),ID, A): —sup; (HId,V,ID,A).

Let the derived fact be
f = query(p;(5;), nid, answer(id, q(3))) : k

and let the fact used in the body be
f1 = sup;;—1(hid, v, nid, answer(id, ¢(3))) : k1

The same arguments as for Type 4 rules show that there is a query ?p;(5;) : k3 generated by Prolog*,
and we let M map f to 7p;(5;) : k3. The same argument as for Type 4 rules shows that no other
derivation of this type is mapped to the same action of Prolog* evaluation. To show the claims about
the return point we note the following. The literal for which the query is generated by a Type 5 rule
is tail-recursive. Hence its return point is the same as that of the head of the rule. By induction
hypothesis, this is equivalent to M (id). Again, the induction hypothesis on f1 tells us that ¢(3) is the

instantiated return-point query at the point when Prolog* generates the subgoal 7p;(5;) : k3.

This completes the induction step, and the proof of the lemma. O

The above lemma was for the case that the program uses no base predicates. We can extend the lemma
for the case of base predicates as follows. We use the optimizations described in Section 3.4.1 to treat all base
literals as non-tail-recursive, and to not generate query or answer facts for these predicates. In particular,
we can ensure that base literals that occur as the last literal in a rule are treated as non-tail-recursive by
adding an extra true() literal at the end of the rule body in the original program. Such a transformation
does not affect number of actions performed by Prolog* evaluation significantly, and does not affect the time
complexity of Prolog* evaluation.

Asg a result of the optimization, query rules and answer generation rules for base predicates are deleted.
These deletions do not affect the mapping we described above. The only other change is that some Type 2

rules are simplified, and are now of one of the the following forms:

supl; ;(HId,V,pi+1(tiz1), A) : — supji—1(HId,V,ID1, A), p;(%;).

sup;;(HId,V,0, A) : — sup;ji—1(HId,V,ID1, A), p;(£;).

sup;;(HId,V,0, A) : — supji—1(HId,V,ID1, A),
answer(ID1,p;(t;))

We classify all such rules under the case “Type 2 rules - 1. All the claims made for successful derivations
in this case still hold, and the proof for this case works with minor modifications. We note that any facts

that are used for the literal p;(#;) in the above rules during bottom-up evaluation are also used in the
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corresponding stage in Prolog* evaluation. We now consider the case of failed derivations. Since Semi-Naive
evaluation is used, and p; is base or evaluable, any attempted derivation using such a rule uses a fact for
supj i1, and sets up a query on p;(t;). Prolog* evaluation would set up the same query. The derivation fails
if there is no fact for p; that unifies with the query. But in this case, Prolog* evaluation also fails on the
same query. Hence the attempted derivation is mapped to the failed query attempt by Prolog* evaluation.

The above optimization and the extension of the mapping described above is important, in particular,
when we consider the cost of evaluation in Chapter 5 — we introduce equality literals into rule bodies, and
treat them as base predicates.

Thus we have the following theorem.

Theorem 4.3.1 Let P be a definite clause program, and ) be a query on the program. There are constants
¢1 and co (that may depend on the size of P) such that the following is satisfied.

Let PMGU-T he the MGU MTTR rewriting of (P, Q). Given any database, let the number of labeled

attempted derivation steps performed by a Semi-Naive evaluation (with or without subsumption checking)
of PMGU-T he p, and let the number of actions performed by Prolog* evaluation of query @ with the same
database be m. Then n < ¢; - m + ¢».
Proof: Lemma B.0.5 showed us that no two distinct labeled derivation steps using any rule type are mapped
to the same action of Prolog* evaluation. Since there are only a finite number of rule types, at most a constant
number of successful derivation steps are mapped to the same action of Prolog* evaluation. Lemma B.0.5
also showed that at most a constant number of unsuccessful labeled attempted derivation steps are mapped
to any action of Prolog* evaluation.

To complete the proof of the theorem, we use the non-repetition property of Semi-Naive evaluation with-
out subsumption-checking: no labeled derivation step is repeated in the evaluation (Theorem 4.2.1). (Semi-
naive evaluation with subsumption-checking has a stronger non-repetition property, namely, no derivation

step is repeated in the evaluation.) O
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Appendix C

Proofs From Chapter 5

C.1 Proofs from Section 5.5

Lemma C.1.1 Suppose that a MGU MTTR rewritten program is evaluated using Apply_Rule. Then

1. Given a supplementary/initial_query fact s and a query fact q, if s.cont_id = q.par_id, then q.bindenv

is a version descendant of s.bindenv.

