
OPTIMIZINGBOTTOM-UP QUERY EVALUATIONFOR DEDUCTIVE DATABASES
BySUNDARARAJARAO SUDARSHAN

A thesis submitted in partial fulfillment of therequirements for the degree of
Do
tor of Philosophy(Computer S
ien
es)

at theUNIVERSITY OF WISCONSIN { MADISON1992

Abstra
tDedu
tive databases extend the power of traditional database query languages su
h as SQL by allowingre
ursive de�nitions of predi
ates. Bottom-up query evaluation is an important query evaluation me
hanismfor dedu
tive databases and logi
 programs. In re
ent years, dedu
tive databases have been extended byallowing fa
ts to
ontain
omplex terms that
an possibly in
lude variables, and by allowing the use ofaggregate operations on sets of answers. This thesis addresses optimization issues related to these extensions.In the �rst part of the thesis we
ompare bottom-up and Prolog query evaluation. We show that usingexisting te
hniques, bottom-up evaluation performs no more \a
tions" than (a model of) Prolog for a re-stri
ted
lass of programs, but this does not hold for all programs. We develop rewrite-based optimizationte
hniques that help us extend the above results to all logi
 programs. We then develop novel te
hniquesfor evaluating these rewritten programs. We
ompare bottom-up query evaluation (using our rewrite op-timizations along with our evaluation optimization) with Prolog query evaluation, and show the following.Suppose we are given a program; if (our model of) Prolog evaluation of a query takes time t on a database,bottom-up query evaluation on the database, without subsumption
he
king, takes time O(t � log log t). Fora restri
ted
lass of programs, bottom-up query evaluation on the database, with subsumption
he
king,takes time at worst O(t). (In both
ases, the time taken by bottom-up evaluation also depends on the sizeof the program, whi
h we assume to be small). On the other hand, for many programs, Prolog is arbitrarilyslower than bottom-up evaluation. Our optimization te
hniques are of importan
e in evaluating programsthat generate fa
ts
ontaining variables.In the se
ond part of the thesis, we develop optimizations related to the use of aggregate operationssu
h as min or max. We show how to view several su
h operations as \sele
tions", and how to propagatethese sele
tions into programs. We demonstrate the power and utility of the optimization te
hniques, usingprograms for problems su
h as
omputing shortest paths and
riti
al paths.

ii

Contents
Abstra
t ii1 Introdu
tion 11.1 Memoing vs. Non-Memoing Query Evaluation Te
hniques . 11.2 Bottom-Up vs. Prolog . 31.3 Optimizations Related to Aggregate Operations . 61.4 Organization of the Thesis . 72 Ba
kground Material 82.1 Notation and Preliminary De�nitions . 82.1.1 First Order Languages . 82.1.2 De�nite Clause Programs . 92.1.3 Models of Programs . 102.1.4 Databases and Programs . 122.2 The Bottom-Up Approa
h . 132.2.1 The Magi
 Templates Rewriting Algorithm . 132.2.2 Supplementary Magi
 Templates Rewriting . 152.2.3 Iterative Fixpoint Evaluation . 162.2.4 Related Ba
kground Material . 192.3 Magi
 Templates and Tail-Re
ursion . 202.3.1 Hilog Syntax . 212.3.2 MTTR Rewriting . 223 Magi
 Rewriting for Non-Range-Restri
ted Programs 253.1 Problems With Subsumed Answers . 253.1.1 Mgu-Subgoals and Mgu-Answers . 283.2 The goal id Meta-Predi
ate . 303.3 MGU Magi
 Templates . 313.3.1 Optimizations of MGU Magi
 Templates Rewriting . 343.3.2 Examples . 343.3.3 Corre
tness of MGU Magi
 Templates . 363.3.4 Dis
ussion . 373.4 MGU MTTR Rewriting . 383.4.1 Optimizations of MGU MTTR Rewriting . 40iii

3.4.2 An Example . 413.4.3 Corre
tness of MGU MTTR Rewriting . 434 Bottom-up vs. Prolog� | A High Level Comparison 444.1 A Model for Prolog Evaluation . 444.1.1 Tail Re
ursion Optimization . 474.2 A Model for Semi-Naive and Not-So-Naive Evaluation . 474.2.1 The Non-Repetition Property . 504.2.2 Dis
ussion . 504.3 Bottom-Up Evaluation vs. Prolog� | Number of Inferen
es 515 Evaluation of Non-Range-Restri
ted Programs 535.1 Introdu
tion . 535.1.1 A Motivating Example . 555.2 Basi
s . 565.2.1 Prepro
essing . 575.3 Representation of Terms and Fa
ts . 585.3.1 Context Identi�ers for Fa
ts . 595.3.2 Dis
ussion . 605.4 How to Apply a Rule . 605.4.1 Context Identi�ers and Return-Uni�
ation . 645.4.2 Examples . 675.5 Corre
tness of Apply Rule . 695.5.1 Soundness and Completeness of Evaluation . 705.6 Cost of Optimized Evaluation . 715.6.1 Cost of Inferen
es Using Apply Rule . 715.7 A Comparison With Prolog� . 725.8 Subsumption Che
king in Bottom-Up Evaluation . 745.9 Optimizations and Dis
ussion . 755.9.1 More Example Programs . 775.10 Bottom-Up vs. Prolog� for a Restri
ted Class of Programs . 795.11 Related Work . 815.11.1 Memoization for Other Evaluation S
hemes . 825.12 Con
lusion . 826 Optimization of Aggregation 846.1 Introdu
tion . 846.2 De�nitions and Ba
kground Material . 866.3 Views of Relevan
e In Logi
 Programs . 906.3.1 Relevan
e and Aggregate Fun
tions . 906.3.2 Relevan
e of Fa
ts . 926.3.3 Aggregate Constraints and Sele
tions . 936.4 Generating Aggregate Constraints and Sele
tions . 966.4.1 Pushing Aggregate Sele
tions . 99iv

6.4.2 Extended Te
hniques for Pushing Sele
tions . 1006.4.3 An Unde
idability Result . 1036.4.4 Strength of Aggregate Sele
tions . 1036.5 The Aggregate Rewriting Algorithm . 1046.6 Aggregate Retaining Evaluation . 1066.6.1 Pragmati
 Issues Of Testing Aggregate Sele
tions . 1086.6.2 Ordered Aggregate Retaining Evaluation . 1096.7 Examples . 1126.8 Dis
ussion . 1146.8.1 Related Work . 1156.9 Con
lusions . 1177 Con
lusion 118A Proofs From Chapter 3 120A.1 Proofs From Se
tion 3.3 . 120A.2 Proofs From Se
tion 3.4 . 123B Proofs From Chapter 4 128C Proofs From Chapter 5 138C.1 Proofs from Se
tion 5.5 . 138C.2 Proofs from Se
tion 5.6 . 142C.3 Proofs from Se
tion 5.7 . 142D Proofs From Chapter 6 145Bibliography 149

v

Chapter 1Introdu
tionDedu
tive databases extend the power of traditional databases by allowing derived relations (views) to bede�ned re
ursively using logi
 programs. In the area of query evaluation for logi
 programs, the de fa
tostandard is Prolog, whi
h is a top-down evaluation strategy. Bottom-up query evaluation has advantagesover Prolog with respe
t to
ompleteness1 and IO
osts [BR86, Ull89b℄. (In our model, bottom-up queryevaluation
onsists of Magi
 rewriting of the program and query [BMSU86, BR87b, Ram88℄ (see Se
tion 2.2.1)followed by �xpoint evaluation of the rewritten program [BR87a, Ban85℄ (see Se
tion 2.2.3).)In re
ent years, dedu
tive databases have been extended by allowing fa
ts to
ontain
omplex terms that
an possibly in
lude variables, and by allowing the use of aggregate operations on sets of answers. Thisthesis addresses optimization issues related to these extensions.This thesis has two main parts. In the �rst part, we
onsider the question of time-
omplexity of bottom-upevaluation vs. Prolog evaluation for logi
 programs that
an generate
omplex terms that may
ontain vari-ables. Motivated by this
omparison, we develop several rewrite-based optimization te
hniques for bottom-upevaluation. We summarize the
ontributions of this part of the thesis in Se
tion 1.2. In the se
ond part of thethesis, we present optimization te
hniques for an extension of logi
 programs that allows the use of aggregateoperations on sets of fa
ts. We summarize the
ontributions of this part of the thesis in Se
tion 1.3.1.1 Memoing vs. Non-Memoing Query Evaluation Te
hniquesA memoing evaluation te
hnique for de�nite
lause programs is one that stores subgoals and answers thatare generated during the evaluation. Bottom-up query evaluation is an example of a memoing evaluationte
hnique. The term top-down evaluation is used for evaluation te
hniques based on SLD resolution andits variants (e.g. SLDNF, SLD-AL, OLDT, et
. | see, e.g., [Llo87, War92℄).2 There are a number ofmemoing top-down evaluation te
hniques su
h as the Query-Subquery (QSQ) approa
h and its extensions1Completeness of evaluation implies that given any answer to the query, there is a �nite point of time at whi
h evaluationgenerates the answer; there may be an in�nite number of answers, and evaluation may not terminate. Bottom-up evaluation is
omplete for (�nite) de�nite
lause programs with a �nite database.2This de�nition is not very pre
ise. Bottom-up evaluation using Magi
 rewriting
an be viewed as a
ompiled form of OLDTresolution, although there are some di�eren
es. However, the terms bottom-up and top-down have been used histori
ally torefer to these two
ategories of evaluation te
hniques. 1

[Vie86, Vie88℄, and Extension Tables [Die87℄. SLD-AL resolution, and OLDT resolution are theoreti
almodels of top-down evaluation te
hniques that perform memoing of fa
ts.The de fa
to standard for evaluating queries on logi
 programs is Prolog, and Prolog does not performmemoing as part of the built-in evaluation me
hanism. (However, ad ho
 use of memoing is
ommon inprograms written in Prolog.)Natural questions that arise are (1) \how do memoing evaluation te
hniques
ompare with non-memoingevaluation te
hniques?", and (2) \how do bottom-up evaluation te
hniques
ompare with top-down evalua-tion te
hniques?", To make
omparison (1) pre
ise, we have to talk of a spe
i�
 memoing evaluation te
hniqueand a spe
i�
 non-memoing evaluation te
hnique. To make (2) pre
ise, we have to talk of a spe
i�
 top-downevaluation te
hnique, and a spe
i�
 model for bottom-up evaluation.Initial
omparisons of bottom-up evaluation and memoing top-down evaluation te
hniques were basedon the number of distin
t fa
ts derived by the di�erent te
hniques. Thus, Ramakrishnan [Ram88, Ram90℄presents a
lass of evaluations and shows that within this
lass bottom-up �xpoint evaluation of a programrewritten using Magi
 Templates
omputes an optimal number of fa
ts. Seki [Sek89℄ presents a dire
t
omparison between the set of fa
ts
omputed using Alexander Templates rewriting, and using SLD-ALresolution. Bry [Bry90℄ shows that several top-down and bottom-up evaluation te
hniques
an be viewedas spe
ializations of a te
hnique
alled the Ba
kward Fixpoint Pro
edure; all these te
hniques essentially
ompute the same set of fa
ts and generate the same subgoals. These results ignore the number of timesfa
ts are generated, ignore the a
tual time
ost of evaluation, and ignore optimizations su
h as tail-re
ursionoptimization (Se
tion 2.3) that are routinely performed by Prolog systems.There is a
onsiderable amount of similarity between memoing top-down evaluation te
hniques andbottom-up evaluation; we do not explore the di�eren
es in this thesis. We
on
entrate instead on thedi�eren
es between memoing and non-memoing evaluation te
hniques. We use bottom-up evaluation as the
anoni
al memoing evaluation te
hnique in this thesis. We also use Prolog as the
anoni
al non-memoingevaluation te
hnique.Bottom-up query evaluation using Magi
 rewriting (as also several of the memoing top-down evaluationte
hniques mentioned above) has three signi�
ant advantages over non-memoing te
hniques su
h as Prolog:(1) Bottom-up evaluation using Magi
 Templates rewriting is
omplete for de�nite
lause programs, andthe de
larative least Herbrand model semanti
s is always enumerated for de�nite
lause programs. (2)Redundant derivations are avoided through memoing, leading to signi�
ant improvements in time
omplexityfor programs in whi
h goals or fa
ts
an be derived in many ways. (3) As a
onsequen
e of (1), no operationalguarantees need be made, thereby making possible a number of semanti
 optimizations. The reader is referredto [RSS92
℄ for a brief survey of several su
h semanti
 optimization te
hniques.On the other hand, some operations may be
heaper if fa
ts are not memoed. Therefore, it is importantto perform a
omparison of bottom-up and non-memoing top-down evaluation te
hniques in terms of the
ost of evaluation.Ullman ([Ull89a, Ull89b℄) has
ompared bottom-up evaluation with top-down evaluation for the
lass ofrange-restri
ted Datalog programs (programs that generate only ground fa
ts (i.e., fa
ts that do not
ontainvariables) and do not use fun
tion symbols). His results show that bottom-up evaluation using Magi
 Setsalong with re
ti�
ation (MSR) rewriting (BU-MSR evaluation for short) has time
omplexity (i.e., ignoring2

onstant
osts) less than or equal to Queue-based Rule Goal Tree (QRGT) evaluation (a top-down queryevaluation strategy).There are several limitations to Ullman's result. First, the
omparison is only for range-restri
ted Datalog.Some of the assumptions made in the
omparison do not hold if non-ground fa
ts (i.e., fa
ts that
ontainvariables) are generated. Se
ond, Ullman's
omparison ignores optimizations that are routinely performedon Prolog programs su
h as tail-re
ursion optimization (Se
tion 2.3). Third, the
omparison is with respe
tto a parti
ular top-down evaluation te
hnique, and does not extend to Prolog, whi
h is the de fa
to standardfor evaluating logi
 programs. Fourth, the
omparisons assume that all answers are required, and do notprovide insight for the
ase that only one answer is required (although there is no
hange in the worst
ase
omparison).In this thesis, we address the �rst three problems above. We
ompare bottom-up evaluation with Prologevaluation, in terms of time
omplexity of query evaluation, for the
lass of all de�nite
lause programs(whi
h
an possibly generate non-ground fa
ts).The fourth problem, namely the
ase that only one answer is required, is harder. In parti
ular, thedepth-�rst sear
h strategy used by Prolog has advantages over the breadth-�rst sear
h strategy used bybottom-up evaluation with Magi
 rewriting in some
ontexts where not all answers to a query are desired.There have been some attempts to provide the bene�ts of depth-�rst sear
h in the
ontext of bottom-upevaluation; we mention these, and dis
uss open problems in Chapter 7.1.2 Bottom-Up vs. PrologAn important question in the area of logi
 programming and dedu
tive databases is \How does bottom-upquery evaluation
ompare with Prolog query evaluation in terms of time
omplexity?".There are programs for whi
h bottom-up query evaluation is
onsiderably faster than Prolog. As anexample,
onsider the path program with a query, shown below. We assume we are given a �nite set of fa
tsfor edge, although we do not show them below. On this program Prolog loops for ever if the edge relationhas a
y
le, whereas bottom-up evaluation terminates, generating all answers.path(X;Y) : � edge(X;Y):path(X;Y) : � edge(X;Z); path(Z; Y):Query: ?-path(X;Y):However, there are programs for whi
h the time
omplexity of Prolog evaluation is
onsiderably less thanthat of bottom-up evaluation using
urrent te
hniques. In the �rst part of the thesis, we dis
uss the reasonsfor the ineÆ
ien
y, and present optimization te
hniques that help us show that bottom-up evaluation
anbe made almost as fast as Prolog evaluation, in the sense of time
omplexity, over all programs. (The workin this thesis, like that of Ullman [Ull89a℄, ignores IO
osts, and assumes that all answers are generated.)For the purpose of
omparison, we use a model of Prolog evaluation that we
all Prolog� evaluation; webelieve that this model re
e
ts
urrent Prolog implementations fairly a

urately.33Our model of Prolog evaluation in
orporates tail-re
ursion optimization, but assumes that intelligent ba
ktra
king (see,e.g., [CD85℄) is not used. It also assumes that all answers are
omputed.3

A
lose look shows several problems in making bottom-up evaluation
omparable to or better thanProlog for all programs. Magi
 Templates rewriting [Ram88℄ and Alexander Templates [Sek89℄ are the mainbottom-up evaluation te
hniques that deal with general logi
 programs. (Ullman's MSR rewriting does notdeal with general logi
 programs, whi
h
an generate fa
ts
ontaining
omplex terms built from fun
tionsymbols,
onstants and variables.) Let us denote bottom-up query evaluation using Magi
 Templates (resp.Alexander Templates) as BU-MT evaluation (resp. BU-AT evaluation). There are three problems with boththe above evaluation te
hniques when non-ground fa
ts are generated.1. Both te
hniques
an make
onsiderably more inferen
es than Prolog, even for Datalog programs, evenignoring the e�e
t of optimization su
h as tail-re
ursion optimization. The basi
 problem was notedby Codish, Dams and Yardeni [CDY90℄, but is not widely re
ognized. Consider the following programR1 : q : � p(a); p(X); r(X):R2 : p(X):Query: ?-q:On this program, the only subgoal generated for the predi
ate r by Prolog evaluation is ?r(X).4Bottom-up evaluation using Magi
 Templates rewriting generates an answer fa
t p(a), and uses thiswith literal p(X) to generate a query ?r(a). A fa
t p(X) is generated later, and p(a) is found to besubsumed, but the query ?r(a) is generated before the subsumption is dete
ted. (The query ?r(X) isgenerated after the answer p(X) is generated.) Thus bottom-up evaluation
an generate subgoals (andgenerate
orresponding answers) that Prolog evaluation avoids.We extend this observation in Example 3.1.2, and illustrate how it
an lead to BU-MT query evaluationperforming asymptoti
ally worse than Prolog. We formalize the problem through the de�nition of mgu-subgoals and mgu-answers (Se
tion 3.1); the problem is that Magi
 Templates rewriting
an generateanswers (and subgoals) that are not mgu-answers (resp. mgu-subgoals).Our
ontribution in this respe
t is as follows:� We re�ne Magi
 Templates rewriting to avoid the problems noted by Codish et al.; we
all thisre�nement MGU Magi
 Templates (MGU MT) rewriting. Bottom-up query evaluation usingMGU MT rewriting generates only mgu-subgoals and mgu-answers. This re�nement is des
ribedin Se
tion 3.3.2. Prolog performs tail-re
ursion optimization, whi
h we des
ribe in Se
tion 2.3. Even for safe Datalogprograms, tail-re
ursion optimization
an redu
e the number of inferen
es made by Prolog evaluationto mu
h less than the inferen
es made by Ullman's BU-MSR evaluation te
hnique, or by BU-MTevaluation. Example 2.3.1 illustrates this problem. Ross [Ros91℄ presents a variant of Magi
 Templatesto in
orporate tail-re
ursion optimization (we
all Ross' rewriting MTTR rewriting).MTTR rewriting su�ers from the same problems with subsumed answers (des
ribed above) as do Magi
Templates and Alexander Templates rewriting. Our
ontributions in this
ontext are as follows:4To keep the example simple, we do not have any rules de�ning r, and hen
e the subgoal fails.4