2. Given a supplementary fact s and an answer fact a, if s.cont_id = a.par_id, then a.bindenv is a version

descendant of s.bindenw.

3. Given supplementary facts s1 and s2, if sl.cont_id = s2.par_id, then s2.bindenv is a version descendant

of sl.bindenv.

Proof: The proof is by induction on the length of sequences of derivations used to derive a fact. The basis
case is the derivation sequence of length 0, i.e. base facts, for which the lemma is satisfied trivially.

We make some observations before considering the induction case. For rules with one base/derived body
literal (Types 1,3,4,5), it is easy to show that the bindenv of the head fact is a version child of the bindenv
of the derived fact used in the body. For rules with two base/derived body literals (Types 4 and 6), where
Return_Unify fails, we can see from procedures Rename_and_Unify that the bindenv of the head fact is a
child of the bindenv of the supplementary/query fact used in the rule body. If Return_Unify is called and
succeeds, the bindenv of the head fact is a version child of the bindenv of the answer fact..

For the induction step, consider a derivation sequence of length n+ 1, and assume that the claims are true
for all facts with derivation sequences of length n or less. Consider the last step in the derivation sequence.

If the head fact derived is a supplementary fact or an initial_query fact, it is given a new cont_id, that
is not present in other existing fact. Thus, parts 1 and 2 of the lemma are trivially satisfied. For part 3,
the par_id of the derived supplementary fact s3 is set to the par_id of the query/supplementary fact s2 that
derived it. If Return_Unify does not succeed, s3.bindenv is a version child of s2.bindenv (as observed earlier).
Part 3 then follows from Part 3 of the induction hypothesis. If Return_Unify does succeed, s3.bindenv is a
version child of the bindenv of the answer fact. Further, the par_id of the answer fact is the same as the

cont_id of the supplementary fact. Part 3 then follows from Part 1 of the induction hypothesis.
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If the head fact derived is a query fact, the rule body has only one derived literal (which is a supplementary
or initial_query literal). The rule must be a Type 1, Type 4 or a Type 5 rule. Parts 2 and 3 are trivially
satisfied in all the above cases. We consider Part 1 of the lemma. In the case of Type 1 and Type 4 rules,
the par_id of the query fact is set to the cont_id of the supplementary / initial_query fact. Since the fact
used in the derivation is the only supplementary / initial_query fact with this cont_id, Part 1 of the lemma
is satisfied. In the case of Type 5 rules, the par_id of the query fact is set to the par_id of the supplementary
fact. The bindenv of the query fact is a child version of the bindenv of the supplementary fact. Part 1 then
follows from Part 3 of the induction hypothesis.

If the head fact derived is an answer fact, Parts 1 and 3 follow trivially. For Part 2, the answer fact is
generated from a supplementary fact using a Type 3 rule, or from a query fact using a Type 6 rule. The
par_id of the answer fact is then set to the par_id of the query/supplementary fact, and the bindenv of the
answer fact is a version child of that of the query/supplementary fact. Part 2 of the induction hypothesis
then follows.

This covers all the cases, and completes the proof. O

Lemma C.1.2 Let s and a be supplementary and answer facts such that s.cont_id = a.par_id. Then there
is a query fact q generated by a Type 4 rule (i.e. the query is on a non-tail-recursive literal) using s, such
that:

1. a.bindenv is a version descendant of q.bindenv, and

2. for all variables in q.bindenv other than those accessible from q, the bindings in a.bindenv are the same

as the bindings in s.bindenv.

Proof: From Lemma C.1.1, a.bindenv is a version descendant of s.bindenv. Each supplementary fact
generates a query fact or an answer fact. In the case of Type 3 and Type 5 rules, the par_id of the generated
fact is different from the cont_id of the supplementary fact. No two supplementary /initial_query facts have
the same cont_id. Also, the cont_id of the supplementary fact is not passed on to any other fact but this
sole query fact. If we assume that no query fact ¢ is generated from s using a Type 4 rule, it is easy to show
that a.par_id cannot be the same as s.cont_id. Hence there is such a query fact ¢ generated.

Next we now show that for any fact f and any ¢ as above, such that f.par_id = s.cont_id,

1. f.bindenv is a version descendant of ¢.bindenv, and

2. Any variable in g.bindenv that is not accessible in ¢ has the same bindings in f.bindenv as in g.bindenwv,

and is not accessible in (f.structure, f.bindenv).

We first note the following. Suppose we unify facts f1 = (s1,envl) and f2 = (s2,envl). Then the only
variables that are modified by the unification are those that are accessible from either s1 or s2.

The proof is by induction on lengths of derivation sequences used to derive f. We note again that no two
supplementary /initial_query facts have the same cont_id. For the basis case, a fact with derivation sequence
of length 1 that has the same par_id value s ¢ must be derived using ¢. In all cases of rules that use ¢, the
bindenv of the head fact is a version descendant of the bindenv of the body fact. Further, any variable that
is not accessible from q.structure is also not accessible from f.structure, and is not modified by unification

during the derivation.
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For the induction step, we note that in all cases except for Type 2 rules, the bindenv of the head fact
is a version descendant of the bindenv of the sole derived body fact. If the par_id of the generated fact
is ¢.par_id, then the par_id of the derived body fact must also be ¢.par_id. Part (1) then follows from
induction hypothesis. Also, the sole derived body fact is not renamed, and any new variables that are
created by renaming other facts do not conflict with variables in g.bindenv. Hence Part (2) follows.

For Type 2 rules, if the par_id of the generated fact is ¢.par—id, then the par_id of the supplementary
fact in the body must also be ¢.par_id. If Return_Unify fails, the bindenv of the head fact is a version child
of the bindenv of the supplementary fact in the body, and Part (1) follows. That Part (2) follows can be
shown by arguments similar to those used in the earlier case.

If Return_Unify succeeds, f.bindenv is a version child of al.bindenv where al is the answer fact used in
the rule body. But since Return_Unify succeeds, al.par_id = sl.cont_id, where sl is the supplementary fact
used in the rule body. But by induction hypothesis, al.bindenv is a descendant of sl.bindenv. It follows by
induction hypothesis that f.bindenv is a version descendant of ¢.bindenv; this establishes Part (1).

We now consider Part (2). By induction hypothesis, s1 generates a query fact g1 using a Type 4 rule,
and for any variable in gl.bindenv that is not accessible from g1 the bindings in g1.bindenv and al.bindenv
are the same; also any such variable is not accessible from al. But it is easy to show that any variable in
sl.bindenv that is not accessible from s1 is also not accessible from ¢1. Hence for any variable in s1.bindenv
that is not accessible from s1, the bindings are the same in al.bindenv as in sl.bindenv; also, any such
variable is not accessible from al. But sl.par_id = q.par_id. Hence, by induction hypothesis, any variable
in g.bindenv is not accessible from sl.bindenv. Hence the bindings for any such variables are the same in
fl.bindenv as in q.bindenv, and further any such variables are not accessible from f1.structure.

This completes the induction step and the proof of this part of the lemma. This also concludes the proof
of this lemma. O

Lemma 5.5.1 Suppose that there is a query fact
q = query(p;(@;), idl, answer (idl, p;(a;)))

generated by a Type 4 rule (i.e., from a non-tail-recursive literal), and an answer fact a = answer(idl, p;(b;)).

Suppose also that g.par_id = a.par_id. Let q_str2 denote the last argument of q.structure. Then
(q-str2, a.bindenv) = {(a.structure, a.bindenv)

Proof: Since a Type 4 rule is used to derive g, ¢ must have been generated from a supplementary fact s_g
such that g.par_id = s_q.cont_d.

We show that any query fact ¢l s.t. ql.par_id = q.par_id has q_str2 as the last argument of its structure,
and any supplementary sl such that sl.par_id = ql.par_id has q_str2 as its last argument of its structure.
The proof is by induction on lengths of derivation sequences.

We note that no two supplementary facts or initial_query facts have the same value for cont_id, since a
new identifier is generated for each such fact.

For the basis case, any fact generated by a derivation sequence of length 1 and that has the same par_id
field is a fact s for some predicate supl; o (generated using a Type 1 rule). The query fact is not renamed,

and variables in the rule head are dereferenced, hence the last argument of s.structure is q_str2.
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For the induction case, assume that the induction hypothesis is true for all derivation sequences of length
less than some k, and consider the last step in a derivation sequence of length k. We have a case analysis
based on the type of the rule.

For Type 0 rules, the par_id of the generated fact must be the cont_id of an initial_query fact, which
must be distinct from s_q.cont_id. For Type 1 rules, the last argument of the structure of the generated
supplementary fact is the same as the last argument of the structure of the body fact after dereferencing (as
was argued for the basis case). The par_id fields of the head fact is the same as that of the body fact. The
result then follows from the induction hypothesis.

For Type 2 rules, we note that the last argument of the head literal appears only in the supplementary
literal. Whether Return_Unify succeeds or not, the supplementary fact is not renamed. Arguments similar
to the earlier arguments then show that the last argument of the structure of the head fact is the same as the
last argument of the structure of the body supplementary fact. The par_id field of the head fact is the same
as the par_id field of the body supplementary fact. The result then follows from the induction hypothesis.