� We use the ideas behind MGU MT rewriting to re�ne Ross' MTTR rewriting; we
all this re�ne-ment MGU MTTR rewriting. MGU MTTR rewriting is des
ribed in Se
tion 3.4. This re�nementis important sin
e it enables us to a

ount for tail-re
ursion optimization while also dealing withthe problem of using non-mgu-answers in derivations.� We show (in Se
tion 4.3) that bottom-up evaluation using MGU MTTR rewriting performs nomore \a
tions" than a small
onstant number of times the number of \a
tions" performed byProlog� evaluation of the query on the program. In many
ases bottom-up evaluation performsfar fewer a
tions than the number of a
tions performed by Prolog� evaluation.3. The
ost per inferen
e in bottom-up evaluation
an be more than for Prolog evaluation. For instan
e,queries on the well-known predi
ate append run on Prolog in time linear in the size of the lists in thequery. If the query
ontains lists with variables, an unoptimized query evaluation using MT rewriting(or any of its variants mentioned above su
h as MGU MT rewriting or MGU MTTR rewriting) takestime quadrati
 in the size of the lists (although the number of inferen
es does not
hange). The basi
reason is that bottom-up evaluation of the Magi
 rewritten program performs some uni�
ations thatProlog evaluation does not perform, when answers are returned for a query. We
all su
h uni�
ationanswer-return uni�
ations. Uni�
ation is in general linear in the size of the terms to be uni�ed, and
an be
ostly for large non-ground terms.5 This is dis
ussed in Example 5.1.1.It is important that bottom-up evaluation of programs that generate non-ground fa
ts be done eÆ-
iently. Non-ground data-stru
tures su
h as di�eren
e lists (Example 5.1.1) are important in someappli
ations, and support some operations (su
h as list append) more eÆ
iently than ground data-stru
tures in the
ontext of Prolog. Many appli
ations that bene�t from bottom-up evaluation wouldalso bene�t from the use of non-ground data-stru
tures, if bottom-up evaluation using non-groundfa
ts
an be done eÆ
iently. Example 5.9.2 shows a shortest-path program that keeps tra
k of thea
tual path that is
omputed, and bene�ts from using a di�eren
e list representation. Chart parsing ofDe�nite Clause Grammars is another area where non-ground data-stru
tures and bottom-up evaluationare both useful.Our main
ontribution in this area is as follows:� We present (in Chapter 5) a version of bottom-up evaluation that in
orporates several optimiza-tions that are appli
able to programs that have been rewritten using MGU MTTR (or MGU MT)rewriting. These optimizations are able to redu
e the
ost of answer-return uni�
ations performedby bottom-up evaluation to nearly a
onstant per uni�
ation. These optimizations are importantsin
e we are also able to show the following important result:Suppose we are given a logi
 program and a query. If the time taken by Prolog� to evaluate thequery 6 on a given database is t, then evaluating the query using MGU MTTR rewriting and theabove mentioned optimizations, on the given database, takes time O(t � log log t), provided that wedo not
he
k for subsumption.7 (The size of the program is assumed to be �xed, and is not taken5Uni�
ation
an be done in
onstant time for ground terms in
ertain
ases, by using a te
hnique
alled hash-
onsing [Got74,SG76℄. This requires that all fa
ts generated by the program be ground, and is not appli
able to non-ground terms.6Where evaluating the query is interpreted as generating all answers to the query.7Re
all that Ullman's result, while more limited in several respe
ts, did a

ount for the
ost of subsumption
he
king inbottom-up evaluation. We dis
uss the issue of subsumption
he
king later in this se
tion.5

into a

ount in the time
omplexity measure.) Subsumption-
he
king has a
ost, but may alsohave signi�
ant bene�ts if subgoals are repeated; it
an be done where desired. The above resultprovides an upper bound on how mu
h worse bottom-up evaluation
an be
ompared to Prolog�evaluation. For the other dire
tion, there are programs where Prolog� evaluation is arbitrarilyworse than bottom-up evaluation with subsumption-
he
king.Equally importantly, our optimization te
hniques allow eÆ
ient evaluation of programs that gen-erate non-ground fa
ts, and must be evaluated with memoing (for instan
e, the program in Ex-ample 5.9.2).We have also developed an eÆ
ient evaluation te
hnique for a restri
ted
lass of programs [SR92b℄.Using this evaluation te
hnique, we have shown that for a
lass of programs that properly
ontains safeDatalog, the time
omplexity of optimized bottom-up query evaluation with MTTR rewriting is nevermore than that of Prolog� evaluation, even taking the
ost of subsumption
he
king into a

ount.8This result extends those of Ullman [Ull89a℄ sin
e it handles a larger
lass of programs. We dis
ussthese results brie
y in Se
tion 5.10.What these results show is that we
an optimize bottom-up evaluation so that its time
omplexity is atworst marginally greater than that of Prolog� evaluation, and at best mu
h better.There are a few points that must be kept in mind when interpreting these results. First, the resultsleave open the question of
onstants. We expe
t that for purely in-memory implementations, the
onstant
osts will favor Prolog for programs that do not perform dupli
ate
omputation, and are not set-oriented.For data-intensive programs as well as programs that repeat
omputations (su
h as programs for dynami
programming problems), bottom-up evaluation is likely to beat Prolog evaluation. However, su
h questions
an only be settled by a
tual optimized implementations. Se
ond, the results assume that all answers to thequery are required; the
ase that only some answers are required is not addressed. (See Chapter 7 for a briefdis
ussion of this
ase). Third, these results do not in
orporate spa
e
omplexity. However, independentof the time and spa
e
osts of evaluation, bottom-up evaluation, even without subsumption-
he
king, is
omplete, unlike Prolog | a desirable property in many
ir
umstan
es.1.3 Optimizations Related to Aggregate OperationsDatabase query languages su
h as SQL provide aggregation operations, that let one
ompute aggregatevalues over sets of answers. For example, SQL provides the group-by
onstru
t that
an be used along with avariety of aggregate operations. The use of aggregation with re
ursive queries has been
onsidered by severalresear
hers (e.g., [BNR+87, MPR90℄).In Chapter 6 we develop an optimization te
hnique for bottom-up evaluation, using a notion of relevan
e offa
ts to some aggregate operations su
h asmin andmax. Our notion of relevan
e
an be seen as an extensionof the notion of relevan
e used in optimizations su
h as Magi
 sets rewriting [BMSU86, BR87b, Ram88℄.One
an think of the aggregate operations as providing a form of \sele
tion" on generated fa
ts; we refer tosu
h sele
tions as \aggregate sele
tions".8As before, we assume that all answers are generated by Prolog� evaluation.6

The optimization te
hnique
onsists of two parts | a rewriting te
hnique that \pushes" aggregate se-le
tions into rules in the program, and an evaluation te
hnique that makes use of aggregate sele
tions whenevaluating the rewritten program. The
ombined te
hnique is able to dete
t many fa
ts as irrelevant, andavoids using them to make derivations. As an example of the power of our te
hniques, we
onsider a naiveprogram to �nd shortest paths. The program �rst
omputes all paths, and then sele
ts shortest paths. Therewriting te
hnique dedu
es that for any pair of nodes, any path between them that is not shortest is irrele-vant for
omputing shortest paths. Thus the \optimality prin
iple" is dedu
ed automati
ally. The evaluationte
hnique when applied to this rewritten program is essentially an extension of Dijkstra's algorithm.The evaluation te
hniques developed in this se
tion of the thesis are orthogonal to the optimizationte
hniques developed in the �rst part of the thesis. We present an example (Example 5.9.2) where bothkinds of optimizations are very useful.1.4 Organization of the ThesisThis thesis is organized as follows. In Chapter 2, we present ba
kground material. In Chapters 3, 4, and 5we develop our main result
omparing optimized bottom-up evaluation and Prolog evaluation. In Chapter 3,we present rewriting re�nements to Magi
 Templates rewriting and to MTTR rewriting, to avoid problemsdue to subsumed answers. In Chapter 4 we present a model of Prolog� evaluation and a model of bottom-up�xpoint evaluation. We then present our results
omparing Prolog� evaluation with a �xpoint evaluation ofthe MGU MTTR rewritten program, at the level of number of inferen
es. In Chapter 5 we
onsider the
ostof derivations, and present an optimized �xpoint evaluation te
hnique, whi
h we
all Opt-NG-SN evaluation.In Se
tion 5.7 we present our results
omparing the time
ost of query evaluation using Prolog� evaluationwith the time
ost of Opt-NG-SN evaluation of the MGU MTTR rewritten program. In Chapter 6 wedes
ribe our rewriting and evaluation te
hniques for programs that use aggregate operations.

7

Chapter 2Ba
kground Material
2.1 Notation and Preliminary De�nitionsThe language used in this thesis is that of Horn logi
 (see, e.g., [Llo87℄). In this se
tion we present somebasi
 de�nitions for the
onvenien
e of the reader.2.1.1 First Order LanguagesA �rst-order language has a
ountably in�nite set of variables and
ountable sets of fun
tion and predi
atesymbols, these sets being mutually disjoint. It is assumed, without loss of generality, that with ea
h fun
tionsymbol1 f and ea
h predi
ate symbol p, is asso
iated a unique natural number n, referred to as the arity ofthe symbol; f and p are then said to be n-ary symbols. A 0-ary fun
tion symbol is referred to as a
onstant.A term in a �rst order language is a variable, a
onstant, or a
ompound term f(t1; : : : ; tn) where f is ann-ary fun
tion symbol and the ti are terms. A tuple of terms is sometimes denoted simply by the use of anoverbar, e.g., �t. Compound terms are also referred to as stru
tured terms.If p is a predi
ate symbol with arity n, and t1; : : : ; tn are terms, then p(t1; : : : ; tn) is an atom, and:p(t1; : : : ; tn) is the negation of an atom. A literal is an atom or the negation of an atom. A positive literalis an atom, and a negative literal is a negation of an atom.A simple expression is either a term or an atom. An expression is either a simple expression, a literal,or a disjun
tion of literals. An expression is said to be ground if it
ontains no variables, and non-groundotherwise. A substitution � is a �nite set of the form fv1=t1; : : : ; vn=tng, where ea
h vi is a variable, ea
h tiis a term distin
t from vi, and the variables v1; : : : ; vn are distin
t. Ea
h element vi=ti is
alled a binding forvi. � is
alled a ground substitution if all the ti are ground. Substitutions are denoted by lower
ase Greekletters �; �; �, et
.Let � = fv1=t1; : : : ; vn=tng be a substitution, and E an expression. Then E[�℄, the instan
e of E by �, isthe expression obtained from E by simultaneously repla
ing ea
h o

urren
e of the variable vi by the termti (i = 1; : : : ; n). If S = fE1; : : : ; Eng is a �nite set of expressions, and � a substitution, then S[�℄ denotesthe set fE1[�℄; : : : ; En[�℄g. We sometimes omit the [℄, and write E[�℄ as E�.1Fun
tion symbols are also referred to as uninterpreted fun
tion symbols.8

Let � = fu1=s1; : : : ; um=smg and � = fv1=t1; : : : ; vn=tng be substitutions. Then the
omposition �[�℄ of� and � is the substitution obtained from the setfu1=s1[�℄; : : : ; um=sm[�℄; v1=t1; : : : ; vn=tngby deleting any bindings ui=si[�℄ for whi
h ui = si[�℄ and deleting any binding vj=tj for whi
h vj 2fu1; : : : ; umg.For example, the
omposition of substitutions fx=a; y=f(Z); t=xg and fx=
; r=dg is the substitutionfx=a; y=f(Z); t=
; r=dg.Let E and F be expressions. We say that E and F are variants if there exist substitutions � and � su
hthat E = F [�℄ and F = E[�℄. We also say that E is a variant of F , or F is a variant of E. Let E be anexpression, and V be the set of all variables o

urring in E. A renaming substitution for E is a substitutionfx1=y1; : : : ; xn=yng su
h that fx1; : : : ; xng � V , the yi are all distin
t variables, and(V nfx1; : : : ; xng) \ fy1; : : : ; yng = �Expressions E and F are variants i� there is a renaming substitution � for F , su
h that E = F [�℄.For example, fx=y; y=x; z=wg, where x; y; z and w are variables, is a renaming substitution for an expres-sion that does not
ontain the variable w. But if an expression does
ontain w, z and w are mapped to wby this substitution. We
annot distinguish between them after applying the substitution, and hen
e there
annot be an inverse substitution as required in the de�nition of variants.A substitution � is more general than a substitution � if there is a substitution ' su
h that � = �['℄.Two simple expressions t1 and t2 are said to be uni�able if there is a substitution � su
h that t1[�℄ = t2[�℄.� is said to be a uni�er of t1 and t2. A uni�er � of simple expressions t1 and t2 is said to be a most generaluni�er of t1 and t2 if, for ea
h uni�er � of t1 and t2, there exists a substitution
 su
h that � = �[
℄. If twosimple expressions have a uni�er, they have a most general uni�er that is unique up to renaming of variables.Given two simple expressions t1 and t2, MGU(t1; t2) denotes the set of most general uni�ers of t1 and t2;all the elements of this set are equivalent up to renaming. We let mgu(t1; t2) denote an arbitrary elementof MGU(t1; t2).For example, given terms f(x; y) and f(a; g(z)), where x; y; z are variables, the substitution fx=a; y=g(b)gis a uni�er, while fx=a; y=g(z)g is a most general uni�er.2.1.2 De�nite Clause ProgramsA
lause is a formula of the form8X1; : : : ;8Xs(L1 _ : : : _ Lm)where L1; : : : ; Lm are literals, and X1; : : : ; Xs are all the variables o

urring in L1_ : : :_Lm. A Horn
lauseis a
lause with at most one positive literal. A Horn
lause with exa
tly one positive literal is referred toas a de�nite
lause. Following the syntax of Edinburgh Prolog, de�nite
lauses (usually referred to as rules)are written asp : �q1; : : : ; qn: 9

where p is the positive literal and :q1; : : : ;:qn are the negative literals in the de�nite
lause. Let the variablesin the rule be denoted by X. Then the rule is read de
laratively as 8X(q1 ^ q2 ^ : : :^ qn ! p). The positiveliteral in a de�nite
lause is its head, and the remaining literals, if any,
onstitute its body.2 The notationR : p: �q1; : : : ; qn:denotes a rule with a name R. We use the name to refer to the rule. A fa
t is a rule with empty body.A predi
ate de�nition
onsists of a set of de�nite
lauses, whose heads all have the same predi
ate symbol.A de�nite
lause program is a �nite set of de�nite
lauses. A goal is a negative literal, and is usually writtenas ?p(t1; : : : ; tn).3 We also refer to a goal as a subgoal or a query.We use the
onvention that names of variables begin with upper
ase letters, while names of non-variable(i.e., fun
tion and predi
ate) symbols begin with lower
ase letters. We use the following spe
ial notationfor lists. The empty list is a
onstant symbol [℄. A list is either an empty list, or
ons(h; t) where h and tare terms. We use the spe
ial notation [hjt℄ to denote
ons(h; t). We refer to h as the head of the list andt as the tail of the list. We use the notation [h1; h2; : : : ; hnjt℄ to denote the list [h1j[h2j : : : [hn�1j[hnjt℄℄ : : :℄.Further, [h1; h2; : : : ; hn℄ denotes [h1; h2; : : : ; hnj[℄℄.2.1.3 Models of ProgramsA universe is a set of elements. In order to give a semanti
s for a de�nite
lause program, we have to �rst
hoose a universe for the program. Given a �rst order language L, the Herbrand universe UL of L is theset of all ground terms in the language. (In
ase L has no
onstants, we add some
onstant, say, a, to formground terms.) The Herbrand base BL for L is the set of all ground atoms in the language.An interpretation I of a de�nite
lause program maps ea
h fun
tion symbol of arity n in (the languageof) the program to a total fun
tion of arity n on the universe, and ea
h predi
ate symbol of arity n in(the language of) the program to a set of n-tuples from the universe. Thus ea
h
onstant, whi
h is a 0-aryfun
tion symbol, is mapped to an element in the universe. Su
h a mapping
an be uniquely extended toa mapping from ground terms to elements of the universe. A model M of a de�nite
lause program is aninterpretation that is
losed under rule impli
ation, i.e., ifh(t): �b1(t1); b2(t2); : : : ; bn(tn):is a rule in the program, and � is a ground substitution su
h that(8i; 1 � i � n;M(ti[�℄) 2M(bi))thenM(t[�℄) 2M(h).A Herbrand interpretation of a de�nite
lause program is an interpretation of the program that satis�esthe following properties. Let L be the language of the program.1. The universe of the interpretation is the Herbrand universe UL.2. Constants in L are mapped to themselves in UL.2We assume that no literal is repeated in the body of a de�nite
lause.3This de�nition is more restri
ted than that of Lloyd [Llo87℄, whi
h
onsiders a goal to be a disjun
tion of negative literals.In this thesis, we only
onsider the
ase where all goals have a single literal, for ease of exposition.10

3. If f is an n-ary fun
tion symbol in L, then the mapping from (UL)n into UL de�ned by(t1; : : : ; tn)! f(t1; : : : ; tn)is assigned to f .When we use a Herbrand interpretation, we do not need to distinguish between a term and its mapping underthe interpretation.4 A Herbrand model is a Herbrand interpretation that is a model. The least Herbrandmodel semanti
s of a logi
 program is given by its least Herbrand model; for de�nite
lause programs, su
ha model always exists (see Lloyd [Llo87℄).Sin
e the Herbrand model semanti
s of a program is a model, it supports the de
larative reading of
lauses as \if body is true, then head is true".Example 2.1.1 Consider the following program, whose language has a
onstant a and a 1-ary fun
tionsymbol f .p(X) : � q(X):q(f(a)):The Herbrand universe of this program is fa; f(a); f(f(a)); f(f(f(a))); : : :g. The least Herbrand model ofthe program isfq(f(a)); p(f(a))gThe following is a Herband model that is not a least Herbrand model:fq(f(a)); q(a); p(f(a)); p(a)g2 An alternative way of de�ning the semanti
s of a program is by means of a `least �xpoint', de�ned asbelow. (See Lloyd [Llo87℄ for more details.)Let P be a de�nite
lause program. The mapping TP : 2BP ! 2BP is de�ned as follows. Let I be aHerbrand interpretation, and let P = fR1; : : : ; Rpg. We de�neTRi(I) = fA 2 BP : A A1; : : : ; An is a ground instan
e of Ri;and fA1; : : : ; Ang � Igand TP (I) = [pi=1TRi(I)For de�nite
lause programs, TP is monotoni
ally in
reasing. The least �xpoint semanti
s of P is de�ned asthe least �xpoint5 of the fun
tion TP (I). For de�nite
lause programs, the least �xpoint always exists, andthe least Herbrand model of P is equivalent to the least �xpoint of TP [vEK76℄.4In a Herbrand interpretation, fun
tion symbols
an be viewed as \re
ord
onstru
tors".5That is, the least set that is mapped to itself by the fun
tion.11

The least �xpoint of TP
an be
omputed as follows. De�ne T 0P (I) = �, and de�ne T i+1P (I) as TP (T iP (I)),and T!P (I) = [i<!(T iP (I))Then the least �xpoint of TP is equivalent to T!P (I) [Llo87℄. We do not ne
essarily have to
ompute thein�nite set of values T iP (I) for all i. If T j+1P (I) = T jP (I) for some j, then T!P (I) = T jP (I).In this thesis, unless otherwise spe
i�ed, we assume that the universe for a de�nite
lause program is itsHerbrand universe, and the semanti
s of the program is the least �xpoint semanti
s. We shall refer to thissemanti
s as the semanti
s of the de�nite
lause program.2.1.4 Databases and ProgramsA de�nite
lause program
onsists of a �nite set of de�nite
lauses. In the
ontext of databases, a largenumber of these
lauses are likely to be fa
ts. We follow the
onvention in dedu
tive database literature ofseparating the program P from the database D. The database
onsists of a set of fa
ts, while the program
ontains rules. The motivation is that the rewriting algorithms to be dis
ussed are applied only to theprogram, and not to the database. This is important in the database
ontext sin
e the set of fa
ts
an bevery large. However, the distin
tion is arti�
ial, and we may
hoose to
onsider (a subset of) fa
ts to berules if we wish. In most
ases, we refer only to the program; the database is used impli
itly.We assume that the predi
ates de�ned in the database (referred to variously as database predi
ates, basepredi
ates or Extensional DB (EDB) predi
ates) are distin
t from the predi
ates de�ned in the program(referred to as derived predi
ates), whi
h
an be ensured as follows: Rename all predi
ates in the databasewith new names, and for ea
h n-ary predi
ate pi renamed to ri, add a rulepi(X1; : : : ; Xn): �ri(X1; : : : ; Xn):to the program. A base literal is a literal whose predi
ate is base, and a derived literal is a literal whosepredi
ate is derived.We use the notation hP;Qi to denote a program P with a query Q; we
all hP;Qi a program-query pair.A relation is a �nite set of fa
ts. A relation is said to be ground if all fa
ts in it are ground; otherwisethe relation is said to be non-ground. We assume knowledge of the basi
 relational operators su
h as sele
t(�), proje
t (�) and join (./). See [Ull88℄ for de�nitions of these operators.By virtue of having its variables universally quanti�ed, a non-ground fa
t represents the set of its groundinstan
es in the Herbrand base. Given a fa
t f , let gnd(f) denote the set of ground fa
ts represented by f . Arelation R with non-ground fa
ts represents the relation
ontaining the union of the ground fa
ts representedby the fa
ts in R. Given a relation R, let gnd(R) denote the set of ground fa
ts represented by R. Two fa
tsf1 and f2 are equivalent if gnd(f1) = gnd(f2). Two fa
ts are equivalent i� they are variants of ea
h other(in other words, they are equal up to renaming). Whenever we say that two fa
ts are equal, unless otherwisespe
i�ed we mean that they are equivalent.A fa
t f1 is subsumed by a fa
t f2 if gnd(f1) � gnd(f2). Given a fa
t f and a relation R, we say thatf is subsumed by R if gnd(f) � gnd(R).Sin
e variables in a fa
t are universally quanti�ed, testing subsumption of a fa
t by another requiresrenaming of variables to avoid name
lashes. A fa
t f1 subsumes a fa
t f2 i� there is a variant f10 of f112

and a substitution � su
h that f10[�℄ = f2. If a fa
t f1 subsumes a fa
t f2, we say that f1 is more generalthan f2, or equivalently, f2 is more spe
i�
 than f1.Consider a program. Let R be a rule in the program, � a substitution, and I an interpretation for theprogram. Then R[�℄ is an instantiation of R. R[�℄ is said to be a su

essful instantiation in interpretation Iif for ea
h literal pi(ti) in the body of R, pi(ti)[�℄ is subsumed by I .A de�nite
lause program is said to be a Datalog program if it does not use any fun
tion symbols otherthan
onstants, and the database fa
ts do not use any fun
tion symbols other than
onstants. A rule is saidto be range-restri
ted if every variable that appears in the head also appears in a literal in the body. (For the
ase of rules with empty body, this is equivalent to there being no variables in the rule.) A program is said tobe range-restri
ted if all fa
ts in the database are ground, and every rule in the program is range-restri
ted.62.2 The Bottom-Up Approa
hThe bottom-up approa
h to answering queries
onsists of a two-part pro
ess. First, the program-query pairis rewritten in a form so that the bottom-up �xpoint evaluation of the program will be more eÆ
ient; next,the �xpoint of the rewritten program is
omputed by bottom-up iteration. Se
tion 2.2.1 des
ribes the initialrewriting, while Se
tion 2.2.3 investigates the
omputation of the �xpoint of the rewritten program. Boththese steps
an be re�ned further as dis
ussed in later
hapters.2.2.1 The Magi
 Templates Rewriting AlgorithmSuppose we are given a query ?q(
) on a program that de�nes predi
ate q. An evaluation of the �xpointof the program would generate all fa
ts implied by the program, in
luding many that are irrelevant to thequery. Magi
 rewriting [BMSU86, BR87b, Ram88℄ addresses this problem.We present below a simpli�ed version of the Magi
 Templates rewriting algorithm [Ram88℄.7 The idea is to
ompute an auxiliary predi
ate query that stores subgoals generated on derivated predi
ates in the program.A fa
t of the form query(p(t)) denotes that ?p(t) is a subgoal generated on p. In the fa
t query(p(t)), p isformally treated as a fun
tion symbol, rather than a predi
ate, sin
e the language is �rst order. We thushave a predi
ate and a fun
tion symbol of the same name | they are distinguished based on where theyo

ur in the rule.The rules in the program are then modi�ed by atta
hing a literal to the rule body that uses the querypredi
ate to a
t as a �lter that prevents the rule from generating irrelevant fa
ts. Further, the rewritinggenerates rules that de�ne how to generate a query fa
t for a body literal, given a query fa
t on the headliteral.De�nition 2.2.1 The Magi
 Templates AlgorithmLet P be a program, and ?q(
) a query on the program. We
onstru
t a new program Pmg . Initially, Pmg6The motivation for this de�nition is that the �xpoint evaluation of a range-restri
ted program generates only ground fa
ts.7As des
ribed in [BR87b, Ram88℄, the initial rewriting of a program and query is guided by a
hoi
e of sideways informationpassing strategies, or sips. For ea
h rule, the asso
iated sip determines the order in whi
h the body literals are evaluated. Theversion we present is tailored to the
ase that sips
orrespond to left-to-right evaluation with all arguments
onsidered \bound"(perhaps to a free variable), as in Prolog. 13

is empty.1. For ea
h rule in P , add the modi�ed version of the rule to Pmg. If rule r has head, say, p(�t), themodi�ed version is obtained by adding the literal query(p(�t)) to the body.2. For ea
h rule r in P with head, say, p(�t), and for ea
h o

urren
e of a derived literal qi(�ti) in its body,add a query rule to Pmg . The head is query(qi(�ti)). The body
ontains the literal query(p(�t)), and allliterals that pre
ede qi(�ti) in the rule.3. Create a seed fa
t query(q(
)) from the query on the program.2 We refer to the rules de�ning the query predi
ate as query rules. We sometimes refer to query rulesas magi
 rules, and the query predi
ate as the magi
 predi
ate, when we need to be
onsistent with theterminology used in [BMSU86, BR87b, Ram88℄.Example 2.2.1 Consider the following program. (In this program sg stands for \same generation".)R1 : sg(X;Y) : � flat(X;Y):R2 : sg(X;Y) : � up(X;U); sg(U; V); down(V; Y):?� sg(john; Z)The Magi
 Templates algorithm rewrites it as follows:sg(X;Y) : � query(sg(X;Y)); f lat(X;Y): [Mod. Rule R1℄sg(X;Y) : � query(sg(X;Y)); up(X;U);sg(U; V); down(V; Y): [Mod. Rule R2℄query(sg(U; V)) : � query(sg(X;Y)); up(X;U): [Query Rule℄query(sg(john; Z)): [Seed Query℄The �rst two rules above are the original rules, modi�ed by adding �lters. The third rule de�nes how togenerate queries on the body of the se
ond rule (in the original program), given queries on its head predi
ate.The last rule is a fa
t that
orresponds to the original query on the program, and it is
alled the seed queryfa
t. 2The following theorem ensures the soundness and
ompleteness of the transformed program Pmg withrespe
t to the query on the original program P .Theorem 2.2.1 [Ram88℄ P is equivalent to Pmg with respe
t to the set of answers to the query.De�nition 2.2.2 We de�ne the Magi
 Templates Evaluation Method as follows:1. Rewrite the program and query (hP;Qi) using the Magi
 Templates algorithm.2. Evaluate the �xpoint of the rewritten program.2 14