Type 3 rules generate answer facts. Consider any answer fact al that is generated. The structure of Type
3 rules shows us that the head fact is a dereferenced version of ¢_str2, interpreted in bindenv a.bindenwv.
Hence the lemma holds for the answer fact al.

Type 4 and Type 5 rules generate query facts. In the case of Type 4 rules, the par_id of the query
fact is generated from the cont_id of some supplementary fact (different from s_q). Hence the par_id of the
fact cannot be the same as ¢.par_id. In the case of Type 5 rules, the last argument is the same as the last
argument of the body supplementary fact (since it is not renamed). The par_id of the head fact is the same
as that of the body fact, and the result follows from induction hypothesis.

Type 6 rules generate answers from queries on base predicates. The query fact is not renamed, and an
answer fact is generated. This case is similar to Type 3 rules, and the lemma holds for any answer facts
generated.

This completes the case analysis and the proof of the lemma. O

Lemma 5.5.2 Suppose that Return_Unify succeeds on rule R with facts s and a. Then (R',r_env') is an
mgu of R’ with (a renamed variant of)s and a.
Proof: Since Return_Unify succeeds, s.cont_id = a.par_id. By Lemma C.1.1, the answer fact bindenv
is a descendant of the supplementary fact bindenv, and hence can only be more refined. Thus bindenv
replacement instantiates the supplementary fact further. We unify this fact with the rule by binding some
variables to arguments of the fact (this is possible since the supplementary literal has as arguments only
distinct variables). Let ra be the structure of the answer literal in the rule body. Let ¢_str2 denote the last
argument of the structure of q. Then there is a query fact ¢ generated using a Type 4 rule corresponding to
the answer literal, such that (g_str2, q.bindenv) is equivalent to (ra.structure, q.bindenv). Now, ¢.bindenv
is an ancestor of r_env'. Hence (ra.structure,r_env') and (q-str2,r_env') are equivalent.

(The above argument assumes that all variable bindings are stored in the supplementary literal. If this is
not true, we have to treat any variables that are not stored in the supplementary literal separately, and show
that the above equivalence holds for the corresponding arguments of ra after the bindings of rule variables
created by Return_Unify.)

Lemma 5.5.1 shows that (g_str2,r_env’) and the answer fact are equivalent. Hence (ra,r_env') and the
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answer fact are equivalent. Hence bindenv replacement results in a correct unification.

We then need only to show that the unifier is most general. Any unifier for the rule would make the
answer literal and the answer fact equivalent. Since the unifier does not instantiate the answer fact, it is as
general as possible for variables in the answer fact and for variables in the instantiated answer literal. But
the variables in the instantiated answer literal are exactly the variables accessible from the query. Variables
in the supplementary fact that are not accessible from the query are left unchanged by the unifier; hence the
unifier is as general as possible for these variables too. For variables in the rule body, any unifier would bind
them to corresponding structures in the supplementary and answer fact. Variables in the rule head but not
in the body are left unchanged by the unifier. Hence the unifier is as general as possible for these variables

too. Hence the result follows. O

C.2 Proofs from Section 5.6

Lemma 5.6.2 Suppose that an MGU MTTR rewritten program is evaluated using Opt-NG-SN evaluation
without subsumption checking. Then every call to Return_Unify succeeds.

Proof: If subsumption checking is not performed, each call to goal_id returns a new value. Now, the value is
stored in the ID field of the supplementary fact. No other supplementary fact has this value in its ID field.
Examining procedure Update_Context_Ids, we see that the supplementary fact is also given a new value for
its cont_id field. For each goal-id value g, let C(g) be the value of the cont_id field.

We claim that (1) for each query and answer fact a, if gid is the goal-id for a, then a.par_id = C(gid),
and (2) for supplementary facts s, if the value stored in the HId field is gid, then s.par_id = C(gid). The
proof is by induction on lengths of derivation sequences. For each type of rule we compare the propagation
of the goal-id values by the rules, and the propagation of the par_id value by Update_Context_Ids, and find
that these values are propagated in the same manner. This completes the induction step of the proof of the
claim.

An examination of Type 2 rules shows that if a supplementary fact and an answer fact unify with the
rule, the goal-id field of the answer fact and the ID field of the supplementary fact must be the same. But
the above claim then shows that the par_id field of the answer fact is equal to the cont_id field of the

supplementary fact. Hence Return_Unify always succeeds. O

C.3 Proofs from Section 5.7

Theorem 5.7.1 Let P be a program, and @) a query. Given any database, let the cost of Prolog* evaluation
of @ be t units of time. Opt-NGBU evaluation without subsumption-checking evaluates the query on the
given database in time O(¢ - V). (The size of the program is not taken into account in this time complexity
measure.)