Although the evaluation method and the rewriting algorithm both have the same name, the distin
tionshould be
lear from the
ontext. The se
ond step above is presented in more detail in Se
tion 2.2.3.The rewriting has the important e�e
t of mimi
king Prolog in that (modulo optimizations su
h as tailre
ursion optimization and intelligent ba
ktra
king, and modulo some ineÆ
ien
ies when non-ground fa
tsare generated) only goals and fa
ts generated by Prolog are generated.Magi
 Templates is often presented along with an adornment rewriting that annotates predi
ates witha string
omposed of
hara
ters `f' and `b', with one
hara
ter for ea
h argument. This step, along with amodi�
ation of Magi
 Templates rewriting that proje
ts out of query predi
ates those arguments that havean f adornment, is used to ensure that the rewritten program generates only ground fa
ts if the originalprogram generated only ground fa
ts. The bene�t of generating only ground fa
ts is a
hieved at the possible
ost of some redundant
omputation, but is important sin
e it permits the use of database systems thathandle only ground fa
ts. For simpli
ity, we omit this step.2.2.2 Supplementary Magi
 Templates RewritingSome joins are repeated in the bodies of rules in the Magi
 Templates rewritten program. SupplementaryMagi
 Templates rewriting is a version of Magi
 Templates rewriting that essentially identi�es these
ommonsub-expressions and stores them (with some optimizations that allow us to delete some
olumns from theseintermediate, or supplementary, relations). We refer the reader to [BR87b℄ for details, but present below anexample that gives some intuition.Example 2.2.2 We
ontinue with Example 2.2.1. The program generated by Magi
 Templates rewriting isas follows.sg(X;Y) : � query(sg(X;Y)); f lat(X;Y):sg(X;Y) : � query(sg(X;Y)); up(X;U); sg(U; V); down(V; Y):query(sg(U; V)) : � query(sg(X;Y)); up(X;U):query(sg(john; Z)):Noti
e that the se
ond and third rule above have a
ommon pre�x; this pre�x is fa
tored out to get thefollowing rule set.sg(X;Y) : � query(sg(X;Y)); f lat(X;Y):sup1;1(X;Y; U) : � query(sg(X;Y)); up(X;U):query(sg(U; V)) : � sup1;1(X;Y; U):sg(X;Y) : � sup1;1(X;Y; U); sg(U; V); down(V; Y):query(sg(john; Z)):The predi
ate sup1;1 is referred to as a supplementary predi
ate. The two subs
ripts denote the numberof the rule it is generated from and the position of the next literal in the rule (with numbering startingfrom 0). Su
h predi
ates
an be thought of as intermediate predi
ates used for
ommon-subexpressionelimination. However, supplementary predi
ates a
tually have a deeper signi�
an
e. In the above program,sup1;1(X;Y; U) stores bindings of the rule variables X;Y; U generated when a top-down evaluation of a query?sg(X;Y) on the rulesg(X;Y): �up(X;U); sg(U; V); down(V; Y): 15

set up a subquery on up(X;Y) and got ba
k an answer up(X;Y). Fa
ts for supplementary predi
atesmaintain, in some sense, variable bindings in a \
ontext" of the evaluation of the rule. We generate queryfa
ts for derived literals in the rule by using the variable bindings in the supplementary fa
ts, just as wewould generate queries in a top-down evaluation
oming left-to-right in the body of the rule.In the above example we generated supplementary rules by fa
toring
ommon subexpressions out ofrules generated by Magi
 Templates rewriting. In des
ribing variants of Magi
 rewriting, we �nd it easier togenerate supplementary predi
ates in a more uniform manner. We store all variables in the rule as argumentsof ea
h supplementary predi
ate, and we introdu
e a supplementary predi
ate
orresponding to ea
h literalin the body of the rule. Thus the program is rewritten as follows.R1:1 : sup1;0(X;Y) : � query(sg(X;Y)):R1:2 : sg(X;Y) : � sup1;0(X;Y); f lat(X;Y):R2:1 : sup2;0(X;Y; U; V) : � query(sg(X;Y)):R2:2 : sup2;1(X;Y; U; V) : � sup2;0(X;Y; U; V); up(X;U):Q2:2 : query(sg(U; V)) : � sup2;1(X;Y; U; V):R2:3 : sup2;2(X;Y; U; V) : � sup2;1(X;Y; U; V); sg(U; V):R2:4 : sg(X;Y) : � sup2;2(X;Y; U; V); down(V; Y):Query : query(sg(john; Z)):The �rst two rule are derived from R1 of the original program, and the next �ve rules are derived fromR2. The last rule is the query fa
t.Generating the ni
er form of the rewritten program presented earlier from this form
an be a
hievedby some simple transformations su
h as proje
ting out \unne
essary" variables from ea
h supplementarypredi
ate, and \unfolding"8 literals that use supplementary predi
ates. We do not go into details here. 22.2.3 Iterative Fixpoint EvaluationA derivation in a �xpoint evaluation generates a fa
t, using a rule R and a fa
t for ea
h body literal of therule; there must be a substitution � for the rule, su
h that1. the fa
t generated by the derivation is the head of R[�℄, and2. for ea
h body literal pi(ti) in R, the fa
t used for the literal subsumes pi(ti)[�℄, and3. � is the most general su
h substitution.A naive evaluation of the �xpoint of a program performs iterations, with ea
h iteration generating allfa
ts that
an be derived using the program rules, base fa
ts, and the fa
ts derived in earlier iterations.Iteration pro
eeds until a �xpoint is rea
hed. In su
h a naive evaluation of the �xpoint, ea
h iterationrepeats all derivations made in earlier iterations.We des
ribe an in
remental version of �xpoint evaluation
alled Semi-Naive �xpoint evaluation. Semi-Naive evaluation avoids the repetition of derivations by performing in ea
h iteration an in
remental
ompu-tation using fa
ts generated in the previous iteration.8For the
ase where there is only one rule R de�ning a predi
ate p, unfolding a literal p(t) in a rule R0
onsists of repla
ingp(t) by the body of R[�℄ where � is the mgu of p(t) and the head of R (w.l.o.g, we assume that the variables in R and R0 aredistin
t). For the general
ase, refer to [TS84, GS91℄. 16

Semi-Naive evaluation (SN evaluation) of de�nite
lause programs was developed by several resear
hers[Ban85, Bay85, BR87a℄. We look at a simpli�ed form of SN evaluation. Without loss of generality, weassume that rules have at most two body literals; rules not in this form
an be easily rewritten to be in thisform. For ea
h derived predi
ate qi in the program we introdu
e four relations qi, qoldi ; Æqoldi ; and Æqnewi .9We then rewrite ea
h rule as follows.Semi-Naive Rewriting(R):1. If the rule is of the form: R : p(: : :): �q1(: : :); q2(: : :)where both q1 and q2 are derived predi
ates, we rewrite R as follows:R0 : Æpnew(: : :) : � Æqold1 (: : :); qold2 (: : :):R00 : Æpnew(: : :) : � Æqold2 (: : :); q1(: : :):2. If the rule is of the form: R : p(: : :): �q1(: : :); b2(: : :)where q1 is a derived predi
ate and b2 is a base predi
ate, we rewrite it as follows:R0 : Æpnew(: : :): �Æqold1 (: : :); b2(: : :):3. If the rule is of the form: R : p(: : :): �q1(: : :)where q1 is a derived predi
ate, we rewrite it as:R0 : Æpnew(: : :): �Æqold1 (: : :):4. If the rule is of the form: R : p(: : :): � : : :where the body has no derived predi
ates, we rewrite it as follows:R0 : Æpnew(: : :): � : : : :The above rewriting is
alled Semi-Naive rewriting [BR87a, Ban85℄. Given a program P , let the programgenerated by Semi-Naive rewriting be denoted PSN .Semi-Naive evaluation is des
ribed in Algorithm SN Iterate. Pro
edure Apply(Ri) performs the opera-tions of making all derivations that
an be performed using rule Ri and the fa
ts in the
urrent extents ofthe relations,10 and inserting all derived fa
ts into the relation for the head of Ri. We assume that Applyperforms a left-to-right nested-loops join with indexing11 on the rule. (This is important for some of ourlater theoreti
al results
on
erning time
omplexity, but not for
orre
tness.)In Semi-Naive iteration, the set of fa
ts produ
ed in iteration n is
ompared with the set of known fa
tsto identify the new fa
ts produ
ed. Dupli
ates generated within the same iteration are eliminated impli
itly,by the de�nition of sets.9The distin
tion between the predi
ate and the relation should be
lear from the
ontext.10In
ase non-ground fa
ts are derived, it suÆ
es to dedu
e a set of fa
ts that subsumes the set of all fa
ts that follow fromrule Ri and
urrent extents of the relations. This
an be done by using most-general uni�ers when unifying fa
ts with the rulebody.11See, e.g., Ullman [Ull88℄ for a de�nition of nested-loops join with indexing.17

Algorithm SN Iterate(PSN)1. Forea
h rule Ri in PSN that has no derived literal in its bodyApply(Ri).2. Repeat2.1 Forea
h rule Ri in PSN that has a derived literal in its bodyApply(Ri).2.2 Forea
h derived predi
ate qi in PSNa. qoldi := qoldi [Æqoldi .b. Æqoldi := Æqnewi � qoldi .
. qi := qoldi [Æqoldi .d. Æqnewi := �.Until all relations Æqoldi are empty.We
all the set of updates in Step 2.2 of the above algorithm as Semi-Naive updates. For ea
h predi
ateqi, Æqoldi denotes the set of qi fa
ts that were
omputed in the previous iteration but not in earlier iterations,and qoldi denotes the set of qi fa
ts derived before the previous iteration. The relation qi is the union of qoldiand Æqoldi . We
all the fa
ts in relations of the form qoldi as old fa
ts, and fa
ts in relations of the form Æqoldias new fa
ts.The di�eren
e operation in Step 2.2.b ensures that Æqoldi and qoldi are disjoint when Step 2.2.a is exe
uted.Hen
e the union operation in Step 2.2.a does not need to
he
k for dupli
ates; it
an simply move fa
ts fromÆqoldi to qoldi . We do not materialize qi (Step 2.2.
), but treat it as an un-materialized union of the relationsqoldi and Æqoldi . To
he
k if a fa
t is in qi, we
he
k if it is either in qoldi or in Æqoldi .The pro
edure Apply does not repeat derivations within a single exe
ution of the pro
edure. Hen
e noderivations are repeated within an iteration of SN Iterate. Due to Semi-Naive rewriting and the updatesin Step 2.2 of SN Iterate, in ea
h iteration only derivations that use at least one new fa
t are
arried out.Any derivation performed in an earlier iteration would have used only old fa
ts, and hen
e no derivation isrepeated in the evaluation. Further, any derivation that uses only old fa
ts would have been made in anearlier iteration. Semi-Naive evaluation terminates when no new fa
ts are generated. Thus the algorithmterminates if and only if the set of fa
ts generated is �nite.We
all literals of the form Æpold or Æpnew as Æ literals. With the Semi-Naive rewriting presented above,if a rewritten rule has a Æ literal in the body, the �rst literal in the rewritten rule (and hen
e in the joinorder that we assume) is a Æ literal.Performing the join with non-ground fa
ts involves details, su
h as renaming of variables, dis
ussed inSe
tion 4.2. We use subsumption
he
king instead of dupli
ate
he
king, if non-ground fa
ts are generated,Thus when we add a fa
t to a relation, we need to
he
k if the fa
t is subsumed by a fa
t in the relation,or if it subsumes fa
ts in the relation, and delete fa
ts that are subsumed. Similarly, the operators \�" and\[" used in SN Iterate perform subsumption
he
ks, rather than dupli
ate
he
ks, if non-ground fa
ts aregenerated. 18

Not-So-Naive (NSN) evaluation [MR89℄ is the same as Semi-Naive evaluation ex
ept for the followingdi�eren
es.1. Æqnewi is a multi-set of fa
ts rather than a set of fa
ts2. The step Æqoldi := Æqnewi � qoldi is repla
ed by the step Æqoldi := Æqnewi .3. The [operator does a multi-set union, i.e., it does not
he
k for dupli
ates.In the
ase of NSN evaluation, Æqoldi is the multi-set of qi fa
ts that were
omputed in the previous iteration,and qoldi is the multi-set of qi fa
ts derived before the previous iteration.We also use the terms Semi-Naive evaluation without dupli
ate elimination or Semi-Naive evaluationwithout subsumption-
he
king12 to refer to NSN evaluation.We have the following standard result on
ompleteness of Semi-Naive and Not-So-Naive evaluation (seee.g. [MR89, RSS91℄).Theorem 2.2.2 (Completeness) Suppose a program P is evaluated using Semi-Naive or Not-So-Naiveevaluation. If a fa
t is in the least �xpoint of P , then there is a �nite i su
h that the fa
t is subsumed byfa
ts derived before iteration i. 2A derivation sequen
e is a total ordering of derivations in a bottom-up �xpoint evaluation, su
h that thefa
ts used in any derivation are either base fa
ts, or are generated by earlier derivations. We often use su
ha total ordering of the derivations in a bottom-up �xpoint evaluation to prove properties of the evaluation.2.2.4 Related Ba
kground MaterialThe Alexander method [RLK86℄ was proposed independently of the Magi
 Sets approa
h. It is essentiallythe supplementary variant of the Magi
 Templates method, des
ribed in [BR87b℄. Seki has generalized themethod to deal with non-ground fa
ts and fun
tion symbols, and has
alled the generalized version AlexanderTemplates [Sek89℄.The Magi
 Templates idea was developed in a series of papers ([BMSU86, BR87b, Ram88℄). Severalvariants of the Magi
 Templates idea have also been proposed. For example, it is possible to
ompute su-persets of the magi
 sets (in our notation, the set of fa
ts for query is the magi
 set) without
ompromisingsoundness. Although this variant results in some irrelevant
omputation, it may be possible to
omputesupersets more eÆ
iently than the magi
 sets themselves [SS88℄. The te
hnique
an be extended to dealwith SQL programs, in
luding those
ontaining features like group-by, aggregation and arithmeti

ondi-tions [MPR90, MFPR90b, MFPR90a℄. A performan
e
omparison presented in Mumi
k et al. [MFPR90a℄shows that Magi
 Sets performs at least
omparably to standard query evaluation te
hniques, and is oftensigni�
antly better.The Magi
 and Alexander methods are based on program transformations. Other methods use a
ombi-nation of top-down and bottom-up
ontrol to propagate bindings. Pereira and Warren presented a memoingtop-down evaluation pro
edure based on Earley dedu
tion [PW83℄. Vieille has proposed a method
alled12It is possible to
on
eive of Semi-Naive evaluation with dupli
ate elimination, but without full subsumption-
he
king.However, we use the term Semi-Naive evaluation without subsumption-
he
king ex
lusively to refer to Semi-Naive evaluationwithout dupli
ate elimination. 19

QSQ [Vie86, Vie87, Vie88℄ that
an be viewed as follows. Goals are generated with a top-down invo
ationof rules, as in Prolog. However, there are two important di�eren
es: 1) whenever possible, goals and fa
tsare propagated set-at-a-time, and 2) all generated goals and fa
ts are memoed. If a subgoal is found to havebeen generated earlier, it is not solved again, but answers derived for the �rst generation of the subgoal areused for the new subgoal. Dietri
h has proposed a method
alled Extension Tables [Die87℄. This method isvery similar to QSQ, but performs
omputation tuple-at-a-time.The reader is referred to [NR91, RSS92
℄ for a more detailed dis
ussion of related work.2.3 Magi
 Templates and Tail-Re
ursionConsider a rule of the form: R : p(t): �q1(t1); q2(t2); : : : ; qn(tn). Suppose we had a subgoal p(a), and inanswering this subgoal in a top-down fashion, we had set up and solved subgoals q1(a1); : : : ; qn�1(an�1), andhave now set up a subgoal qn(an).The subgoal ?qn(an) will return zero or more su

essful answers. When ea
h answer is returned, no more
omputation is done at rule R, but
ontrol merely passes ba
k to the point where the subgoal ?p(a) wasinvoked. Prolog
an therefore
hange the return address so that the
all to ?qn(an) returns dire
tly to thequery on R, bypassing R. This optimization is
alled tail re
ursion optimization (see for instan
e [MW88℄).In parti
ular, when qn is re
ursive with (possible even the same as) p, Prolog evaluation may returndire
tly past a large number of invo
ations of R. By bypassing R, Prolog� in e�e
t bypasses a step where abottom-up evaluation using Magi
 Templates rewriting would have
reated a fa
t for the head predi
ate pof rule R.The following example illustrates how Prolog evaluation of a query, using tail-re
ursion optimization,
anbe mu
h faster than bottom-up query evaluation using Magi
 Templates rewriting.Example 2.3.1 This example is from [Ros91℄. Let P be the programR1 : p(X;Z) : � e(X;Y); p(Y; Z):R2 : p(n;X) : � t(X):e(1; 2):...e(n� 1; n):t(1):...t(m):Query: ?-p(1; X):Given the subgoal ?p(1; X) Prolog sets up subgoal ?e(1; X) and gets an answer that binds X to 2. Using thisbinding Prolog sets up a subgoal ?p(2; X), whi
h in turn sets up subgoal ?p(3; X) and so on till the subgoal?p(n;X) is set up. However, Prolog
an dedu
e that there are no more answers to e(1; X), and when ananswer for ?p(2; X) is found, it
an dire
tly return (with bindings for variable X) to the subgoal ?p(1; X),bypassing the subgoal ?p(2; X). By applying this optimization repeatedly, when Prolog �nds an answer for20

subgoal ?p(n;X), it returns dire
tly (in unit time, with bindings for X) to the subgoal ?p(1; X), bypassingall intermediate subgoals. Applying this optimization again to the subgoal ?t(X) generated from ?p(n;X),when an answer is generated for ?t(X), evaluation
an return dire
tly to the subgoal ?p(1; X). Sin
e thereare m answers for ?t(X), Prolog ba
ktra
ks to ?t(X) a total of m times, and evaluates the program in timeO(n+m).Prolog \generates" only fa
ts p(1; j); 1 � j � m (here \generating" a fa
t is interpreted as the a
t ofProlog's
ontrol returning, with appropriate variable bindings, to the point where a subgoal was set up).Bottom-up evaluation (using Magi
 Templates rewriting), on the other hand, works as follows. For ea
hProlog subgoal ?p(i;X), a fa
t query(p(i;X)) is generated. Fa
ts p(n; 1); : : : ; p(n;m) are generated using themodi�ed rule R2. These fa
ts are used with the modi�ed rule R1 to generate fa
ts p(n�1; 1); : : : ; p(n�1;m),whi
h in turn are used to generate more fa
ts using the modi�ed rule R2. Eventually, all fa
ts p(i; j); 1 �i � n; 1 � j � m are generated. Thus at least m � n fa
ts are generated, and evaluation takes o(m � n) time.2 If bottom-up evaluation is to perform as well as Prolog� on this program, it too must bypass the stepof
omputing a fa
t for the head of rule R1.13 This is pre
isely the optimization a
hieved by the programrewriting te
hnique of Ross [Ros91℄, whi
h we des
ribe in Se
tion 2.3.2. We note that QoSaQ [Vie88℄,whi
h is a set-oriented top-down evaluation te
hnique that implements memoing, also in
orporates a formof tail-re
ursion optimization.2.3.1 Hilog SyntaxBefore we des
ribe Ross' rewriting te
hnique, we brie
y des
ribe an extension of de�nite
lause syntax thatis used in the rewriting. The extended syntax is part of Hilog [CKW89℄. We des
ribe the extended syntaxand its semanti
s informally. The extension to de�nite
lause syntax allows rules su
h as the following:R1 : A: �query(pj(X;Y); A); pk(X;Y):The head of a de�nite
lause rule must be an atom, whereas the the head of rule R1 is a variable | thusthe syntax used is higher order.We require that in rules that use this extended syntax, the variable in the head of the rule must getbound to a term of the form pi(t) when the rule is su

essfully instantiated in bottom-up evaluation. Theterm pi(t) is interpreted as a literal when
reating the head fa
t. For example, suppose we have fa
tsquery(pj(a;X); pm(b;X)); pk(a;
) and pk(a; d). Then R1 implies that the fa
ts pm(b;
) and pm(b; d) aretrue. The semanti
s of rules using the extended syntax is �rst-order. The use of this higher-order syntax isnot essential for our dis
ussion, but it makes the presentation
on
ise.We
an use Semi-Naive evaluation for programs using the above synta
ti
 features, with very minor
hanges, whi
h we now brie
y dis
uss. The only
hange to Semi-Naive rewriting is to not transform the13We assume that b and t are base predi
ates. The time
omplexity measure used in this thesis ignores the size of theprogram, based on the assumption that the number of rules is small. We use m and n in the time
omplexity measures forthis program, and
annot assume the number of rules to be small if fa
ts for b and t are treated as rules. We do not applytail-re
ursion optimization to base literals. However, applying tail-re
ursion optimization to base literals provides no bene�ts,sin
e the
omputation to solve a query on a base literal in the bottom-up
ontext
onsists merely of looking up a table, anddoes not invoke a new rule. 21

heads of rules that use the above extended syntax. When the body of su
h an extended rule is satis�ed,the head variable is instantiated to a term. This term is treated as a fa
t; suppose this fa
t is p(a). Thesemi-naive version Æpnew(a) of this fa
t is then inferred.2.3.2 MTTR RewritingRoss ([Ros91℄) proposed a modi�
ation to Magi
 Templates ([Ram88℄). We des
ribe Ross' te
hnique, whi
hwe
all Magi
 Templates with Tail Re
ursion (MTTR) rewriting, in this se
tion. The set of predi
ates to betreated as tail-re
ursive is a parameter to Ross' rewriting as des
ribed in [Ros91℄ | thus the tail-re
ursionoptimization
an be applied to a sele
ted set of predi
ates. Unless otherwise spe
i�ed, we assume that theoptimization is used for all derived predi
ates, but not for base predi
ates. MTTR rewriting may performworse than Magi
 Templates rewriting on some programs (see [Ros91℄ for an example). However, it is usefulfor the purposes of
omparison with Prolog�, sin
e MTTR rewriting
an perform tail-re
ursion optimizationwhenever Prolog� does so.Intuitively, the di�eren
e between MTTR rewriting and Supplementary Magi
 rewriting (Se
tion 2.2.2) isas follows. Magi
 rewriting generates fa
ts of the form query(p(s)), that indi
ate that there is a query ?p(s).The rules in the program are modi�ed to generate answers to su
h queries. With tail re
ursion optimizationin Prolog, answers are not \generated" for a tail-re
ursive query; instead, answers are \generated" for somequery that is an an
estor of the query. This e�e
t is a
hieved in MTTR rewriting by generating fa
ts of theform query(p(s); q(t)). Su
h a fa
t says that there is a query ?p(s); after instantiating a rule to solve thisquery, instead of generating answers for the query, answers should be dire
tly generated for ?q(t), whi
h isan an
estor of ?p(s). A solution to ?p(s) provides bindings for variables in t; applying these bindings to q(t)gives us answers for q(t).To handle the
ase of non-tail-re
ursive literals, any query fa
t generated due to su
h literals is of theform query(p(s); p(s)) (i.e., the �rst and se
ond arguments of query are the same). Su
h a fa
t says that?p(s) is a query, and answers must be generated for it.We now present the rewriting; we give some intuition after presenting the rewriting.MTTR Rewriting: Given program P and a query ?q(t) on P , we generate a program using the followingrewrite rules. We
all the resultant rewritten program P T .0. Generate the rule (a
tually a fa
t)query(q(t); q(t)):Call this a Type 0 rule.Consider ea
h rule Rj in the program P . Let rule Rj be of the formRj : h(t): �p1(t1); p2(t2); : : : ; pn(tn):Let V denote a tuple of all variables that appear in Rj .1. Generate the rulesupj;0(V ;A): �query(h(t); A): 22

Call su
h rules Type 1 rules.2. If the body of Rj is non-empty, generate the following rules and
all them Type 2 rules:supj;1(V ;A) : � supj;0(V ;A); p1(t1):...supj;n�1(V ;A) : � supj;n�2(V ;A); pn�1(tn�1):3. If the body of Rj is empty, generate the ruleA: �supj;0(V ;A):If the body of the rule is not-empty, and the last literal is base, or is not treated as tail-re
ursive, generatethe ruleA: �supj;n�1(V ;A); pn(tn):Call su
h rules Type 3 rules.4. If the body of Rj is non-empty, for ea
h derived literal pi(ti), i 6= n in the body of Rj generate a rulequery(pi(ti); pi(ti)): �supj;i�1(V ;A):If the body of the rule is non-empty, and pn(tn) is a derived literal, but is not treated as tail-re
ursive,generate the rule:query(pn(tn); pn(tn)): �supj;n�1(V ;A):Call su
h rules Type 4 rules.5. If the body of Rj is non-empty and pn(tn) is a derived literal and is treated as tail-re
ursive, generate thefollowing rule:query(pn(tn); A): �supj;n�1(V ;A):Call su
h rules Type 5 rules.We say that P T generates a subgoal ?p(t) if it derives a fa
t query(p(t); : : :). Type 0 and Type 4 rulesgenerate subgoals that must be expli
itly solved; however, Type 5 rules provide tail re
ursion optimization|in e�e
t they say \solve the last subgoal in rule Rj , but instead of generating answers for it, use the bindingsto dire
tly generate answers for the goal that invoked the rule". Type 1, 2 and 3 rules
olle
tively performthe same fun
tion as rules in the original program, ex
ept that they are restri
ted to generate fa
ts only ifthere is a
orresponding subgoal; thus they avoid generating many irrelevant fa
ts.Example 2.3.2 [Ros91℄ The rewritten version of the program from Example 2.3.1 is as follows. We treat eand t as base predi
ates in this rewriting.R1:1 : sup1;0(X;Y; Z;A) : � query(p(X;Z); A):R1:2 : sup1;1(X;Y; Z;A) : � sup1;0(X;Z;A); e(X;Y):R1:3 : query(p(Y; Z); A) : � sup1;1(X;Y; Z;A):R2:1 : sup2;0(X;A) : � query(p(n;X); A):R2:2 : A : � sup2;0(X;A); t(X):23

e(1; 2):� � �e(n� 1; n):t(1):� � �t(m):query(p(1; X); p(1; X)):Rules R1:1 is a Type 1 rule generated from rule R1 of the original program, and R1:2 is a Type 2 rulegenerated from R1. Rule R1:3 is a Type 5 rule generated from R1. Rule R2:1 is a Type 1 rule generatedfrom rule R2 of the original program, and rule R2:2 is a Type 3 rule generated from R2.The query fa
ts derived by the Semi-Naive evaluation of this program are of the form query(p(i; Z); p(1; Z)); 1 � i � n. Rule R2:2 derives fa
ts p(1; j); 1 � j � m. Also, supplementary fa
ts sup1;0(i; Y; Z; p(1; Z)),1 � i � n, sup1;1(i; i + 1; Z; p(1; Z)), 1 � i < n, and sup2;0(Z; p(1; Z)) are derived. Finally answer fa
tsp(1; i); 1 � i � m are derived. Overall, Semi-Naive evaluation of the program derives O(n+m) fa
ts, whi
his the same as the number of inferen
es made by Prolog evaluation. On the other hand, evaluation of theMagi
 Templates rewriting of the program makes O(n �m) inferen
es, as des
ribed in Example 2.3.1. 2Semi-Naive evaluation of P T may in some
ases generate many more fa
ts that Semi-Naive evaluation ofthe Magi
 Templates rewritten form of P [Ros91℄. However, it has the advantage (for our purposes) that itis never more than a
onstant fa
tor worse than (a model for) Prolog evaluation, in terms of the number ofinferen
es made, provided that P is range-restri
ted (see Se
tion 5.10). There are many program/query pairsfor whi
h the MTTR rewritten program makes far fewer inferen
es than Prolog; as an extreme example,there are program/query pairs for whi
h Prolog does not terminate, but Semi-Naive evaluation of the MTTRrewritten program does terminate. In Se
tion 3.4 we present a version of the rewriting that is never morethan a
onstant fa
tor worse than (our model of) Prolog evaluation in terms of the number of inferen
esmade, for all programs.The Hilog notation is not
riti
al for MTTR rewriting | we
an generate an equivalent rewritten programin de�nite
lause syntax. The basi
 idea is that for any ruleR : A: �p1(t1); : : : ; pn(tn):in the extended syntax, the variable A in the head
an only get bound to terms built from one of a �nitenumber of fun
tion symbols (
orresponding to the predi
ates in the program). Hen
e, for ea
h n-ary predi
atep in the original program, we
reate an instantiated version R[A=p(Xn)℄ of R, where Xn is an n-tuple ofdistin
t variables that do not appear in R. We then repla
e R by the set of its instantiated versions. Byperforming this transformation for ea
h rule of an MTTR rewritten program, we derive an equivalent de�nite
lause program. Clearly, the Hilog notation is more
on
ise.
24

Chapter 3Magi
 Rewriting forNon-Range-Restri
ted ProgramsIn this
hapter we des
ribe extensions of Magi
 rewriting te
hniques for programs that generate non-groundfa
ts. We begin the
hapter by showing some pitfalls that bottom-up evaluation using Magi
 Templates (withor without Tail Re
ursion)
an run into when non-ground fa
ts are generated. The basi
 problem was notedby Codish, Dams and Yardeni [CDY90℄, but is not widely re
ognized. In Example 3.1.2 we extend theirobservation to show that bottom-up evaluation
an make many more inferen
es than Prolog evaluation. Weformalize the problem through the de�nition of mgu-subgoals and mgu-answers; Magi
 Templates rewriting
an generate answers (and queries) that are not mgu-answers (resp. mgu-subgoals).We re�ne Magi
 Templates rewriting (in Se
tion 3.3) to avoid the problems noted by Codish et al.;we
all this re�nement MGU Magi
 rewriting. Bottom-up query evaluation using MGU Magi
 rewritinggenerates only mgu-subgoals and mgu-answers. MGU Magi
 rewriting generates programs that
ontain\meta-predi
ates"; in Se
tion 3.2 we dis
uss the operational semanti
s of meta-predi
ates and of programsthat use meta-predi
ates. We use the ideas behind the re�nement of Magi
 Templates rewriting to also re�neMTTR rewriting; we
all this re�nement MGU MTTR rewriting (Se
tion 3.4).MGU MTTR rewriting is important sin
e it enables us to a

ount for tail-re
ursion optimization whilealso dealing with the problems noted by Codish et al. We show in Chapter 4 (Se
tion 4.3) that bottom-upevaluation using MGU MTTR rewriting performs no more \a
tions" than a small
onstant times the numberof \a
tions" performed by Prolog� evaluation (a model of Prolog evaluation). (In many
ases bottom-upevaluation performs far fewer a
tions than the number of a
tions performed by Prolog� evaluation.)3.1 Problems With Subsumed AnswersSubsumption-
he
king bottom-up evaluation
an make some derivations using subsumed fa
ts that Prologavoids even though it does not perform any subsumption
he
king. This observation was made by Codish,Dams and Yardeni [CDY90℄, using the following example.25

Example 3.1.1 [CDY90℄R1 : q : � p(a); p(X); r(X):R2 : p(X):Query: ?-q:On this program, the only goal generated for the predi
ate r by Prolog evaluation is ?r(X). (To keep theexample simple, we do not have any rules de�ning r | this means that subgoals on r will fail, but this isirrelevant to the point we seek to make.) The Magi
 Templates rewriting of this program is as follows.R10 : q : � query(q); p(a); p(X); r(X):M1:1 : query(p(a)) : � query(q):M1:2 : query(p(X)) : � query(q); p(a):M1:3 : query(r(X)) : � query(q); p(a); p(X):R20 : p(X) : � query(p(X)):Q : query(q):Semi-Naive evaluation of the rewritten program generates the fa
t query(p(a)) �rst, followed by p(a).The fa
t p(a) is used for the literals p(a) and p(X) in rule M1:3, and a fa
t query(r(a)) is generated. Notethat Prolog evaluation does not generate the subgoal ?r(a). The query generated from the literal p(X) in thisrule is ?p(X), whi
h has a most general answer p(X); thus a less general answer is being used for a query thathas a more general answer. The answer p(X) is generated later, and p(a) is found to be subsumed (but p(a)has already been used to derive query(r(a))). Rule M1:3 uses p(X) to generate a query fa
t query(r(X)).2 The above example illustrates the following problem. If a fa
t p(X) is an answer to a subgoal ?p(X), thenso is every fa
t of the form p(a), for every a in the universe of dis
ourse. Su
h fa
ts may be generated in anevaluation, in response to more spe
i�
 subgoals, and may be used unne
essarily for more general subgoals.It is important to avoid using answers
omputed for less general subgoals as answers for more generalsubgoals sin
e there are programs where doing so
an result in a large loss in eÆ
ien
y.1 The followingexample illustrates an asymptoti
 slow-down.Example 3.1.2 Consider the following program and query.R1 : q(X) : � b(X); p(X):R2 : q(X) : � q2(1); q2(2); p(X); r(X):R3 : p(X):R4 : r(X) : � r2(X;n):R5 : r2(X;Y) : � Y > 0; r2(X;Y � 1):R6 : r2(X; 0):q2(1):q2(2):1Another motivation is that in the
ontext of abstra
t interpretation (see e.g. [CDY90℄), using answers
omputed for lessgeneral subgoals to solve more general subgoals
an lead to answers that are overly
onservative. However, using answers insu
h a fashion does not a�e
t
orre
tness. 26

Query0 : query(q(X)):MR1 : query(p(X)) : � query(q(X)); b(X):R10 : q(X) : � query(q(X)); b(X); p(X):MR2 : query(q2(1)) : � query(q(X)):MR20 : query(q2(2)) : � query(q(X)); q2(1):MR200 : query(p(X)) : � query(q(X)); q2(1); q2(2):MR2000 : query(r(X)) : � query(q(X)); q2(1); q2(2); p(X):R20 : q(X) : � query(q(X)); q2(1); q2(2); p(X); r(X):R30 : p(X) : � query(p(X)):MR40 : query(r2(X;n)) : � query(r(X)):R40 : r(X) : � query(r(X)); r2(X;n):MR50 : query(r2(X;Y � 1)) : � query(r2(X;Y)); Y > 0:R50 : r2(X;Y) : � query(r2(X;Y)); Y > 0; r2(X;Y � 1):R60 : r2(X; 0) : � query(r2(X; 0)):q2(1) : � query(q2(1)):q2(2) : � query(q2(2)):b(1):...b(m):Figure 1: Magi
 Templates Rewritten Form of Program from Example 3.1.2b(0):b(1):...b(m):Query: ?-q(X):If we used Prolog to run this query on this program, rule R1 would be used to set up a subquery ?b(X),whi
h returns m answers (one at a time). For ea
h of these answers, a subquery ?p(i) is set up, whi
hsu

eeds right away, generating an answer q(i). After trying all alternatives for rule R1, Prolog then triesR2, whi
h generates goal ?q2(1) whi
h su

eeds and ?q2(2) whi
h also su

eeds. It then generates subgoal?p(X), whi
h gets an answer p(X). A subgoal r(X) is set up, whi
h is solved in O(n) time by rules R4; R5and R6. Rule R2 is deterministi
, and hen
e there are no more answers, and Prolog solves this query inO(m+ n) time.Consider now what happens if this query is run using Magi
 Templates rewriting, and Semi-Naive evalu-ation. The program obtained by Magi
 Templates rewriting of the above program is shown in Figure 1. Wetreat b as a base predi
ate sin
e it has a large number of fa
ts.The set of fa
ts
omputed in ea
h iteration of a subsumption-
he
king Semi-Naive evaluation of the aboveprogram is shown in Table 1. (To keep the table
ompa
t, we use Q instead of query.)It is
lear from Table 1 that Semi-Naive evaluation of the Magi
 Templates rewritten program derivesO(m � n) fa
ts, and would take at least time O(m � n), even though it performs subsumption
he
king. 227

Iteration Fa
ts Computed0 Q(q(X))1 Q(q2(1));Q(p(0));Q(p(1)); : : : ;Q(p(m))2 q2(1); p(0); p(1); : : : ; p(m)3 Q(q2(2)); q(0); q(1); : : : ; q(m)4 q2(2)5 Q(p(X));Q(r(0));Q(r(1)); : : : ;Q(r(m))6 p(X);Q(r2(0; n));Q(r2(1; n)); : : : ;Q(r2(m;n))7 Q(r2(X;n));Q(r2(0; n� 1));Q(r2(1; n� 1)); : : : ;Q(r2(m;n� 1))...n+ 6 Q(r2(X; 1));Q(r2(0; 0));Q(r2(1; 0)); : : : ;Q(r2(m; 0))n+ 7 Q(r2(X; 0)); r2(0; 0); r2(1; 0); : : : ; r2(m; 0)n+ 8 r2(X; 0); r2(0; 1); r2(1; 1); : : : ; r2(m; 1)...2n+ 7 r2(X;n� 1); r2(0; n); r2(1; n); : : : ; r2(m;n)2n+ 8 r2(X;n); r(0); r(1); : : : ; r(m)2n+ 9 r(X); q(0); q(1); : : : ; q(m)2n+ 10 q(X)Table 1: Semi-Naive Evaluation of Program from Figure 1Although we used Magi
 Templates rewriting in the above example, the problems we des
ribed wouldalso o

ur with Supplementary Magi
 Templates rewriting. It is also not hard to modify the above exampleto show that the problems illustrated in the example also o

ur with Magi
 Templates with Tail Re
ursionrewriting.3.1.1 Mgu-Subgoals and Mgu-AnswersWe now de�ne mgu-subgoals and mgu-answers. The basi
 idea behind these de�nitions is to ensure that if asubgoal is generated from a literal in a rule, only answers to that subgoal or more general subgoals are used forthat literal; answers to less general subgoals are not permitted to be used. The order of evaluation of literalsin a top-down evaluation of a rule (a.k.a. sideways information passing strategies, or sips, in the
ontextof Magi
 rewriting [BR87b, Ram88℄) a�e
ts the subgoals that are generated from the rule. We assume aleft-to-right order of evaluation (left-to-right sips) in the following de�nitions, although the de�nitions
anbe extended to the general
ase.Re
all that given two terms t1 and t2, MGU(t1; t2) denotes the set of most general uni�ers of t1 and t2,mgu(t1; t2) denotes a an arbitrary element of this set.De�nition 3.1.1 (mgu-subgoals and mgu-answers)Let P be a program with a given query ?query(u).The given query ?query(u) is de�ned to be an mgu-subgoal.Let R be any rule in the program, and ?q(s) an mgu-subgoal.1. Suppose rule R is of the form q(t) (i.e., its body is empty), and � 2MGU(s; t0), where t0 is a renamingof t that shares no variables with s. Then q(s)[�℄ is an mgu-answer to the subgoal ?q(s).28

2. Suppose R is of the form:R : q(t): �p1(t1); : : : ; pn(tn):su
h that n � 1 and for some k; 1 � k � n, and ea
h i, 1 � i � k there are subgoals ?pi(si), andanswers p(ai) that satisfy all the following
onditions: (W.l.o.g. assume that the ai's share no variableswith ea
h other or with rule R.)(a) pi(ai) is an mgu-answer to ?pi(si).(b) Let �i = mgu(hq(t); p1(t1); : : : ; pi�1(ti�1)i; hq(s); p1(a1); : : : ; pi�1(ai�1)i)Then pi(si) = pi(ti)[�i℄.Then ?pk(sk) is an mgu-subgoal generated from ?q(s).Further, if k = n, and� 2MGU(hq(t); p1(t1); : : : ; pn(tn)i; hq(s); p1(a1); : : : ; pn(an)i)Then q(s)[�℄ is an mgu-answer to subgoal ?q(s).2 Note that the de�nition of mgu-subgoals and mgu-answers is
y
li
. This
auses no problems, sin
e ea
hanswer generated by a program must have an a
y
li
 derivation. The following example illustrates the useof this de�nition.Example 3.1.3 Consider a modi�ed version of the program from Example 3.1.1.2R1 : q(X) : � p(a); p(X); r(X):R2 : p(X):R3 : r(X):R4 : q(1):Query: ?-q(X):Given a query ?q(X), by Part 1 of De�nition 3.1.1 and rule R4, q(1) is an mgu-answer to ?q(X). Given aquery ?q(X), ?p(a) is an mgu-subgoal, by Part 2 of De�nition 3.1.1 and rule R1. Using R2, p(a) is an mgu-answer to ?p(a), by Part 1 of the de�nition. Now, ?p(X) is an mgu-subgoal, by Part 2 of the de�nition, usingthe pre�x of R1 up to p(X). Using R2, p(X) is an mgu-answer to ?p(X). Next, ?r(X) is an mgu-subgoal,by Part 2 of the de�nition, and r(X) is an mgu-answer to ?r(X), using rule R3. Finally, by Part 2 of thede�nition, q(X) is an mgu-answer to ?q(X). Note that ?q(X) has two mgu-answers, one of whi
h subsumesthe other. 22The modi�
ation to the program is in order to illustrate some aspe
ts of the de�nition of mgu-answers that are not illustratedby the original program.
29