Proof: The proof is based on the mapping of attempted derivations in bottom-up evaluation to actions of
Prolog* evaluation presented in Lemma B.0.5. We show that for each attempted derivation of cost ¢ -V,
there is an action of Prolog* evaluation that costs at least ¢ Since not more than a constant number of

derivations are mapped to the same action, the theorem follows. We use the following case analysis to prove
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the theorem. The case analysis parallels the case analysis used in Lemma B.0.5.

Type 0: Rules Qg; and Qg2 make one derivation each. Each derivation is mapped to a Prolog action that
takes at least unit time. It is straightforward to show that derivations using these rules take O()V)

time.

Rule Qg3 generates answers to the query, and each derivation using this rule is mapped to a Prolog* ac-
tion that generates answers to the query. Due to the optimization used in Procedure Rename_and_Uni-
fy_Facts, no renaming of facts is done for this rule. The unification step is straightforward since the
arguments of the answer literal are distinct free variables, and no occur check is required. Hence this
step takes O(V) time per answer to the initial query, while the corresponding Prolog* action takes at
least O(1) time.

Type 1 Rules - 1 :

These are Type 1 rules whose body uses a predicate query. Derivations using this kind of rules involve
the unification of a query fact query(h(a), hid,ans) with a query literal query(h(t), HId, A). This
derivation is mapped to the unification of ?h(a) with h(f) by Prolog*.

Since A and HId appear nowhere else, they can be unified with the corresponding arguments in O(V)
time. Due to our assumption that the time taken for unification is independent of the exact structure of
the terms, the unification of h(f) with h(@) costs the same, ignoring versioning costs, as the unification

done by Prolog*. Factoring in the versioning overheads, we get an overhead of a factor of O(V).

Type 2 Rules - 1 : These are Type 2 rules whose body uses a predicate sup; ;. There are three subclasses

of rules of this type.

The first subclass is of rules that use an answer literal in the body. Lemma 5.6.2 shows that Re-
turn_Unify succeeds whenever it is called for such rules. The time taken for successful derivations
using such rules is O(V). Any unsuccessful derivation using such a rule must use a supplementary
fact for which there is no answer fact; any answer fact will have a supplementary fact with the same
identifier value, and the derivation would be successful. The supplementary literal has as arguments
distinct variables, and unification is straightforward. Hence the time taken for unsuccessful derivations

using such rules is O(V).

The second subclass is of rules have an equality literal in the body. Any attempted derivation using
such a rule first unifies a sup;, ; fact with the rule body (the unification always succeeds), and attempts
to perform the unification needed to evaluate the equality literal. This attempted derivation is mapped
to an equivalent unification action by Prolog* evaluation. Whether the derivation succeeds or not, it

takes time at most O(V) times that taken by Prolog* evaluation.

The third subclass is of rules that have a base literal in the body. An attempted derivation uses a fact
for sup; ;, performs an indexing operation on the base literal, and derives a head fact for each fetched
base fact. For such rules, each attempted derivation is mapped to an action of Prolog* evaluation that
indexes the base relation with the same bindings. We assume the same indexing technique is used in
either case. We count the cost of fetching facts, and renaming and unifying the facts with the query on

the base relation as part of the indexing cost. Bottom-up evaluation and Prolog* evaluation perform
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the same indexing operations, and hence the cost of the indexing operation is the essentially the same
(modulo the O(V) factor for accessing and binding variables, and creating bindenv versions for each
fetched fact).

If no facts are fetched by the indexing operation in bottom-up evaluation, the cost of rule application
(apart from the indexing cost) is O(V), and we map this cost to the cost of the indexing operation. Since
that cost is at least O(V), and only one attempted derivation is mapped to each indexing operation,

there is no change in the time complexity of the indexing operation, and we ignore the cost.

If facts are successfully fetched by the indexing operation, for each fact fetched, a successful derivation
is made by bottom-up evaluation. The derivation is mapped to the return of an answer to the query on
the base literal by Prolog* evaluation. The cost of the derivation is O(V), since the cost of renaming
and unifying the base fact has been counted with the cost of the indexing operation. The corresponding
Prolog* action takes at least unit time, and hence the cost of the derivation is at most O(V) times the

cost of the Prolog* action.

Type 1 and Type 2 Rules - 2 :

Such rules derive a fact sup;,; using a fact supl;;, and generate goal-id values through a call to goal_id.
The unifications of the supplementary literal and supplementary fact can be done in O(V) time since
there are no repeated variables. The evaluation of goal_id takes constant time without subsumption
checking. Overall, a successful derivation using a rule of this type takes O(V) time. All attempted

derivations using rules of this type are successful.

Type 3, Type 4 and Type 5 Rules :

Such rules have only one body literal, which has as arguments distinct variables. Hence a successful
derivation using a rule of this type takes time O(V). All attempted derivations using such rules are

successful.

This completes the case analysis of all the rule types. O
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Appendix D

Proofs From Chapter 6

Theorem 6.4.1 The aggregate selections generated by Techniques C1, BS1, BS2, BS3, and LS1 are sound
aggregate selections.

Proof: The soundness of Techniques C1 and BS2 is very straightforward. For Technique BS1 we note the
following. Since p(;) : s is a sound aggregate constraint on p, every fact in p must satisfy the constraint.
Since all free variables in s are present in #;, ¢ is also a renaming of free variables in s (the bound variables
do not matter since they are quantified within the atomic aggregate selections in s). Since p(t) = p(t1)[o],
p(t) : s[o] is equivalent to p(f1) : s. Hence for every successful rule instantiations, the variables must satisfy
the constraint s[o]. It follows (trivially) that every relevant rule instantiation satisfies the selection s[o].

Now consider Technique BS3. Every relevant fact for p satisfies p(#) : s. Unifying this with the head of
R, every relevant instantiation of R satisfies s[c][f], since p(t)[o][f] is equivalent to p(¢;). Since 6 does not
affect variables in s[o], s[o] = s[o][f]. Hence, every relevant instantiation of rule R satisfies the selection
slo].

The proof of correctness of LS1 is straightforward — a restriction of a selection is weaker than the original

selection, and every relevant rule instantiation satisfies the restriction. Since all free variables in the specified
restriction occur in the literal, the restricted selection can be tested for the literal. If a fact is found irrelevant
by the selection, clearly any rule instantiation using the fact in this literal will also be irrelevant, since it
provides the same bindings for the free variables of the selection. O
Theorem 6.4.2 Technique PS1 is sound.
Proof: Consider any instantiation of the variables in X. There are now several instantiations of the variables
in the rule, that satisfy the rule body, and this defines a multiset Sy of values for Y. Now further partition
Sy based on values of variables other than X U {Y,W1,W2,...,Wn}. Consider any partition S} (in other
words, consider the multiset of instantiations of V', with all variables in the rule other than { Y, W1, W2,
..., Wn } fixed). Since agg-f is an IncSel function, for any value y, if y € unnecessaryqgqy_s(Sy) then
Y € unnecessaryagg_f(Sy).

Now each partition S} defines a value for the variables in #;. Consider each literal p;(t;, Wi) Given a
value for the variables in #;, the set of facts for p; defines a set Sy ; of values for Wi. Also, each partition
defines a set Sy of instantiations of the tuple (W1,W2,...,Wn). No two Wis appear in any literal other
than Y = fn(W1,...,Wn). Given any tuple of values from Sy X ... X Sy, there is a value for Y such
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Y = fn(W1,...,Wn) is satisfied.

If the other literals in the rule are satisfied, within each partition Sy is equal to the cross product of the
sets Sy;. Otherwise Sy is empty, and no fact is generated using this instantiation for the variables other
than { Y, W1, W2, ..., Wn }.

Sy is the set of Y values obtained by applying fn to the tuples in Sw. Since unnecessaryagq ¢

distributes over fn, if a value wi € unnecessaryagg ;(Sw;), any Y value derived from it must be in
unnecessaryqgg_r(Sy) (this is trivially true if Sy is empty, since no Y value is derived). Hence it must
also be in unnecessaryqqgg s(S). Since we chose any instantiation of the variables in X, this must be true
for all instantiations of X. Hence such a Wi value cannot not generate any relevant head fact. Therefore
the aggregate selection generated for the literal is sound. O
Theorem 6.4.3 Technique PS2 is sound.
Proof: The proof essentially follows the proof of Theorem 6.4.2, with the set of partitioning variables
different. Suppose we are given a binding for the variables X UV, where V is a cross-partitioning set of
variables. With this binding, for each literal p;(%;, W1), the set of facts for p; define a set Sy ; of values for Wi.
Also, this binding defines a set Sy of instantiations of the tuple (W1, W2,...,Wn) produced by successful
instantiations of the rule. By the definition of cross-partitioning variables, either the cross products of the
Swi’s is equal to Sy, or Sy is empty.