3.2 The goal id Meta-Predi
ateA meta-predi
ate is a predi
ate that does not have a logi
al semanti
s. A meta-literal is a literal thatuses as predi
ate a meta-predi
ate. The rewritten programs that we generate using our re�nements ofMagi
 Templates rewriting uses a meta-predi
ate goal id(goal; id) that assigns identi�ers to goals that aregenerated in the
ourse of bottom-up evaluation. Before we start des
ribing our re�nements of Magi
Templates rewriting, we need to de�ne the semanti
s of programs that
ontain the meta-predi
ate goal id.Meta-predi
ates are di�erent from ordinary predi
ates in two ways. First, given a normal predi
ate p,if a query ?p(X; 1) su

eeds, ea
h query ?p(a; 1) also su

eeds, where a is an element of the universe of theprogram. However, if ?goal id(p(X); 1) su

eeds, it does not follow that ?goal id(p(a); 1) su

eeds, sin
e p(X)and p(a) may be given di�erent identi�ers. Se
ond, two o

urren
es of the same query on a meta-predi
ate
an return di�erent answers, as we illustrate after de�ning the goal id meta-predi
ate.We do not assign semanti
s to meta-predi
ates in the usual manner of assigning sets of fa
ts to predi
ates.Instead, we assign semanti
s to meta-predi
ates operationally in terms of \answers" that are returned toqueries on the meta-predi
ates.De�nition 3.2.1 (goal id) The meta-predi
ate goal id(g; n) is de�ned as follows. When it is
alled with agoal g(t), it returns an integer identi�er n for the goal, where the identi�er satis�es the following
onditions:� If subsumption-
he
king is to be used, (a) all variants of a goal are given the same identi�er, and (b)if two goals are not variants of ea
h other, they are given distin
t identi�ers.� If subsumption-
he
king is not to be used, the
all returns an identi�er that is distin
t from thosereturned by any other
alls to goal id.� 0 is not generated as the identi�er of any goal.2 For example, a
all ?goal id(p(X); ID) may bind ID to 10. If subsumption-
he
king is used, all further
alls ?goal id(p(X); ID) will bind ID to 10. However, a
all ?goal id(p(a); ID) will bind ID to some valueother than 10. If subsumption-
he
king is not used, even further
alls ?goal id(p(X); ID) will bind ID tosome value other than 10.As de�ned above, goal id does not perform full subsumption-
he
king on goals | if it did, and gave thesame identi�er to two goals, one of whi
h subsumes the other, and we will not be able to use the identi�erfor the purpose of keeping tra
k of mgu-answers to goals. In Se
tion 3.3.4 we dis
uss how the evaluationte
hnique
an be extended in order to allow goal id to perform some degree of subsumption-
he
king. It isstraightforward to implement the meta predi
ate goal id, and we do not dis
uss details.It is not possible in general to use the traditional least model or least �x-point semanti
s for programs withmeta-predi
ates. Instead we de�ne the operational semanti
s to the programs generated by our rewritingte
hniques to be the result of Semi-Naive evaluation (either with or without subsumption-
he
king). Witheither semanti
s, the answers generated for the query on the original program are the same for the rewrittenprograms (as we show when proving the
orre
tness of the rewriting algorithms).30

Semi-Naive evaluation works in a straightforward manner with meta-predi
ates. Meta-predi
ates aretreated in a fashion similar to base predi
ates. However, instead of indexing a relation for a base predi
ateand getting an answer, a query is set up on the meta-predi
ate, and solved.3.3 MGU Magi
 TemplatesIn this se
tion we present a version of Magi
 Templates rewriting; the Semi-Naive evaluation (using mostgeneral uni�ers) of the rewritten program generates subgoals and answers only if they are mgu-subgoals ormgu-answers. We
all this rewriting te
hnique MGU Magi
 Templates.For simpli
ity we des
ribe the supplementary version of the rewriting.3The idea behind MGU Magi
 Templates rewriting is to keep with ea
h answer the goal for whi
h it wasgenerated as an mgu answer; this lets us avoid using answers to less general subgoals with rules instan
es(supplementary fa
ts) that generated more general subgoals. If we stored the a
tual goal in the supplementaryfa
ts (without renaming variables in the goal), the pro
ess of uni�
ation during the generation of the answerwould instantiate the goal. We store instead an identi�er that tells us what the original goal is; this identi�eris generated using the meta-predi
ate goal id.Intuitively, the main di�eren
e between Supplementary Magi
 Templates rewriting (Se
tion 2.2.2) andMGU Magi
 Templates des
ribed below is that for ea
h query fa
t, answer fa
t and supplementary fa
t,we have an extra argument that stores the identi�er of a query. Fa
ts of the form answer(id; q(a2)) aregenerated in the bottom-up evaluation of the MGU Magi
 Templates rewritten program. Intuitively, su
h afa
t says that id is the identi�er of a subgoal on q, and q(a2) is (at least as general as some) mgu-answer tothe subgoal. Similarly, fa
ts of the form query(q(a2); id) are generated in the bottom-up evaluation of theMGU Magi
 Templates rewritten program. Intuitively, su
h a fa
t says that q(a2) is a subgoal, and id is theidenti�er of the subgoal.Finally, there are fa
ts of the form supi;j(i; v; i1). Intuitively, su
h a fa
t represents an instan
e of thepre�x of a rule Ri up to the jth derived literal in Ri, su
h that Ri is being used to solve a subgoal withidenti�er i, and i1 is the identi�er of a subgoal on the jth derived literal of the rule. The rules in therewritten program (Type 2 rules below) are su
h that only answers for a query with identi�er i1
an be usedin a derivation with the supplementary fa
t supi;j(i; v; i1). Thus, the only answer fa
ts that
an be usedwith a supplementary fa
t are those that are mgu-answers to the query generated from the supplementaryfa
t.MGU Magi
 Templates Rewriting: Let P be a program, and ?q(t) a query on P . The following rewriterules generate a rewritten program whi
h we
all PMGUQ from P and ?q(t).Generate the rules:QR1 : initial query(q(t); ID) : � goal id(q(t); ID):QR2 : query(Q; ID) : � initial query(Q; ID):QR3 : q(A) : � initial query(; ID); answer(ID; q(A)):3The rewriting assumes left-to-right sips (Se
tion 2.2.1). 31

from the initial query q(t), where A is a ve
tor of distin
t new free variables, of the same arity as q.Call all the above rules Type 0 rules.Consider ea
h rule Rj in the program P . Let rule Rj be of the formRj : h(t): �p1(t1); p2(t2); : : : ; pn(tn):Let V denote a tuple of all variables that appear in Rj .1. If the body of Rj is empty generate the rulesupj;0(HId; V ; 0): �query(h(t); HId):else generate the rules:sup1j;0(HId; V ; p1(t1)) : � query(h(t); HId):supj;0(HId; V ; I1) : � sup1j;0(HId; V ;G); goal id(G; I1):Call the above rules Type 1 rules.2. If the body of rule Rj is not empty, for ea
h i, 1 � i � n� 1, generate the following rules:sup1j;i(HId; V ; pi+1(ti+1)) : � supj;i�1(HId; V ; I1); answer(I1; pi(ti)):supj;i(HId; V ; I1) : � sup1j;i(HId; V ;G); goal id(G; I1):Call these rules Type 2 rules.3. If the body of Rj is empty generate the rule:answer(HId; h(t)): �supj;0(HId; V ;):otherwise generate the rule:answer(HId; h(t)): �supj;n�1(HId; V ; I1); answer(I1; pn(tn)):Call these rules Type 3 rules.4. For ea
h literal pi(ti) in the body of Rj generate a rulequery(pi(ti); ID1): �supj;i�1(HId; V ; ID1):Call su
h rules Type 4 rules.For ea
h base predi
ate bi used in the program generate a rule:answer(ID; bi(Xi)): �query(bi(Xi); ID); bi(Xi):where Xi is a tuple of distin
t variables, with arity equal to that of bi. Call su
h rules Type 6 rules.Note that there are no Type 5 rules above | the numbering is designed to be
onsistent with thenumbering of rule types used in MTTR rewriting as des
ribed in Se
tion 2.3.2.Rule QR1 generates an initial query fa
t
orresponding to the initial query on the program. This fa
t isused to generate a query fa
t using rule QR2. Rule QR3 sele
ts fa
ts that are answers to the initial query.The stru
ture of rule QR3 ensures that the id �eld of any answer fa
t used in a su

essful instantiation of the32

QR1 : initial query(an
(X;Y); ID) : �goal id(an
(X;Y); ID):QR2 : query(Q; ID) : � initial query(Q; ID):QR3 : an
(X;Y) : � initial query(; ID); answer(ID; an
(X;Y)):S1:0 : sup11;0(HId;X; Y; parent(X;Y)) : �query(an
(X;Y); HId):S1:1 : sup1;0(HId;X; Y; ID) : � sup11;0(HId;X; Y;G); goal id(G; ID):M1:0 : query(parent(X;Y); ID) : � sup1;0(HId;X; Y; ID):R10 : answer(HId; an
(X;Y)) : � sup1;0(HId;X; Y; ID); answer(ID; parent(X;Y)):S2:0 : sup12;0(HId;X; Y; Z; parent(X;Z)) : �query(an
(X;Y); HId):S2:1 : sup2;0(HId;X; Y; Z; ID) : � sup12;0(HId;X; Y; Z;G); goal id(G; ID):M2:0 : query(parent(X;Z); ID) : � sup2;0(HId;X; Y; Z; ID):S2:2 : sup12;1(HId;X; Y; Z; an
(Z; Y)) : �sup2;0(HId;X; Y; Z; ID); answer(ID; parent(X;Z)):S2:3 : sup2;1(HId;X; Y; Z; ID) : � sup12;1(HId;X; Y; Z;G); goal id(G; ID):M2:1 : query(an
(Z; Y); ID) : � sup2;1(HId;X; Y; Z; ID):R20 : answer(HId; an
(X;Y)) : � sup2;1(HId;X; Y; Z; ID); answer(ID; an
(Z; Y))B1 : answer(ID; parent(X1; X2)) : �query(parent(X1; X2); ID); parent(X1; X2):Figure 2: MGU Magi
 Rewriting of An
estor Programrule must mat
h the id �eld of the initial query fa
t. Hen
e there is no need to a
tually unify the answerwith the initial query.We
all the rewritten version of a program P with query Q as PMGUQ ; we often refer to PMGUQ as PMGUwhen the query Q is understood from the
ontext, or is not relevant to the dis
ussion.The following is an example of MGU Magi
 Templates rewriting. We presented a simple version of therewriting above in order to keep the proofs simple. If we use the simple version of the rewriting, there are alarge number of rules in the rewritten program for ea
h rule in the original program (although the numberof rules is linear in the number of literals in the original rule). After presenting the example, we dis
uss howto improve the rewriting to redu
e the number of rules generated.Example 3.3.1 Suppose we had the programR1 : an
(X;Y) : � parent(X;Y):R2 : an
(X;Y) : � parent(X;Z); an
(Z; Y):Here the only derived predi
ate is an
, and the only base predi
ate is parent. Given a query ?an
(X;Y),the rewritten program is as shown in Figure 2.The �rst three rules above are generated from the query. The next four rules are generated from rule R1.The �rst two generate a supplementary fa
t
ontaining an identi�er for the query on the �rst body literal.The third rule generates a query on the body literal parent(X;Y). The fourth rule generates answers forthe head from answers for the body literal. The rules generated from R2 are similar to the above. The lastrule in the program is a Type 6 rule, that generates answer fa
ts for the base predi
ate parent. 2In an a
tual implementation, we would generate all the above rules ex
ept QR1 above at
ompile time(when we do not have an a
tual query). At run time, we would generate a fa
t for initial query from thea
tual query fa
t, and add it to the database. 33

3.3.1 Optimizations of MGU Magi
 Templates RewritingSeveral optimizations are possible on the above rewritten program. Hen
eforth we use these optimizationsin the examples in this thesis , but to keep our proofs simple we use the original version of the rewriting inthe proofs. We justify the
orre
tness of the optimizations using simple arguments.First, we
an treat base predi
ates spe
ially in the rewriting. We apply the following transformation tothe rewritten program, for ea
h base predi
ate bi. First, ea
h literal answer(ID; bi(ti)) where bi is a basepredi
ate is repla
ed by the literal bi(ti). Thus a rulesup1j;i+1(HId; V ; pi+1(ti+1)): �supj;i(HId; V ; I1); answer(I1; bi(ti)):is repla
ed by a rulesup1j;i+1(HId; V ; pi+1(ti+1)): �supj;i(HId; V ; I1); bi(ti):Next
onsider rules of the following form:sup1j;i�1(HId; V ; bi(ti)): �supj;i�2(HId; V ; I1); answer(I1; pi�1(ti�1)):supj;i�1(HId; V ; I1): �sup1j;i�1(HId; V ;G); goal id(G; I1):We repla
e these rules by the rulesupj;i�1(HId; V ; 0): �supj;i�2(HId; V ; I1); answer(I1; pi�1(ti�1)):Note that any fa
t generated for answer(I1; bi(ti)) must be generated from a fa
t for base predi
ate bi.For any derivation made using a fa
t answer(id; bi(: : :)), there is an equivalent derivation in the modi�edprogram, using a fa
t for the base predi
ate bi. Finally, we delete all rules that generate queries on bi, andwe delete the Type 6 rule that generates answer fa
ts for bi.Se
ond, although as des
ribed above, V is a tuple of all variables in the rule, and is used in ea
h of thesupplementary rules, it is possible to optimize the rewriting by storing in ea
h supj;i and sup1j;i literal onlythose variables that satisfy both the following
onditions: (1) the variable appears either in the head of therule, or in or after the i+1th literal of the rule, and (2) the variable appears either in the head of the rule,4or in or before the ith literal in the body of the rule. This optimization has no e�e
t on the fa
ts
reatedfor other predi
ates, sin
e for ea
h literal any variable that does not satisfy this
ondition is either not usedanywhere (if the variable does not satisfy
ondition 1 above), or is guaranteed to be a free variable (if thevariable does not satisfy
ondition 2 above). This optimization is the same as that des
ribed in [BR87b℄ forSupplementary Magi
 Sets rewriting.3.3.2 ExamplesExample 3.3.2 We
onsider the program in Example 3.3.1 again, and rewrite it using the optimizationsoutlined above, to illustrate the e�e
t of the optimizations to MGU Magi
 rewriting. The rewritten programis shown in Figure 3.4If adornment is used, the variable must appear in a bound argument of the head of the rule.34

QR1 : initial query(an
(X;Y); ID) : �goal id(an
(X;Y); ID):QR2 : query(Q; ID) : � initial query(Q; ID):QR3 : an
(X;Y) : � initial query(; ID); answer(ID; an
(X;Y))S1:0 : sup1;0(HId;X; Y; 0) : � query(an
(X;Y); HId):R10 : answer(HId; an
(X;Y)) : � sup1;0(HId;X; Y; ID); parent(X;Y)S2:0 : sup2;0(HId;X; Y; 0) : � query(an
(X;Y); HId):S2:2 : sup12;1(HId;X; Y; Z; an
(Z; Y)) : �sup2;0(HId;X; Y; ID); parent(X;Z):S2:3 : sup2;1(HId;X; Y; Z; ID) : � sup12;1(HId;X; Y; Z;G); goal id(G; ID)M2:1 : query(an
(Z; Y); ID) : � sup2;1(HId;X; Y; Z; ID):R20 : answer(HId; an
(X;Y)) : � sup2;1(HId;X; Y; Z; ID); answer(ID; an
(Z; Y))Figure 3: Optimized MGU Magi
 Rewriting of an
estor programQR1 : initial query(q; ID) : � goal id(q; ID):QR2 : query(Q; ID) : � initial query(Q; ID):QR3 : q : � initial query(; ID); answer(ID; q):S1:0 : sup11;0(HId; p(a)) : � query(q; ID):S1:00 : sup1;0(HId; ID1) : � sup11;0(HId;G); goal id(G; ID1):M1:0 : query(p(a); ID1) : � sup1;0(HId; ID1):S1:1 : sup11;1(HId;X; p(X)) : � sup1;0(HId; ID1); answer(ID1; p(a)):S1:10 : sup1;1(HId;X; ID1) : � sup11;1(HId;X;G); goal id(G; ID1):M1:1 : query(p(X); ID1) : � sup1;1(HId;X; ID1):S1:2 : sup11;2(HId;X; r(X)) : � sup1;1(HId;X; ID1); answer(ID1; p(X)):S1:20 : sup1;2(HId;X; ID1) : � sup1;1(HId;X;G); goal id(G; ID1):M1:2 : query(r(X); ID1) : � sup1;2(HId;X; ID1):R10 : answer(HId; q) : � sup1;2(ID;X; ID1); answer(ID1; r(X)):S2:0 : sup2;0(HId;X) : � query(p(X); HId):R20 : answer(HId; p(X)) : � sup2;0(HId;X):Figure 4: MGU Magi
 Templates Rewriting of Program from Example 3.3.3The e�e
t of the optimizations are as follows. Queries are no longer generated for parent, sin
e parent isa base predi
ate, and the Type 6 rule that generates answer fa
ts for parent has been removed. The numberof supplementary rules has de
reased sin
e there is no need to
ompute goal-ids for base literals in the rulebody. The number of variable bindings stored in the supplementary predi
ates sup2;0 is less than before.2Example 3.3.3 We use the following program from Example 3.1.1 to illustrate the di�eren
es betweenevaluation of the Magi
 Templates and the MGU Magi
 Templates rewritten programs.R1 : q : � p(a); p(X); r(X):R2 : p(X):Query: ?-q:The MGU Magi
 Templates rewritten version of the program, PMGU MT , is shown in Figure 4.35

We assume that goal id generates identi�ers 1; 2; : : : in sequen
e. The evaluation of this program �rstgenerates the following fa
ts (in sequen
e): initial query(q; 1), query(q; 1), sup11;0(1; p(a)), sup1;0(1; 2),query(p(a); 2). At this stage, rules S2:0 and R20 generate the fa
ts: sup2;0(2; a) and answer(2; p(a)). Nowrules S1:1; S1:10 and M1:10 generate the fa
ts: sup11;1(1; X; p(X)), sup1;1(1; X; 3), and query(p(X); 3).The evaluation of the Magi
 Templates rewriting of the program generates
orresponding fa
ts query(p(a)),p(a), query(p(X)), and p(X). Up to this stage, the evaluation of the MGU Magi
 rewritten program essen-tially parallels the evaluation of the supplementary Magi
 rewritten program:The di�eren
e between the two versions of the rewriting is that the MGU Magi
 rewriting does not useanswer(2; p(a)) in rule S1:2 (
orresponding to the literal p(X)), sin
e the supplementary fa
t sup1;1(1; X; 3)
ontains the goal-identi�er 3. Rather, only answer(3; p(X)) is used in Rule S1:2. Following this deriva-tion, fa
ts sup11;2(1; X; r(X)); sup1;2(1; X; 4); and query(r(X); 4) are generated. No query fa
t of the formquery(r(a); n) is generated. On the other hand, the Supplementary Magi
 rewritten program generates thefa
t query(r(a)) followed an iteration later by the fa
ts query(r(X)), and r(a), followed an iteration later byr(X). MGU Magi
 rewriting has avoided generating a query (resp., an answer) that is not an mgu-subgoal(resp., an mgu-answer).We do not go into details of the evaluation of the MGU Magi
 rewriting of Example 3.1.2, but note that(by a similar pro
ess as above) the subgoal query(r(X)) is generated, while the subgoalsquery(r(0)); : : : ; query(r(m))are not generated. The evaluation would derive O(m + n) fa
ts rather than the O(m � n) fa
ts that theevaluation of the Magi
 rewritten program would generate. 23.3.3 Corre
tness of MGU Magi
 TemplatesWe de�ne the following property to make the statements of several of our lemmas and theorems
on
ise.Property 3.3.1 (MGU-Prop) Let P be any program, and Q a query on P . We say that an evaluationof PMGUQ has property MGU-Prop if1. Every fa
t answer(id; p(a)) generated in the evaluation is su
h that p(a) is an mgu-answer to a subgoalon p that has identi�er id.2. Every fa
t query(p(a); id) generated in the evaluation is su
h that ?p(a) is an mgu-subgoal with iden-ti�er id. 2The following lemma provides some intuition behind the variable bindings that are stored in the supple-mentary fa
ts.Lemma 3.3.1 Let P be any program, and Q a query on P . Consider a step in a derivation sequen
e forPMGUQ su
h that the evaluation prior to that step has property MGU-Prop.Suppose a supplementary fa
t supj;i(id; vi; idi+1) is derived at this step. Let supj;i be a supplementarypredi
ate generated from a rule Rj of P ,Rj : p(t): �p1(t1); p2(t2); : : : ; pn(tn): 36

su
h that the body of Rj is non-empty.Then there are fa
ts answer(id1; p1(a1)); : : :, answer(idi�1; pi�1(ai�1)), and a fa
t query(p(s); id), su
hthat1. Ea
h idm; 1 � m � i, is the id of an mgu-subgoal generated from ?p(s), and2. The substitution for variables of Rj spe
i�ed by vi, is inMGU(hp(t); p1(t1); : : : ; pi�1(ti�1)i; hp(s); p1(a1); : : : ; pi�1(ai�1)i)2 The proof of this lemma is presented in Appendix A.1.Theorem 3.3.2 Given any program P and query Q, the bottom-up evaluation of PMGUQ has property MGU-Prop. 2The proof is by indu
tion on derivation sequen
es for PMGU , and the full proof is presented in Appendix A.1.Theorem 3.3.3 Given any program P and query Q, the bottom-up evaluation of PMGUQ is
omplete withrespe
t to Q, i.e., if a fa
t p that is an answer to Q is present in the least model of P , then p is subsumedby a fa
t
omputed in the bottom-up evaluation of PMGUQ . 2The proof of this theorem is presented in Appendix A.1. We sket
h the idea below. The theorem isproved by proving the following more general result (p stands for any predi
ate, in the following): if a fa
tquery(p(b); id) is available to the evaluation of PMGUQ , then for every fa
t p(a) that uni�es with p(b), and isgenerated by a bottom-up evaluation of program P (the original program), evaluation of PMGUQ generates afa
t answer(id; p(
)) su
h that p(
) subsumes p(a)[mgu(a; b)℄. The proof of the above result is by indu
tionon derivation sequen
es for the original program P . Consider a step (i.e., a rule along with fa
ts used in thederivation) in the derivation sequen
e. Suppose that the theorem holds for all fa
ts used in the derivationstep. An indu
tion going left-to-right on the body of the rule shows that needed query fa
ts are generated(and the outer indu
tion shows that the
orresponding answer fa
ts for these queries are also generated).These fa
ts are used to generate the required answer fa
t for the head of the rule.3.3.4 Dis
ussionThe sequen
e of results above show that given a program P and a query Q, the bottom-up evaluation ofPMGUQ is sound, generates all answers to query Q on P , and further, the evaluation of PMGUQ generates onlymgu-subgoals and mgu-answers. By not generating answers that are not mgu-answer, with programs su
h asthose dis
ussed in Se
tion 3.1, bottom-up evaluation does not generate the subsumed answers that
aused itto be less eÆ
ient than Prolog evaluation. Prolog evaluation may still be more eÆ
ient due to tail-re
ursionoptimization, whi
h is not performed by the MGU Magi
 rewriting. In the next se
tion we des
ribe how toin
orporate the ideas from this se
tion into Magi
 Templates with Tail Re
ursion rewriting.The goal-ids that we generate are very similar to the l
id/l
ont s
heme used for indexing answers andgoals in QSQR [Vie86, Vie88℄. We used them primarily to avoid the use of answers to a query to dire
tly37