The partitioning arguments of a literal p;(#;, Wi) form a superset of the arguments that use variables
X U V. Given a binding for X UV, we can extend the binding to get values for all variables in partitioning
arguments of p;(¢;, Wi). Let the multiset of instantiations of Wi defined by the given instantiation of the
partitioning variables be My;. Now, Mw; C Sw;, since (a) the arguments of p;(Z;, Wi) that have cross-
partitioning variables are defined to be partitioning arguments, and (b) the conditions of PS2 ensure that
non-partitioning arguments of p;(t;, W4) are distinct variables and will not constrain the set of successful
instantiations of p;(t;, Wi).

Since agg-f is an IncSel function, unnecessary,yq_s is monotone, and any value found unnecessary for

My ; will also be unnecessary for Sy, and any instantiation of (W1,W2,...,Wn) using such a value for
Wi will result in an unnecessary value being generated for Y. Hence the aggregate selection generated is
sound. O
Proposition 6.4.4 Consider a rule R and an aggregate selection s as in Technique PS1. Let V denote
the set of all variables in the rule. Let A denote the set of non-constrained variables in the rule. Then
C=V-N—{W1,W2,...,Wn,Y} is a cross-partitioning set for rule R.
Proof: Consider any instantiation of the variables in X U C. For each p;, let N denote the set of variables
in V' that appear in p;(t;, Wi). Let M; = N; U {Wi}. Let Sps; (resp. Sw;) denote the set of instantiations
of variables in M; (resp. Wi) generated by literal p;(#;, Wi), (with the given instantiation of X UC). Let
Su (resp. S) denote the set of instantiations of NVU {W1,...,Wn} (resp. {W1,...,Wn}) generated by
successful instantiations of the rule (with the given instantiation of X UC).

With the given instantiation of X U C, the body of the rule is either not satisfiable (in which case S is
empty), or the literals other than the p;(#;, Wi) literals and Y = fn(W1,...,Wn) are satisfied (none of the
variables in N'U {W1,W2,...,Wn,Y} appear in these literals). The case where S is empty is trivial. We

consider the other case.
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Each element in the cross product of the Sjy;;’s defines an instantiation of the rule variables. But each
such variable instantiation defines a successful instantiation of the rule: this is because the variables in N
appear nowhere else in the rule body, and Wi appears only in Y = fn(W1,...,Wn), which has a successful
instantiation for every value of W1,...,Wn. Hence Sy, is equal to Sp;1 X ... X Spyn.

Now, for each value in Sy; there is an element in Sj;; with the same value for Wi. Hence for each value
in the cross product of the Syy;s, there is an element in Sy, with the same values for (W1,...,Wn).

But S is equal to the projection of Sy on to (W1, W2,...,Wn); similarly Sy; is equal to the projection
of Sy on to Wi. Hence S = Swq1 X Swo X ... X Swy,. O
Proposition 6.4.6 The conditions in Compare_Aggregate Selections(s,t) are sufficient conditions for s to
be stronger than t.

Proof: For case la, with more variables in the second argument of the groupby the multiset of values
obtained for each group is smaller, and since unnecessary,q4_r is monotonic, the set of values detected to be
unnecessary is smaller. Hence the set of facts detected to be unnecessary is also smaller for a weaker atomic
aggregate selection. For case 1b, every value that unifies with ¢2(...) also unifies with ¢1(...), Hence any
fact that is classified as irrelevant by ¢, also unifies with ¢1(...), and the multiset of values in its group in s
is at least as large as the multiset for its group in ¢. Hence the result follows. It is easy to see that the test
in case 2 is correct. O

Theorem 6.5.1 (Correctness of Rewriting) Let P be any program, and P?% the aggregate rewritten

version of the program.

1. P% and P are equivalent in the set of answers they generate for the query predicate.

2. The aggregate selection on each predicate in P?%® is a sound aggregate selection on the predicate.

Proof: We first consider Part 1 of this theorem. Note that rules are not modified in the rewriting except to
replace predicates by new versions of the predicate.

We first show that the answer set of P?° is covered by the answer set of P. We claim that for each
fact p_s(@) derived in P%*, evaluation of P generates p(a). Suppose not. Consider the shortest sequence
of derivations in P?%% that derives a fact for which this is not true, and consider the last derivation in this
sequence. For each fact p;_s;(a)) used in this sequence, p;(a) (the version with the suffix _si dropped) is
generated in P. If we drop the suffixes from the literals in the rule, we get a rule in P. Hence it follows that
the corresponding head fact is generated in P, which contradicts the assumption.