answer a more general query. However, we
an also use these goal-identi�ers for the purpose of indexinganswers and goals, as is done in QSQR. Suppose we have a supplementary fa
t (resp. answer fa
t) with agoal-id value id, and suppose that the fa
t uni�es with the body literal of a (supplementary) rule. Then ananswer fa
t (resp. supplementary fa
t) uni�es with the other body literal of the instantiated rule if and onlyif it has the same goal-id value as the supplementary fa
t (resp. answer fa
t). The only if part is easy to seefrom the stru
ture of the supplementary rule. The if part follows sin
e the answer fa
t must be an answerto a query generated from the supplementary fa
t sin
e it has the same goal-id.The ids are ground values, so indexing on the id �elds of relations
an be done eÆ
iently (in
onstanttime using hash tables). This form of indexing is useful for linking supplementary fa
ts with answer fa
ts;any supplementary and answer fa
ts fet
hed using the index are guaranteed to unify. We have implementedsu
h an indexing s
heme in the CORAL dedu
tive database system [RSS92b℄.Semi-Naive evaluation of an MGU Magi
 Templates rewritten program
he
ks for variants of a goal,but does not perform full subsumption-
he
king on goals, due to the de�nition of the goal id predi
ate, andsin
e a goal id is stored with ea
h goal. If there are two goals that are not equivalent up to renaming,both goals are stored. Not being able to do full subsumption-
he
king is a pri
e we pay for keeping tra
k ofwhi
h answer is an mgu-answer to whi
h goal. We
an extend the de�nition of the meta-predi
ate goal idto allow some subsumption
he
king on goals. If a new goal ng is subsumed by an old goal og, we give thesame identi�er to ng as we gave to og earlier. Let this identi�er be id. It is
riti
al that any query fa
tquery(ng; id) is eliminated by subsumption-
he
king before it is used, for otherwise we will generate answersfor id that are not mgu-answers. It is possible to extend the rewriting, as well as the subsumption-
he
kingin the evaluation algorithm to perform a greater degree of subsumption-
he
king. We do not go into detailshere.3.4 MGU MTTR RewritingIn this se
tion we
ombine ideas from the MGU Magi
 Templates rewriting and Magi
 Templates with TailRe
ursion rewriting to get a
ombined te
hnique, whi
h we
all MGU Magi
 Templates with Tail Re
ursionrewriting, or MGU MTTR rewriting for short. In Chapter 4 we
ompare the semi-naive evaluation of theMGU MTTR rewriting with Prolog� evaluation (a model for Prolog evaluation), and prove that it makes nomore inferen
es than Prolog� evaluation.We des
ribe MGU MTTR rewriting as an extension of MTTR rewriting that in
orporates the ideas thatwe used in MGU Magi
 rewriting. The basi
 extension is to add goal-identi�er �elds to query, supplementaryand answer predi
ates. As is the
ase with MGU Magi
 Templates rewriting, the goal-identi�er �eld is usedto ensure that an answer that is an mgu-answer for some query will not be used as an answer for a moregeneral query. For simpli
ity, we assume that all predi
ates are tail-re
ursive when des
ribing the rewriting,and later indi
ate how to relax this assumption. MGU MTTR rewriting is des
ribed below.MGU MTTR Rewriting:Let P be a program, and ?q(t) a query on P . The following rewrite rules generate a rewritten program whi
h38

we
all PMGU TQ from P and ?q(t).0. Generate the rules:QR1 : initial query(q(t); ID; answer(ID; q(t))): �goal id(q(t); ID)QR2 : query(Q; ID;Ans) : � initial query(Q; ID;Ans):QR3 : q(A) : � initial query(; ID;); answer(ID; q(A)):from the initial query q(t), where A is a ve
tor of distin
t new free variables, of the same arity as q.Call all the above rules Type 0 rules.Consider ea
h rule Rj in the program P . Let rule Rj be of the formRj : h(t): �p1(t1); p2(t2); : : : ; pn(tn):Let V denote a tuple of all variables that appear in Rj .1. If the body of Rj is empty generate the rulesupj;0(HId; V ; 0; A): �query(h(t); HId;A):else generate the rules:sup1j;0(HId; V ; p1(t1); A) : � query(h(t); HId;A):supj;0(HId; V ; I1; A) : � sup1j;0(HId; V ;G;A); goal id(G; I1):Call these rules Type 1 rules.2. If the body of rule Rj is not empty, for ea
h i, 1 � i � n� 1, generate the following rules.sup1j;i(HId; V ; pi+1(ti+1); A) : � supj;i�1(HId; V ; I1; A);answer(I1; pi(ti)):supj;i(HId; V ; I1; A) : � sup1j;i(HId; V ;G;A); goal id(G; I1):Call these rules Type 2 rules.3. If the body of Rj is empty generate the rule:A: �supj;0(HId; V ; ; A):Call su
h rules Type 3 rules.4. For ea
h literal pi(ti) in the body of Rj other than the last literal, generate a rulequery(pi(ti); ID1; answer(ID1; pi(ti))): �supj;i�1(HId; V ; ID1):Call su
h rules Type 4 rules.5. If the body of Rj is non-empty, generate the following rule:query(pn(tn); ID1; A): �supj;n�1(HId; V ; ID1; A):Call su
h rules Type 5 rules. 39

QR1 : initial query(append([1; 2; 3℄; [4℄; X); ID; append([1; 2; 3℄; [4℄; X)) : �goal id(append([1; 2; 3℄; [4℄; X); ID):QR2 : query(Q; ID;Ans) : � initial query(Q; ID;Ans):QR3 : append(X1; X2; X3) : �initial query(; ID;); answer(ID; append(X1; X2; X3)):S1:0 : sup1;0(HId;X; 0; A) : �query(append([℄; X;X); HId;A):R10 : A : � sup1;0(HId;X; ID;A):S2:00 : sup12;0(HId;H; T; L; L1; append(T; L; L1); A) : �query(append([H jT ℄; L; [H jL1℄); HId;A):S2:0 : sup2;0(HId;H; T; L; L1; ID;A) : �sup12;0(HId;H; T; L; L1; G;A); goal id(G; ID):Q2:1 : query(append(T; L; L1); ID;A) : �sup2;0(HId;H; T; L; L1; ID;A):Figure 5: MGU MTTR Rewriting of the append ProgramFor ea
h base predi
ate bi used in the program generate a rule:A: �query(bi(Xi); ID;A); bi(Xi):where Xi is a tuple of distin
t variables, with arity equal to that of bi.Call su
h rules Type 6 rules.Rule QR1 generates an initial query fa
t
orresponding to the initial query on the program. This fa
t isused to generate a query fa
t using rule QR2. Rule QR3 sele
ts answer fa
ts that are answers to the initialquery. Note that sin
e the id �eld of the answer mat
hes the id �eld of the initial query, there is no need toa
tually unify the answer and query arguments.Example 3.4.1 The append program is de�ned as follows.R1 : append([℄; X;X):R2 : append([H jT ℄; L; [H jL1℄) : � append(T; L; L1):Suppose the given query is ?append([1; 2; 3℄; [4℄; X). The rewritten program is shown in Figure 5. The�rst three rules in the rewritten program are Type 0 rules. Rule S1:0 is a Type 1 rule generated from ruleR1, while R10 is a Type 3 rule generated from rule R1. Rules S2:00 and S2:0 are Type 1 rules generatedfrom R2, and rule Q2:1 is a Type 5 rule generated from R2.In Se
tion 3.4.1 we dis
uss some optimizations that simplify the rewritten program, and in Example 3.4.2we dis
uss the evaluation of the optimized rewritten program. 23.4.1 Optimizations of MGU MTTR RewritingAs in the
ase of MGU Magi
 rewriting, we
an optimize MGU MTTR rewriting in several ways. Forsimpli
ity, our proofs are for the version of MGU MTTR rewriting without these optimizations.We
an
hoose to treat some literals as non-tail-re
ursive, even though they appear as the last literal inthe rule. The
hanges to the rewriting are fairly straightforward. An alternative way of ensuring that thelast literal in a rule is treated in a non-tail-re
ursive fashion is by introdu
ing an extra literal true() at the40

end of the rule, and adding true() as a rule (with an empty body). This extra literal does not signi�
antly
hange the number of derivations made.Some of the optimizations des
ribed in Se
tion 3.3.1 are appli
able to MGU MTTR rewriting. Forinstan
e, we
an proje
t out variables from supplementary literals as des
ribed in that se
tion.We
an treat base predi
ates spe
ially in the rewriting, by applying the following transformation tothe rewritten program, for ea
h base predi
ate bi. First, ea
h literal answer(ID; bi(ti)) where bi is a basepredi
ate is repla
ed by the literal bi(ti). Next rules of the form:sup1j;i�1(HId; V ; bi(ti); A): �supj;i�2(HId; V ; I1; A); answer(I1; pi�1(ti�1)):supj;i�1(HId; V ; I1; A): �sup1j;i�1(HId; V ;G;A); goal id(G; I1):are repla
ed by the rule:supj;i�1(HId; V ; 0; A) : � supj;i�2(HId; V ; I1; A); answer(I1; pi�1(ti�1)):All Type 4 rules that generate queries on bi are deleted. (Note that any fa
t answer(id; pi(ti)) mustbe generated from a fa
t for base predi
ate pi. For any derivation made using the answer fa
t, there isan equivalent derivation made using the new rule with the original fa
t for pi.) If there is no Type 5 rulethat generates a query on bi, we delete the Type 6 rule that generates answer fa
ts for bi. We
an ensurethat there is no Type 5 rule that generates a query on any base literal bi by treating all o

urren
es of baseliterals as non-tail-re
ursive.The query rules that are removed are Type 4 rules. Su
h rules generate queries of the formquery(pi(t); ID; answer(ID; pi(t)))that result in fa
ts of the form answer(id; pi(: : :)) being generated; su
h rules are not useful on
e the answerpredi
ate is repla
ed by the base predi
ate pi. This optimization is not appli
able for Type 5 rules, sin
equeries generated by su
h rules do not generate answers for the base predi
ate.Proje
ting out extra variables from the supplementary predi
ates
an be done as des
ribed in Se
-tion 3.3.1.We
an simplify the set of rules QR1; QR2 and QR3 by generating a query whose se
ond argument is of theform q(t) rather than answer(ID; q(t)). Thus answers to the original query on the program get generateddire
tly. The initial query predi
ate and the rule QR3 are used only for generating answers of the form q(a)for the original query on the program, from fa
ts of the form answer(id; q(a)). We
an therefore drop QR3.We merge the rules QR1 and QR2 to get the following rule:Q0R1 : query(q(t); ID; q(t)): �goal id(q(t); ID):3.4.2 An ExampleWe now
onsider an example of MGU MTTR rewriting with some of the optimizations des
ribed above.Example 3.4.2 Consider the append program from Example 3.4.1.R1 : append([℄; X;X):R2 : append([H jT ℄; L; [H jL1℄) : � append(T; L; L1):41

Q0R1 : query(append([1; 2; 3℄; [4℄; X); ID; append([1; 2; 3℄; [4℄; X)) : �goal id(append([1; 2; 3℄; [4℄; X); ID):S1:0 : sup1;0(HId;X; 0; A) : �query(append([℄; X;X); HId;A):R10 : A : � sup1;0(HId;X; ID;A):S2:00 : sup12;0(HId;H; T; L; L1; append(T; L; L1); A) : �query(append([H jT ℄; L; [H jL1℄); HId;A):S2:0 : sup2;0(HId;H; T; L; L1; ID;A) : �sup12;0(HId;H; T; L; L1; G;A); goal id(G; ID):Q2:1 : query(append(T; L; L1); ID;A) : �sup2;0(HId;H; T; L; L1; ID;A):Figure 6: Optimized MGU MTTR Rewritten version of the append programSuppose the given query is ?append([1; 2; 3℄; [4℄; X). The optimized MGU MTTR rewritten program isshown in Figure 6. The main di�eren
e between the optimized rewritten program and the MGU MTTRrewritten program generated in Example 3.4.1 is that the initial query rules QR1; QR2 and QR3 have beenrepla
ed by Q0R1.In the Semi-Naive evaluation of the above rewritten program, rule Q0R1 generates a fa
tquery(append([1; 2; 3℄; [4℄; X); 0; append([1; 2; 3℄; [4℄; X))(whi
h
orresponds to the given query on the program). The last argument of this fa
t is the fa
t to beinstantiated and generated as an answer to the query on the program.Rules S2:00 and S2:0 generate a supplementary fa
t
ontaining variable bindings and the identi�er for aquery on the append literal in the body of rule R2. Q2:1 generates the a
tual query fa
t using this identi�er.Thus after three iterations, a query fa
tquery(append([2; 3℄; [4℄; X); 1; append([1; 2; 3℄; [4℄; [1jX ℄))is generated. Three iterations laterquery(append([3℄; [4℄; X); 2; append([1; 2; 3℄; [4℄; [1; 2jX ℄))is generated.query(append([℄; [4℄; X); 3; append([1; 2; 3℄; [4℄; [1; 2; 3jX℄))is then generated. This fa
t is used with rules S1:0 and R10; X gets bound to [4℄, and a fa
tappend([1; 2; 3℄; [4℄; [1; 2; 3; 4℄)is generated. This
ompletes the evaluation of the program.In this parti
ular example, the goal identi�ers stored with the fa
ts are not of parti
ular use. They areuseful if there is a supplementary rule that uni�es supplementary fa
ts with answer fa
ts, as is the
ase forderived literals that are not the last literal in the body of a rule. 2
42

3.4.3 Corre
tness of MGU MTTR RewritingFor simpli
ity, we prove
orre
tness with respe
t to the unoptimized version of MGU MTTR rewriting. Wede�ne the following property of the evaluation of PMGU T , and prove it as an intermediate step in proving
orre
tness.Property 3.4.1 (MGU T-Prop) Let P be any program and Q a query on P . We say that an evaluationof PMGU TQ has property MGU T-Prop if1. Every fa
t answer(id; a) generated in the evaluation is su
h that a is an mgu-answer to a subgoal withidenti�er id.2. Every fa
t query(p(a); id1; answer(id2; q(b))) generated in the evaluation is su
h that (a) ?p(a) is anmgu-subgoal, and id1 is the identi�er of ?p(a), and (b) if p(a0) is an mgu-answer to the subgoal ?p(a)(wlog assume that a and b share no variables with a0), and � = mgu(p(a); p(a0)), then q(b)[�℄ is anmgu-answer to the subgoal with identi�er id2. 2Theorem 3.4.1 Consider any program P with query Q. Then a bottom-up evaluation of PMGU T hasproperty MGU T-Prop. 2The above theorem shows that bottom-up evaluation of PMGU T is sound, and generates only mgu-answers to mgu-subgoals. The proof is by indu
tion on derivation sequen
es for PMGU T , and is presentedin the Appendix A.2. The following theorem shows
ompleteness of bottom-up evaluation of PMGU T withrespe
t to the query on the program. The proof of the theorem may be found in Appendix A.2.Theorem 3.4.2 Given any program P and query Q, the bottom-up evaluation of PMGU TQ is
omplete withrespe
t to Q, i.e., if the bottom-up evaluation of P generates a fa
t p that is an answer to Q, then p issubsumed by a fa
t
omputed in the bottom-up evaluation of PMGU TQ . 2To summarize this se
tion, we have shown the following. Given a program P and a query Q, the bottom-up evaluation of PMGU TQ is sound, generates all answers to query Q on P , and further, the evaluationof PMGU TQ generates only mgu-subgoals and mgu-answers. Finally, we note that PMGU TQ performs tail-re
ursion optimization in the same fashion as P T .

43

Chapter 4Bottom-up vs. Prolog� | A HighLevel ComparisonIn this
hapter, we �rst present a
ost model, whi
h we
all Prolog�, of Prolog evaluation of a query, anda model of a Semi-Naive evaluation of a program. We then use these models to perform a high level
omparison of Prolog� with bottom-up evaluation using MGU MTTR rewriting. The
omparison is at thelevel of \a
tions", and applies to all de�nite
lause programs. We also use these models in Chapter 5 toperform a more detailed
omparison (at the level of time
omplexity) of Prolog� with bottom-up evaluationusing MGU MTTR rewriting.The
hapter is organized as follows. We present our model of Prolog evaluation in Se
tion 4.1. This modela

ounts for tail-re
ursion optimization. In Se
tion 4.2 we present a model for Semi-Naive evaluation. Thismodel helps redu
e the a
tions in Semi-Naive evaluation of a program to a series of attempted derivations. InSe
tion 4.3 we use this model to
ompare the Semi-Naive evaluation of the MGU MTTR rewritten programwith Prolog� query evaluation.In our models, we
onsider only de�nite
lause programs, whi
h do not have negated literals in the bodiesof rules.14.1 A Model for Prolog EvaluationIn this se
tion we present a
ost model for Prolog evaluation of de�nite
lause logi
 programs, in order tomake pre
ise the
omparison of bottom-up evaluation and Prolog that we make in later se
tions. Sin
e thereis no su
h thing as a \standard implementation" of Prolog, we de�ne what we mean by a Prolog evaluation.The formal model for Prolog
omputation is a depth-�rst exploration of the SLD tree for the query on theprogram (see e.g. [Llo87℄). However, the SLD tree model leaves some important aspe
ts of the evaluationunspe
i�ed. For instan
e, it does not spe
ify if tail-re
ursion optimization is used or not.We present the Prolog�
ost model of Prolog query evaluation below. The main purpose of this
ostmodel is to provide a lower bound on the
ost of Prolog evaluation. Hen
e we take the liberty of ignoring1We
an extend this
lass to
over
ertain restri
ted forms of negation su
h as modularly strati�ed negation, by usingextended bottom-up evaluation te
hniques su
h as Ordered Sear
h [RSS92a℄. Details are beyond the s
ope of this thesis.44

details that are not
riti
al for our
ost analysis. Prolog� is intended to model Prolog evaluation with tailre
ursion optimization, but without using any other optimizations that a�e
t the number of subgoals set up,or the number of answers generated.2If a Prolog� evaluation is not
omplete, or does not terminate, bottom-up evaluation
an
ertainly dono worse. Hen
e, we only
onsider Prolog� evaluations that terminate and are
omplete. This also has thebene�t of simplifying our proofs
onsiderably. The Prolog� model of subgoal evaluation ignores many detailsof
ontrol
ow. In parti
ular, the depth-�rst sear
h strategy used by Prolog is not re
e
ted in the model.Ea
h subgoal g set up in Prolog� evaluation has a \return-point" r that is either the subgoal itself, or anan
estor of the subgoal. The subgoal r is referred to as the return-point subgoal for g. The \return-point"indi
ates to whi
h subgoal
ontrol must return when an answer is generated for the subgoal, and is usedto implement tail-re
ursion optimization (Se
tions 2.3 and 4.1.1). (In
ase of failure to generate an answer,
ontrol does not return to the return-point subgoal; rather the ba
ktra
king me
hanism de
ides whi
h goalto retry. The details of
ontrol are irrelevant to our model, and we ignore them.) In the
ourse of generatingan answer to a return-point subgoal r, the subgoal is progressively instantiated. Thus when some subgoalg0 is generated, su
h that the return-point of g0 is r, the variables in r have been instantiated. Let theinstantiated version of r at the point when g0 is generated be r0. Then r0 is said to be the instantiatedreturn-point subgoal of g0.As a base
ase, the return-point as well as the instantiated return-point subgoal of the initial query onthe program are de�ned to be the initial query itself. If a subgoal g is generated from a literal other thanthe last literal in the rule, both its return-point and its instantiated return-point subgoal are set to g. Ifa subgoal g is generated from the last literal of a rule, its return-point is de�ned to be the return-point ofthe subgoal on the head of the rule. Let the return-point subgoal of g be r. The instantiated return-pointsubgoal of g is de�ned to be the instantiation of r at the point when g was generated.De�nition 4.1.1 (Prolog�) We de�ne the Prolog�
ost model of query evaluation through the pro
edure\Prolog� Evaluation of a Subgoal" shown below. We assume that Prolog� evaluation pro
eeds till all answersare generated (i.e., Prolog� does not stop at the request of the user), and that Prolog� evaluation terminatesand is sound.The return-point as well as the instantiated return-point subgoal of the initial query on the program arede�ned to be the initial query.Prolog� Evaluation of a Subgoal:Suppose we have a subgoal g =?p(t), with instantiated return point subgoal gr, and a set of rules de�ning p.For ea
h rule R de�ning p, Prolog� does the following:Let rule R be of the following form:R : p(t0): �q1(t1); q2(t2); : : : ; qn(tn):1. Prolog� �rst attempts to unify the subgoal g with the head of R. If the uni�
ation fails, the attempt tosolve g using R fails.If uni�
ation su

eeds, let � be the most general uni�er of g and p(t0).2For instan
e, we disallow Intelligent Ba
ktra
king (see eg. [CD85℄).45

2. If the body of the rule is empty, Prolog� evaluation returns an answer gr[�℄ to the return-point of g.Otherwise, next literal is set to the �rst literal in the body.3. Prolog� evaluation generates a subgoal next literal[�℄.The return-point and the instantiated return-point subgoal of the generated subgoal are set to the subgoalitself, if next literal is not the last literal in the body of the rule, or if tail-re
ursion optimization is notused for the last literal.Otherwise, the return point of the subgoal is set to the return point of g, and the instantiated return pointsubgoal is set to gr[�℄.(Con
eptually, in the �rst
ase, � is saved at this point, to be used when an answer is returned for thesubgoal. In pra
ti
e in Prolog, the use of depth-�rst sear
h with ba
ktra
king implies that we do not haveto physi
ally save �. We do not assign any
ost to this
on
eptual \saving" of �.)4. Prolog� then
omputes answers to the subgoal.If next literal is not the last literal in the body of the rule, or if tail-re
ursion optimization is not used forthe literal, answers are returned for the generated subgoal.5. For ea
h answer a returned for a subgoal l[�℄ on a literal l, Prolog� evaluation does the following:Con
eptually, a must be uni�ed with l[�℄, where � is the binding saved (
on
eptually) in Step 3. Theuni�
ation is done impli
itly by Prolog evaluation when generating the answer a. (We do not assign any
ost to this
on
eptual uni�
ation.) Let �0 be the mgu of a and l[�℄.If there are more literals in the rule body, next literal is set to the next literal in the rule body, and � isset to �0. Computation pro
eeds as in Step 3.If there are no more literals in the body of the rule, the return-point subgoal has been solved. gr[�℄ isreturned as an answer to the return-point of g.2 The above model is a simpli�ed des
ription of Prolog evaluation, and omits many details su
h as how
ontrol
ow is dire
ted. The details of
ontrol
ow are important as far as the a
tual
osts of Prolog evaluationare
on
erned. However, sin
e our goal is to obtain a lower bound for the
ost of Prolog evaluation, andthe
ost of implementing
ontrol
ow is not
ounted in our model, we
an ignore the details. We
an getthe depth-�rst sear
h strategy used by Prolog by using the pro
edure des
ribing subgoal evaluation as a
oroutine. Control passes to the pro
edure whenever a (new) answer is required for the subgoal, and thepro
edure returns
ontrol to its
alling point when an answer is generated, and also when no (more) answers
an be generated.The important point to note is that ea
h of the steps des
ribed is assumed to take
(1) time, andthe
omputation
an be viewed as a sequen
e of su
h steps. We refer to ea
h of these steps in a Prolog�evaluation as an a
tion performed in the evaluation. We often view the step where an answer is returned toa return-point subgoal as two a
tions | the �rst a
tion being the \generation of an answer" and the se
ond46

a
tion being the return of the answer to the point where the subgoal was generated. This view is valid, sin
ewe assign
(1)
ost to ea
h step, and the sum of their
osts is still
(1).The above model is used in Se
tion 4.3 to show that Prolog� evaluation of a query performs at least asmany a
tions as the number of attempted derivations made by bottom-up evaluation of the MGU MTTRrewriting of the program and the query.To in
orporate the time
ost of evaluation into the
omparison, we need to assign
osts to ea
h step.We assume that all the steps above, ex
ept the uni�
ation of a query with a rule head in Step 1, take unittime. (This assumption provides a lower bound on their
ost.) Step 1 performs a uni�
ation, and maytake more than O(1) time; when
omparing Prolog� evaluation with bottom-up evaluation, we show that forea
h uni�
ation a
tion performed by bottom-up evaluation of an MGU MTTR rewritten program, Prolog�evaluation performs a
orresponding uni�
ation.4.1.1 Tail Re
ursion OptimizationTail-re
ursion optimization and its bene�ts are des
ribed in Se
tion 2.3. In many implementations of Prolog,tail-re
ursion optimization would be performed only if the last literal in a rule was re
ursive with the head,sin
e this is
ase where it o�ers the maximum bene�t. We assume for simpli
ity that it is done always.Further, in many implementations of Prolog, tail-re
ursion optimization is a
tually done only under morestringent
onditions, when the spa
e allo
ated for the
all to R
an be deallo
ated. Su
h an optimization,although often loosely asso
iated with tail-re
ursion optimization, is better termed last-
all optimization[MW88℄. Last-
all optimization helps redu
e spa
e utilization; however, we
on
entrate on time utilizationin this thesis, and do not take the spa
e savings into a

ount in our model.4.2 A Model for Semi-Naive and Not-So-Naive EvaluationWe now
onsider a model for the a
tions in Semi-Naive and Not-So-Naive bottom-up evaluation of an MGUMTTR rewritten program (or an MGU Magi
 Rewritten program). We assume that the body of ea
h rulehas at most two literals. Rules in MGU Magi
 and MGU MTTR rewritten programs are in this form. Weuse the term evaluable predi
ate to refer to a base predi
ate whose set of fa
ts is not stored expli
itly, but is
omputed using imperative
ode.Let us denote the rewritten program as PMGU T . Step 1 of Algorithm SN Iterate (des
ribed in Se
-tion 2.2.3) derives fa
ts using rules that have no derived predi
ates in their bodies. There is only one su
hrule, QR1, and it performs only one derivation.We model the a
tions performed in Step 2.1 of Algorithm SN Iterate as a sequen
e of uses of derivedfa
ts to derive other fa
ts, as shown below.As noted in Se
tion 2.2.3, we assume that a left-to-right nested-loops join with indexing is used to evaluateSemi-Naive rewritten rules. Consider a
all Apply (Rs; I) in Step 2.1 of Algorithm SN Iterate. Pro
edureApply performs a nested-loops join. Pro
edure Make Inferen
es(Rs; pi(ai)), shown below, is a model ofthe a
tions in a single iteration of the outer loop of the nested-loops join. The model also in
orporatessubsumption-
he
king a
tions. 47

Make Inferen
es(R; pi(ai)).1. Standardize apart pi(ai) from R, i.e., make variable names in pi(ai) distin
t from those in R by renamingvariables if required.32. Compute an mgu �1 of (the renamed version of) pi(ai) with the �rst literal in the body of (the renamedversion of) R.3. If R has only one body literal, set �3 to �1./* Else R has two body literals */Else perform the following a
tions:(a) Let the se
ond literal of (the renamed version of) R be pj(tj). Index the relation pj , to fet
h fa
ts thatunify with pj(tj)[�1℄ (in
ase the predi
ate is an evaluable predi
ate, a query is set up and evaluatedinstead).(b) When ea
h fa
t is fet
hed, standardize it apart from the (renamed versions of) R and pi(ai).(
) Compute an mgu �2 of the fet
hed fa
t and pj(tj)[�1℄. Let �3 = �1[�2℄.4. Let the head literal of (the renamed version of) R be p(t). Create a fa
t p(t)[�3℄ for ea
h mgu �2 as above.5. Che
k if p(t)[�3℄ is subsumed by previously generated fa
ts for p. If it is not subsumed, dis
ard all p fa
tsthat are subsumed by it, insert it into the p relation, and mark it as a newly derived fa
t. (In the
ase ofNot-So-Naive evaluation, the subsumption
he
k is omitted, and the fa
t is inserted into the relation evenif it is subsumed.) The newly derived fa
t p(t)[�3℄ is not used for making inferen
es until the next iteration.We split the
omputation des
ribed above into `attempted derivation steps', whi
h we de�ne below. Thislets us allo
ate the
ost of evaluation to di�erent attempted derivation steps. We split attempted derivationsteps into two
ases, depending on whether the derivation is su

essful or unsu

essful. In the
ase wheresu

essful derivations are made using a fa
t, we split the
omputation into `su

essful derivation steps',one for su

essful derivation. In the
ase that no su

essful derivation is made using a fa
t, we have an`unsu

essful derivation step'. We de�ne these formally below.De�nition 4.2.1 (Derivation Steps) Consider a
all Make Inferen
es(R; pi(ai)). The following a
tionsare performed in the
all.Steps 1 and 2 of Make Inferen
es attempt to unify the fa
t pi(ai) with the literal pi(ti).1. If the uni�
ation in Step 2 of Make Inferen
es fails, the a
tions performed by Steps 1 and 2 with thegiven fa
t pi(ai)
onstitute an unsu

essful derivation step.2. If the uni�
ation in Step 2 of Make Inferen
es su

eeds, and rule R has two body literals, the otherliteral in the body of R is indexed.(a) If no fa
t is fet
hed by the indexing, the a
tions performed by Steps 1, 2 and 3a with the givenfa
t pi(ai)
onstitute an unsu

essful derivation step.3We
an standardize apart R and pi(ai) by renaming one of them. We do not spe
ify whi
h one.48

(b) If fa
ts are fet
hed by the indexing, for ea
h fet
hed fa
t pj(aj), Steps 3b, 3
, 4 and 5 areperformed.The a
tions performed in Steps 1, 2 and 3a with fa
t pi(ai), and the a
tions in Steps 3b, 3
, 4and 5 with fa
ts pi(ai) and pj(aj)
onstitute a su

essful derivation step.3. If the uni�
ation in Step 2 of Make Inferen
es su

eeds, and rule R has only one body literal, a headfa
t is
reated, and inserted into the appropriate relation. The a
tions performed in Steps 1, 2, 4 and5 with the given fa
t pi(ai)
onstitute a su

essful derivation step.A su

essful derivation step in an SN evaluation
an be identi�ed4 by the rule R used in the step, and thefa
t used for ea
h body literal of R. Ea
h su

essful derivation step has asso
iated with it the fa
t derivedby the derivation step.An unsu

essful derivation step in the evaluation
an be identi�ed by the rule R used in the step, andthe fa
t pi(ai).An attempted derivation step is either a su

essful or an unsu

essful derivation step.In the
ase of NSN evaluation, we assume that fa
ts are labeled with integers.5 We extend the de�nitionsabove, to the
ase where the fa
ts used in the derivation steps are labeled fa
ts, and thereby de�ne labeledsu

essful derivation steps, labeled unsu

essful derivation steps, and labeled attempted derivation steps. Wethen identify6 su

essful and unsu

essful derivation steps as above, but using labeled fa
ts. 2For all Semi-Naive rewritten rules other than the rule QR1, the �rst literal in the rule is a literal ofthe form Æp. Hen
e, any fa
t used for su
h a literal must be `newly derived' (i.e., derived in the previousiteration), and all derivation steps (other than those involving rule QR1) use a `newly derived' fa
t for the�rst literal.The a
tions performed in Steps 1, 2 and 3a may be identi�ed with several su

essful derivation steps,and may hen
e be double
ounted. When
ounting the
ost of evaluation (in Se
tion 5.7) we re
ognize this,and avoid double
ounting.The de�nitions of derivation steps above are in terms of rules in the Semi-Naive rewritten version ofPMGU T . We often talk of derivation steps using rules from PMGU T rather than from the Semi-Naiverewritten version of PMGU T . Whenever we do so, we spe
ify whi
h literal is used �rst in the derivationstep, and this uniquely identi�es whi
h Semi-Naive rewritten version of the rule is used.All the a
tions in making inferen
es, given a fa
t for the �rst literal in a Semi-Naive rewritten rule, havebeen allo
ated to attempted derivation steps as des
ribed above. We still have to a

ount for two otherkinds of a
tions in Semi-Naive evaluation: (a)
he
king if there is a fa
t for the �rst literal in a Semi-Naiverewritten rule | this is done on
e per rule in ea
h iteration and (b) the Semi-Naive update steps, exe
utedon
e in ea
h iteration. We now
onsider how to map the
osts of these a
tions to attempted derivation steps,so that we need not
onsider the
osts of these a
tions in the rest of the thesis.1. The
ost of
he
king if a rule
an be used in Step 2.1 of SN Iterate in an iteration is O(1). Sin
ewe assumed that the number of rules is a
onstant, we map this
ost to the
ost of the derivation of4Uniquely, as we shall show.5The integer labels are used to distinguish repeated o

urren
es of a fa
t, sin
e subsumption-
he
king is not performed.6Uniquely, as we shall show. 49

some (labeled) fa
t in some relation of the form Æpold. (There must be some su
h fa
t, else Semi-Naiveevaluation would have terminated after the previous iteration.) Sin
e any su
h fa
t is present in the Ærelation for at most one iteration, the
ost of the derivation does not in
rease by more than a
onstant,and the in
rease
an be ignored.2. Subsumption
he
king a
tions have been a

ounted for by the model above. Apart from subsumption-
he
king, Semi-Naive update a
tions move fa
ts from one relation to another. This is done at mosta
onstant number of times per fa
t, and we assume this
an be done at unit
ost per fa
t (whi
h isreasonable, assuming hash-based indi
es are used). We map the
ost of moving a fa
t between relationsto the derivation step that derived the fa
t; this does not in
rease the
ost of the derivation step bymore than a
onstant, and
an be ignored.Thus the
ost of Semi-Naive evaluation is at most a
onstant times the
ost of attempted derivation steps(assuming that the size of the program is a
onstant). In the rest of this thesis, we shall treat the
ost ofattempted derivation steps as synonymous with the
ost of Semi-Naive evaluation.4.2.1 The Non-Repetition PropertyDue to Semi-Naive rewriting, no attempted derivation step is repeated within an iteration. Every attemptedderivation uses at least one fa
t from a Æ relation. The Semi-Naive updates ensure that ea
h fa
t is in aÆ relation for pre
isely one iteration. Hen
e, Semi-Naive evaluation has the property that no attemptedderivation step is repeated in the evaluation. We
all this property of Semi-Naive evaluation the non-repetition property (see e.g., [MR89, RSS90℄).Not-So-Naive evaluation has a weaker non-repetition property. Ea
h fa
t
an have several o

urren
es,derived by di�erent su

essful derivation steps. In the
ase of Not-So-Naive evaluation, we give an identi�erto ea
h su

essful derivation step, and label ea
h o

urren
e of a fa
t with the identi�er of the derivationstep that derived it. There
an thus be two or more o

urren
es of a fa
t, but ea
h o

urren
e has a distin
tlabel. Ea
h labeled fa
t is in a Æ relation for exa
tly one iteration. Not-So-Naive evaluation has the propertythat no labeled attempted derivation step is repeated in the evaluation. We formalize this property throughthe following theorem.Theorem 4.2.1 (Non-Repetition) Consider a Semi-Naive (resp. Not-So-Naive) evaluation of a program.No attempted derivation step (resp. labeled attempted derivation step) is repeated in the evaluation. 24.2.2 Dis
ussionWe made the assumption above that the size of the program is a
onstant; we do not take the size ofthe program into a

ount in our time
omplexity analysis, even though it may
ontribute to the
ost ofevaluation. There are essentially two pla
es where this assumption is used. First, ea
h iteration of Semi-Naive evaluation applies all the rules, but may �nd the Æ relations empty for all but one rule. To keep thenumber of rule appli
ations proportional to the number of attempted derivations, and independent of thenumber of rules in the program, we
an devise a rule indexing s
heme. We dis
uss the rule indexing s
hemebrie
y in Se
tion 5.9. Se
ond, there may be many relations, but semi-naive updates may be required only for50

a few of them, if only a few fa
ts are derived in ea
h iteration. To avoid the
ost of
he
king whi
h relationsneed to be updated, we keep tra
k of whi
h Æ relations are non-empty, and perform Semi-Naive updates onlyfor these relations. Thus the
ost of updates
an be kept proportional to the number of fa
ts derived, andindependent of the number of predi
ates in the program.4.3 Bottom-Up Evaluation vs. Prolog� | Number of Inferen
esIn this se
tion we present a high-level
omparison (based on the number of \a
tions" performed) of bottom-up evaluation using MGU MTTR rewriting with Prolog� evaluation. In Chapter 5 (Se
tion 5.7), we extendthis
omparison by taking into a

ount the
ost of ea
h a
tion.The
omparison is performed essentially by mapping ea
h attempted derivation in bottom-up evaluationto a
orresponding a
tion of Prolog� evaluation, and showing that not more than a
onstant number ofattempted derivations map on to the same Prolog� a
tion. We prove this by showing how to
onstru
t su
ha mapping, given a derivation sequen
e for the MGU MTTR rewritten program.In order to spe
ify the mapping, we assume that ea
h attempted derivation step has a unique identi�er,and we label fa
ts derived by SN evaluation with the identi�er of the derivation step that generated the fa
t.In a similar fashion, we label a
tions (su
h as generation of a query or answer) performed by Prolog� in orderto distinguish between multiple o

urren
es of the a
tion. Thus the mapping is in terms of labeled derivationsteps; if a derivation step is repeated (as is the
ase if subsumption-
he
king is not performed), ea
h repetitionof the step uses fa
ts with di�erent labels, due to the non-repetition property of NSN evaluation.The mapping is somewhat intri
ate, and we build it up indu
tively. We assume that we have a mappingwith the required properties for an initial part of a derivation sequen
e, and show how to extend it in amanner su
h that the required properties are preserved. We present details of the mapping in Appendix B.The mapping is de�ned using a
ase analysis on the types of rules in the rewritten program. The mappingfor Type 2 rules of the formsup1j;i(: : :): �supj;i�1(: : :); answer(ID; p(: : :)):is the
riti
al part of the mapping. We show that for ea
h su

essful derivation using su
h a rule with somefa
ts supj;i�1(hid; v; id; ans) and answer(id; p(a)), (1) Prolog� evaluation returns an answer p(a) for a queryon the ith literal of rule Rj , and (2) the bindings of rule variables in the Prolog� evaluation when the querywas generated are the same as the bindings stored in v, and (3) the (instantiated) return-point query inProlog� evaluation, when the query on the i'th literal was generated, is equal to ans. We then have thefollowing theorem, whose proof is presented in Appendix B.Theorem 4.3.1 Let P be a de�nite
lause program, and Q be a query on the program. There are
onstants
1 and
2 (that may depend on the size of P) su
h that the following is satis�ed.Let PMGU T be the MGU MTTR rewriting of hP;Qi. Given any database, let the number of labeledattempted derivation steps performed by a Semi-Naive evaluation (with or without subsumption
he
king)of PMGU T be n, and let the number of a
tions performed by Prolog� evaluation of query Q with the samedatabase be m. Then n <
1 �m+
2. 2 51

There may be many a
tions of Prolog� evaluation that are not in the image of any attempted derivationstep of bottom-up evaluation. Thus, the theorem helps establish an upper bound on how mu
h worse (interms of number of a
tions) Semi-Naive evaluation using MGU MTTR rewriting
an be
ompared to Prolog�evaluation. In
ontrast, no su
h bound exists for the opposite dire
tion. For queries on the following simpleprogram to dete
t rea
hability in a graph, Prolog� may not terminate if there are
y
les in the edge relation,whereas Semi-Naive evaluation of PMGU T always terminates if the edge relation is �nite.rea
hable(X;Y) : � edge(X;Z); rea
hable(Z; Y):rea
hable(X;Y) : � edge(X;Y):

52

Chapter 5Evaluation of Non-Range-Restri
tedProgramsIn this
hapter we
onsider the eÆ
ient evaluation of programs that have been rewritten using MGU MTTRrewriting. In Se
tion 5.1 we motivate the need for bottom-up evaluation of programs that generate non-ground fa
ts; to the best of our knowledge, no eÆ
ient bottom-up evaluation s
hemes for su
h programs wereknown in the past. We develop a term representation using \persistent versioned" binding environments(Se
tion 5.3). We then develop an evaluation te
hnique that keeps extra information with fa
ts, and usesthis information to redu
e the
ost of some uni�
ations (Se
tion 5.4).The evaluation te
hnique we develop is quite eÆ
ient in terms of time
omplexity. We show in Se
tion 5.7that given a program and a query, if Prolog� evaluation of the query on a database takes time t, the bottom-up evaluation of the MGU MTTR rewritten program using our evaluation te
hnique, on the given database,without subsumption
he
king, takes time O(t�log log t). (The size of the program is not taken into a

ount inthe time
omplexity measure.) If subsumption
he
king is used, in many
ases bottom-up evaluation is mu
hmore eÆ
ient than Prolog query evaluation. We dis
uss some extensions of our te
hniques in Se
tion 5.9.In Se
tion 5.10 we summarize earlier results of ours on the evaluation of a restri
ted
lass of programs thathave been rewritten using MTTR rewriting. We dis
uss related work in Se
tion 5.115.1 Introdu
tionPrograms that generate non-ground terms are of
onsiderable importan
e. For instan
e, di�eren
e-lists1 areused in Prolog to append lists in
onstant time; they are an instan
e of a more general te
hnique for
reatingdata stru
tures top-down, �lling in \holes" as
omputation pro
eeds. One su
h appli
ation is the parsing ofDe�nite Clause Grammars | it is natural to
reate the outer stru
ture of the parse tree, and �ll in �elds as
omputation pro
eeds. By doing so, attributes of one part of the parse tree are available for referen
e whenanother part of the tree is being
onstru
ted. Meta-interpreters, partial evaluators, abstra
t interpreters andother su
h programs operate on data stru
tures that
ontain variables. Memoing of goals and answers is very1Di�eren
e lists are a form of representation of lists. dlist(L;X) is su
h that L is a list that
ontains variable X at the end,rather than \nil". See Example 5.1.1 for a more detailed des
ription.53

important for some of these programs [War92℄. For instan
e,
hart parsing of DCGs is naturally supportedusing memoing, and
an be mu
h more eÆ
ient than top-down parsing in some situations. It is thereforene
essary to support eÆ
ient memoing evaluation of programs that generate non-ground fa
ts.In the absen
e of non-ground fa
ts, bottom-up evaluation using MGU MTTR rewriting is as fast (up toa data-independent
onstant fa
tor) as Prolog, as dis
ussed in Sudarshan and Ramakrishnan [SR92b℄ (seeSe
tion 5.10). However, for logi
 programs that
an generate non-ground fa
ts there is a signi�
ant overheadper inferen
e for unoptimized bottom-up evaluation te
hniques; the overhead is no longer within a
onstantfa
tor of Prolog.In this
hapter we present an eÆ
ient evaluation me
hanism for programs that have been rewrittenusing MGU MTTR rewriting. This evaluation me
hanism is of parti
ular use for programs that generatenon-ground fa
ts. We
all this evaluation me
hanism Opt-NG-SN evaluation (whi
h stands for OptimizedNonGround Semi-Naive evaluation). We use the term Opt-NGBU query evaluation for the query evaluationme
hanism that �rst rewrites programs using MGU MTTR rewriting, and evaluates the rewritten programusing Opt-NG-SN evaluation.Using the Opt-NGBU evaluation me
hanism, we show the following: modulo the
ost of subsumption-
he
king, the overhead of a
tually memoing goals and fa
ts and \looking up" the answers that
orrespondto a given goal is quite small (O(log logm), where m is bounded by the
ost of Prolog evaluation). (To bemore pre
ise, we show that given a program and a query, if Prolog evaluation of the query on a databasetakes time t, then Opt-NGBU query evaluation on the given database, without subsumption-
he
king, takestime O(t � log log t). The size of the program is not taken into a