The proof in the reverse direction is similar. We claim that for each fact p(@) derived in P if p is reachable
from the query predicate, then for each version p_s of p in P*, a fact p_s(a) is generated in P%*. All rules
reachable from the query are processed by the algorithm, since the rewriting algorithm performs a DFS of
the reachability graph for the program (i.e., the graph with predicates as nodes, and an edge from a to b if a
is used to define b). Hence there are rules in P?® for all predicates reachable from the query predicate. The
rest of the argument then parallels the argument above, and is omitted for brevity.

Now consider Part 2 of the theorem. Consider a predicate p with an aggregate selection s on it. The
aggregate selections deduced on the literals of rules defining ¢ are sound, since the techniques for generating
aggregate selections on literals are sound (Theorems 6.4.1,6.4.2, 6.4.3). Step 13 of the rewriting algorithm

takes a literal ¢(...) with an aggregate selection s1 on it, and replaces the predicate g by ¢g_s1 with aggregate
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selection s1 on g_sl. Hence all uses of g_s1 have the aggregate selection on them. Hence sl is a sound
aggregate selection on g_sl.

Preprocessing 1 replaces a predicate in a literal by another with a weaker aggregate selection. This
will not result in any loss of derivations since every fact is relevant to the literal satisfies the stronger
aggregate selection, and hence the weaker aggregate selection too. The reachability analysis and dropping
of unreachable predicates does not affect the set of answers to the query.

Now consider Postprocessing 2. A version of p with an aggregate selection on it may have a subset of the

facts in p if we discard facts that fail the selection. Due to monotonicity of the functions unnecessaryagqy_f,
any value that is found unnecessary w.r.t. the subset would also be unnecessary w.r.t. the full set. Hence
while the new selection may not be as strong as the original one, the renaming is guaranteed to be sound. O
Theorem 6.5.2 (Termination) Algorithm Push_Selections terminates on all finite input programs, pro-
ducing a finite rewritten program.
Proof: The number of non-equivalent atomic aggregate selections that can be generated by the deduction
rules we use is finite, for the following reason. Techniques C1 and BS2 generate only one aggregate con-
straint/selection per rule. Techniques PS1 and PS2 can generate only a finite number of atomic selections
per literal, since they essentially choose a subset of arguments to group by, and an argument to apply the
aggregate selection to. Techniques BS1 generates aggregate selections from aggregate constraints. Since the
number of aggregate constraints is fixed, it generates only a finite number of atomic aggregate selections.

This leaves techniques BS3 and LS1. These generate no new groupby lists, except by renaming existing
groupby lists. They generate atomic aggregate selections by applying these groupby lists to rule bodies and
literals. Since the number of rule bodies and literals is fixed, these techniques generate only a finite number
of atomic aggregate selections.

Given a finite number of atomic aggregate selections, the number of non-equivalent aggregate selections
(formed by conjunctions of atomic aggregate selections) is also finite.

Hence after some point, the deduction rules can generate no new aggregate selection, the stack of predicate

versions becomes empty, and the rewriting algorithm terminates. O
Theorem 6.6.1 (Soundness, Completeness, Non-Repetition) Aggregate Retaining evaluation of P%®
gives the same set of answers for query_pred as Semi-Naive evaluation of P, and does not repeat any infer-
ences. Further, the Aggregate Retaining evaluation of P%® terminates whenever the Semi-Naive evaluation
of P terminates.
Proof: An aggregate selection on a predicate can be fully tested only at the end of the evaluation (after all
facts have been computed). However the incremental nature of aggregate selections allows us deduce that
some facts are irrelevant even during the course of the computation. If a fact for a predicate does not satisfy
a sound aggregate selection on the predicate, it is guaranteed to be irrelevant to the query predicate — any
derivation that can be made using it is guaranteed to be irrelevant. Hence the answers to the query are not
affected if the fact is not used.

The only real concern is termination. Agg-retaining evaluation discards facts only when its discarding will
not affect the unnecessary set for any atomic aggregate selection. Hence, if a fact is found to be irrelevant,
it will continue to be found irrelevant for the rest of the evaluation. If such a fact is generated again, it will

not be re-used. It follows from well-known soundness, completeness and non-repetition results on semi-naive
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evaluation (see eg. [MR89, RSS90]), that Agg-retaining evaluation does not repeat any inferences.

Now we consider the last part of the theorem. Agg-retaining evaluation of P*® makes no more inferences
than semi-naive evaluation of P%%, and since it does not repeat inferences, it terminates whenever the semi-
naive evaluation of P** does. But semi-naive evaluation of P%® terminates whenever semi-naive evaluation

of P does, and the last part of the theorem follows. O
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