ount in the time
omplexity measure.)In essen
e, our results show how to memo non-ground fa
ts \almost" as eÆ
iently as ground fa
ts. Animportant
onsequen
e is that memoing te
hniques
an always perform \almost" as eÆ
iently as Prolog(often, mu
h better). This result assumes that the size of the program (but not the database) is a
onstant.Che
king whether a goal (similarly, an answer) is already memoed
an be expensive. The
ost ofsubsumption-
he
king must be balan
ed against the
ost of re
omputation. (See Se
tion 5.8 for a more
om-plete dis
ussion.) Opt-NGBU evaluation
an be faster if some redundant
omputation is avoided throughsubsumption-
he
ks; in fa
t, the time
omplexity of evaluation may be signi�
antly better. There are manyprograms where Prolog evaluation and Opt-NGBU evaluation without subsumption-
he
king run for ever,but Opt-NGBU evaluation with subsumption-
he
king terminates.In the light of these results, the biggest di�eren
e between Prolog and Opt-NGBU evaluation withoutsubsumption-
he
king is that between \pipelining" and \materialization" [CGK89℄. The
onstants are higherfor memoing sin
e fa
ts and goals are expli
itly
reated and stored, but there are bene�ts in many
ases dueto avoided re
omputation.However, we note that even without subsumption-
he
king, Opt-NGBU evaluation has several bene�ts.Opt-NGBU evaluation is
omplete for de�nite
lause programs | in
luding programs with fun
tion symbols| even without subsumption-
he
king. Further, mu
h of the repeated
omputation in iterative deepening (ate
hnique used to make Prolog evaluation
omplete; see, e.g. [O'K90℄) is avoided, even without subsumption-
he
king.As an example of the power of the optimized evaluation te
hnique, the bottom-up evaluation of appendwith non-ground lists of length n is performed in time O(n) by our optimized te
hniques, as against O(n2) by54

unoptimized bottom-up query evaluation. Top-down evaluation te
hniques that perform memoization, e.g.QSQR extended to deal with non-ground terms, are also quadrati
. (These times are under the assumptionthat o

ur-
he
ks and subsumption-
he
king | the later being unne
essary for this program| are omitted.)We present an example (Example 5.9.2) of the bene�ts to be had from the use of di�eren
e-lists (whi
hare non-ground stru
tures) in a program that is best evaluated bottom-up.5.1.1 A Motivating ExampleWe now
onsider an example that motivates the results in this
hapter, and illustrates the main issuesinvolved.Example 5.1.1 Di�eren
e lists (see e.g., [O'K90℄) are a representation for lists. The following is an exampleof a di�eren
e list.dlist([1j2jX ℄; X)It represents the list [1; 2℄. Di�eren
e list append is de�ned by following rule:dappend(dlist(X;Y); dlist(Y; V); dlist(X;V)):A goal?dappend(dlist([1j2jX ℄; X); dlist([3j4jZ℄; Z); Ans)would unify with the head of the above rule to give the stru
turedappend(dlist([1j2j3j4jZ℄; [3j4jZ℄); dlist([3j4jZ℄; Z); dlist([1j2j3j4jZ℄; Z))Thus Ans gets bound todlist([1j2j3j4jZ℄; Z)whi
h is in the required format. Answering a query on dappend takes
onstant time in Prolog. Note thatthe �rst argument of dappend is
hanged when the query is solved.2Let us now
onsider what happens if we use di�eren
e lists with bottom-up evaluation. Suppose we havethe following rule for
omputing paths, as part of a larger program:path(X;Y; L) : � path(X;Z;L1); edge(Z; Y); dappend(L1; dlist([ZjY jV ℄; V); L):The path fa
ts store potentially long paths represented as di�eren
e lists. The �rst problem in makingan inferen
e is that if we dire
tly use the di�eren
e list stored in the given path fa
t and try to append anedge to it, the di�eren
e list in the given path fa
t will get damaged, and
annot be used to make furtherderivations. The evaluation me
hanism (Opt-NG-SN evaluation) presented in this
hapter uses a termrepresentation with binding environments for variables, and a \persistent versioning" s
heme to address theproblem of modifying shared variables without damaging stored fa
ts (Se
tion 5.3).32dappend is destru
tive in the sense that it
hanges its �rst input argument. In this example, the �rst argument
an still beinterpreted as representing [1; 2℄ by \subtra
ting" the se
ond list, but it
annot be meaningfully used in further
alls to dappenduntil the destru
tive update is undone during ba
ktra
king.3By not damaging stored fa
ts, we get the same e�e
t as undoing of the update on ba
ktra
king. However, persistentversioning does not solve the problem that the �rst argument of dappend is
hanged after uni�
ation, This problem is inherentin the di�eren
e list representation, and is present with top-down evaluation too.55

The se
ond problem is less obvious, and is present with Magi
 rewriting as well as with its variants (MT-TR, MGU Magi
 Templates and MGU MTTR rewriting, and Alexander Templates). The SupplementaryMagi
 rewriting of the given rule (ignoring queries on path and edge) is as follows:R1 : sup1;0(X;Y; Z; L; L1) : �query(path(X;Y; L)); path(X;Z;L1); edge(Z; Y):R2 : query(dappend(L1; dlist([ZjY jV ℄; V); L)) : �sup1;0(X;Y; Z; L; L1):R3 : path(X;Y; L) : � sup1;0(X;Y; Z; L; L1); dappend(L1; dlist([ZjY jV ℄; V); L):R4 : dappend(dlist(X;Y); dlist(Y; V); dlist(X;V)) : �query(dappend(dlist(X;Y); dlist(Y; V); dlist(X;V))):Let us
on
entrate on the generation of queries and answers on dappend. The third argument of thesup1;0 fa
t is a list of nodes on a path, and
an be quite large. From the sup1;0 fa
t we generate a query ondappend. In general, we have to rename variables in fa
ts and rules before uni�
ation, in order to avoid name
lashes. We
an be smart and rename the rule and the smaller fa
ts, and avoid renaming the larger fa
ts.Su
h a renaming works well for rules R2 and R4, and we
an
reate an answer to the query on dappend (weuse the \persistent versioning" s
heme to avoid damaging the stored path fa
t while doing this). But now wehave to unify two potentially large fa
ts, one for sup1;0 and one for dappend with rule R3. Renaming eitherfa
t
an be linear in the size of the fa
t. After renaming, the problem of a
tually unifying the renamed fa
tswith the rule still remains.We
all the step of unifying an answer fa
t and a supplementary fa
t with a rule body as answer-returnuni�
ation. Prolog evaluation does not perform any uni�
ation when an answer is returned to a query, andhen
e does not perform any uni�
ation equivalent to the answer-return uni�
ation. In general, uni�
ationtakes time linear in the size of the terms. (For the
ase of ground terms, we
an use hash-
onsing to storepre
omputed values to speed up uni�
ation; no su
h te
hnique is known for the general
ase.)To redu
e the
ost of answer-return uni�
ation, Opt-NG-SN evaluation stores part of the state of the
omputation along with ea
h fa
t, and maintains information about the state through auxiliary identi�ersstored with fa
ts (Se
tion 5.4). Using the stored state information, it is able to redu
e the time
ost ofanswer-return uni�
ations performed by bottom-up evaluation to almost a
onstant per uni�
ation in many
ases (in all
ases, if subsumption-
he
king is not used). 2Table 2 shows a
omparison between various
osts in unoptimized bottom-up evaluation of an MGUMTTR rewritten program and Prolog evaluation. After presenting our optimization te
hniques, we presenta similar
omparison of Prolog with optimized bottom-up evaluation.5.2 Basi
sIn this
hapter we
onsider query evaluation on de�nite
lause programs.4 As the �rst stage of bottom-upquery evaluation, the given program and query are rewritten using MGU MTTR rewriting (Se
tion 3.4).Our evaluation me
hanism is designed to evaluate the rewritten programs eÆ
iently.4We
an extend this
lass to
over
ertain forms of negation su
h as strati�ed negation [CH85, ABW88℄ or modular nega-tion [Ros90℄, by using our optimizations in
onjun
tion with evaluation te
hniques su
h as \Ordered Sear
h" [RSS92a℄. We donot dis
uss this issue. 56

Operation Bot. Up (No Opt.) PrologUni�
ationa. Answer-return O(size of terms) O(1)b. Other O(size of terms) O(size of terms)Indexinga. Answer-return O(Pfa
ts size of fa
t) O(1)b. Other O(Pfa
ts size of fa
t) O(Pfa
ts size of fa
t)Subsumption Che
king | |Creation of head fa
t O(size of fa
t) O(1)(Cannot instantiateshared variables)Table 2: Bottom-Up Evaluation using MGU MTTR rewriting vs. PrologWe note that programs rewritten using MGU MTTR rewriting
ontain the meta-predi
ate goal id. Thesemanti
s of su
h programs was dis
ussed in Se
tion 3.2. We use the term program predi
ate to denote basepredi
ates (i.e. those de�ned in a database) as well as derived predi
ates (i.e. those de�ned in the program);meta-predi
ates (i.e., the goal id predi
ate) are not
onsidered program predi
ates.5.2.1 Prepro
essingTo make our dis
ussion and analysis simpler, we assume that all non-equality literals in rules of the programhave as arguments only distin
t free variables. This
an be a
hieved by the following straightforward trans-formation, without any in
rease in the time
omplexity of either Prolog evaluation of bottom-up evaluation.Suppose we have a rule:R : p(t0;1; t0;2; : : : ; t0;n0) : � q1(t1;1; t1;2; : : : ; t1;n1); q2(t2;1; t2;2; : : : ; t2;n2); : : : ; qk(tk;1; tk;2; : : : ; tk;nk):We transform the above rule into the following rule, where ea
h Xi;j is a new variable, distin
t from anyvariables in the rule.R : p(X0;1; X0;2; : : : ; X0;n0): �X0;1 = t0;1; X0;1 = t0;2; : : : ; X0;n0 = t0;n0;X1;1 = t1;1; X1;1 = t1;2; : : : ; X1;n1 = t1;n1; q1(X1;1; X1;2; : : : ; X1;n1);X2;1 = t2;1; X2;1 = t2;2; : : : ; X2;n1 = t2;n1; q2(X2;1; X2;2; : : : ; X2;n2);� � �Xk;1 = tk;1; Xk;1 = tk;2; : : : ; Xk;n1 = tk;n1; qk(Xk;1; Xk;2; : : : ; Xk;nk):It is straightforward to verify that this transformation does not result in any in
rease in the time
om-plexity of Prolog� evaluation.5 In parti
ular, it does not a�e
t the use of tail-re
ursion optimization. Thistransformation introdu
es equality literals. We assume that equality is a base predi
ate with a single fa
t\= (X;X)". Further, we assume queries are not generated for the equality predi
ate, and instead the opti-mization of MGU MTTR rewriting for uses of base predi
ates (des
ribed in Se
tion 3.4.1) is applied to o

ur-ren
es of the equality predi
ate. This optimization allows the repla
ement of o

urren
es of answer(ID; q(t))by q(t) in the bodies of rules, if q is a base predi
ate. No queries are generated for literals where this re-pla
ement is performed.5We assume that the size of the program is �xed. Thus, although the above transformation
an defeat rule indexingte
hniques used by Prolog, the loss of speed is by at most a
onstant fa
tor.57

As a result of this prepro
essing, body o

urren
es of literals of the form supi;j(ti), answer(ID; pi(ti)),or query(pi(ti); ID) are su
h that ti is a tuple of distin
t variables. This prepro
essing is not
riti
al, butsimpli�es the dis
ussion
onsiderably.5.3 Representation of Terms and Fa
tsThe representation used for terms is important in bottom-up evaluation. Subterms are shared betweendi�erent goals and answers, both in bottom-up evaluation and in Prolog evaluation. Prolog uses a tuple at atime ba
ktra
king strategy, and hen
e it
an destru
tively modify variable bindings, and on ba
ktra
king it
an undo the modi�
ations in order to perform further derivations. On the other hand, bottom-up evaluation
an generate several fa
ts from a given fa
t (for instan
e, several query fa
ts may be generated from a agiven query fa
t), and the fa
ts may need to
o-exist. Thus several instantiations of a variable may alsoneed to
oexist. Hen
e destru
tive modi�
ation of variable bindings is ruled out. We note that this problemalso exists for non-depth-�rst evaluation strategies su
h as parallel implementations of Prolog. We des
ribebelow the term representation we use in our evaluation me
hanism. The
ore of the representation is a\fully-persistent versioned" binding environment for variables.A binding environment (bindenv) stores bindings for variables. A variable in bindenv may be free, ormay be bound to a stru
ture stru
ture0 (whi
h is possibly an atomi
 value). Variables within stru
ture0 arealso interpreted in bindenv. A bindenv di�ers from a substitution in the way in whi
h it is interpreted. Avariable X in the binding environmentfX ! f(Y); Y ! agis interpreted as being bound to f(a) by dereferen
ing variables
ompletely, whereas a variable X in asubstitution fX=f(Y); Y=ag is interpreted as being bound to f(Y).We represent a fa
t as a pair hstru
ture; bindenvi. Here bindenv is a binding environment that re
ordsthe
urrent binding of ea
h variable present in stru
ture (and perhaps other variables as well). The followingis an example of our term representation:hg(W;Y); fY ! X;Z ! 4;W ! f(Z;Z)giThis represents the fa
t g(f(4; 4); X).During rule appli
ation we allow variable bindings to span bindenvs; su
h bindings are of the formhstru
ture0; bindenv0i. Variables within stru
ture0 are interpreted in bindenv0. We do not allow su
h bind-ings in fa
ts, for reasons that we note later in this se
tion.Given a fa
t f , we use f:stru
ture to refer to the stru
ture of f , and f:bindenv to refer to the bindenv off . Thus f = hf:stru
ture; f:bindenvi. We use the notation hs; ei, where s is a term, to denote s interpretedin bindenv e.De�nition 5.3.1 We say that terms hs1; e1i � hs2; e2i if both terms represent exa
tly the same term.Given a fa
t f = hf:stru
ture; f:bindenvi, the variables in f:stru
ture are said to be dire
tly a

essiblefrom f:stru
ture. By looking up the bindings of these variables in f:bindenv, more variables are rea
hable(transitively). All su
h variables are said to be a

essible from f:stru
ture. Note that f:bindenv may
ontainbindings for variables are not a

essible (dire
tly or indire
tly) from f:stru
ture.58

The variables in the fa
t f are those variables that are a

essible from f:stru
ture. The free variables inthe fa
t f are those variables that are a

essible from f:stru
ture, and are free. The bound variables in thefa
t f are those that are a

essible from f:stru
ture, and are bound. 2Binding environments are implemented using \fully persistent versions of data stru
tures" [DSST86,Die89℄. When applied to bindenvs represented as arrays, a fully persistent versioning s
heme permits us to
arry out the following operations eÆ
iently:1. Create a new
hild version of an existing bindenv (whi
h itself may have been
reated as a
hild versionof another bindenv, and so on). The new version has the same bindings as the old version when it is
reated, but any
hanges made to the new version will not a�e
t the old version.2. Add a new variable to a version of a bindenv.3. Lookup the binding of a variable in a version of a bindenv.4. Change the binding of a variable in a version of a bindenv.Variable names (internally) are just numbers, and looking up the binding of a variable is a
hieved by indexingthe array. A null entry in the array represents a variable that is not bound. Adding a variable is equivalentto extending the array by adding a new variable binding. We assume that ea
h version of a bindenv keepstra
k of the highest numbered variable in it, so that new variables
an be added to a bindenv version.In this
hapter, whenever we
onsider the time
omplexity of evaluation, we assume that the versionings
heme of Dietz [Die89℄ is used. Using Dietz's s
heme, operation (1)
an be done in
onstant time, andoperations (2), (3) and (4)
an be done in time O(min(log logm; logn)), where m is the total number ofversions of bindenvs that have been
reated and n is the number of versions of the variable that have beenmodi�ed. For brevity, where several variables are versioned, we use the notation V (de�ned below).De�nition 5.3.2 (V) Consider an evaluation of a program. Let fV1; V2; : : :g be the variables used in theevaluation. Let ni denote the number of versions of Vi that have been modi�ed, and let m denote the totalnumber of versions of bindenvs that have been
reated. Then V denotes maxi(min(log logm; logni)). 2We do not dis
uss the details of representation of versioned bindenvs, and refer the reader to [DSST86,Die89℄. We noted earlier that the representation we use for fa
ts does not allow bindings of the form(stru
ture; bindenv). This restri
tion is be
ause do not know how to
reate versions of fa
ts eÆ
iently usingthe representation without this restri
tion | the problem is related to the problem of
on
uent versioning(see, e.g., [DST90℄).5.3.1 Context Identi�ers for Fa
tsWith ea
h supplementary and initial query fa
t we store two identi�ers. The �rst identi�er �eld is
alled
ont id, whi
h stands for \
ontext identi�er". Loosely speaking, this �eld stores a unique identi�er for thesupplementary / initial query fa
t. The semanti
s of this �eld are made more pre
ise later. The se
ondidenti�er �eld is
alled par id, whi
h stands for \parent
ontext identi�er". Again loosely speaking, this�eld is used to store the
ontext identi�er of the
ontext (i.e., the supplementary/initial query fa
t) thatresulted in the generation of a query, and where answers to the query will be used. With all fa
ts other thansupplementary and initial query fa
ts, we store only the par id �eld.59

5.3.2 Dis
ussionWe did not require updates on a parent version of a bindenv to be seen by
hild versions that have been
reated earlier. However, su
h a feature
ould be useful for lazy path-
ompression on
hains of variablebindings. Su
h path-
ompression
an be implemented if desired (at no extra
ost) using the fully-persistentversioning s
hemes des
ribed in [DSST86, Die89℄.There is a variant of Dietz's versioning s
heme ([Die89℄), with an a

ess
ost of logn for ea
h variable,where n is the number of versions of the variable that have been modi�ed. This s
heme has lower
onstant
osts than the V a

ess
ost s
heme. An alternative way of implementing bindenvs is as a balan
ed sear
htree. Sear
hing for or modifying a variable binding takes O(logn) time, where n is the number of variablesin the bindenv. Sear
h trees
an be made fully persistent using the te
hniques or Dris
oll et al.[DSST86℄,at no extra a

ess
ost. The idea is fairly simple | whenever a node is
hanged by an operation, the pathfrom the root to the node is
opied, so that the
hanges are not seen by other versions of the bindenv.There is a \virtual
opy" s
heme due to D.H.D. Warren ([War83℄,
ited in [Per85℄) that allows
reationof versions of bindenvs represented as tries. It di�ers from the s
hemes mentioned above in that it is not\fully persistent" | if you make an update on a parent version, it will not be seen by any
hild versions
reated earlier. However, it is simpler than the fully-persistent versioning te
hniques. We have implementedthis s
heme in the CORAL dedu
tive database system [RSS92b℄.Several s
hemes have been proposed for representing variable bindings in the
ontext of OR-ParallelProlog evaluation. It is pointed out in [GJ90℄ that eÆ
ient implementation of the following operations isimportant for OR-parallel Prolog evaluation: (1) a

ess time to �nd variable bindings, (2) environment
reation time, and (3) task swit
hing time. Ea
h of these operations has an analogue in BU-evaluation. (Wenote that task-swit
hing as des
ribed in [GJ90℄ di�ers from the analogous operation in BU-evaluation, inwhi
h rule instantiations
an be
arried out essentially independently, ex
ept for some
on
urren
y
ontrolto prevent
on
i
ting updates to persistent bindenvs. Hen
e, it appears that the lower bounds on the
ostsof these operations shown in [GJ90℄ do not apply to BU-Evaluation.) Using Dietz's versioning s
heme, weget bounds of O(V) for operations (1) and (2), and
onstant time for (3).5.4 How to Apply a RuleThe basi
 operation in bottom-up evaluation is the appli
ation of a rule to produ
e new fa
ts. In thisse
tion we present an algorithm to apply a rule, with several optimizations to handle non-ground fa
ts moreeÆ
iently. We assume that the rules to be evaluated are those generated by the MGU MTTR rewritingpresented in Se
tion 3.4. The
on
eptual steps in applying a rule using a single fa
t were des
ribed inSe
tion 4.2. In this se
tion we
on
entrate on the details of how these steps are implemented.Pro
edure Apply Rule is shown below. It essentially performs a left to right nested loops join. Wedes
ribe informally some of the pro
edures that it uses, and present the details of these pro
edures later inthis se
tion.Pro
edure ApplyRule(R).Let the rule to be applied be: 60

R : p(t): �q1(t1)[; q2(t2)℄:/* [℄ denotes an optional argument */1. Let r env = a new empty (non-persistent) bindenv for the variables in the rule.2. Fet
h fa
ts for q1. /* q1 must be a base/derived predi
ate */For ea
h fet
hed fa
t hstr1; env1i do the following:2.1. Set env10 = new version of env1.2.2. Unify (hq1(t1); r envi, hstr1; env10i).During this uni�
ation, variables in the rule are bound preferentially.2.3. If the uni�
ation in the Step 2.1 su

eeds, Then2.3.1. If q2 is a program predi
ate, Thena. Fet
h q2 fa
ts that unify with hq2(t2); r envi.b. For ea
h fet
hed fa
t hstr2; env2i do the following:Exe
ute Smart Unify (R; hstr1; env1i; hstr2; env2i; hR0; r env0i).If Smart Unify failure,
ontinue with the next fet
hed fa
t.Else Insert Head Fa
t(hR0; r env0i)2.3.2. ElseRename and Reunify(R; hstr1; env1i; hR0; r env0i)If q2 is a meta-predi
ate, evaluate q2(t2)./* Else the rule has only one literal */Insert Head Fa
t(hR0; r env0i).2.4. Undo bindings in r env.end Apply Rule.An important point to note in Apply Rule is the
reation of versions of bindenvs. Version
reation ensuresthat the uni�
ation operations do not a�e
t any stored fa
ts. We do not present details of Unify, but des
ribeit informally. Unify uni�es its two arguments | bindings in the two environments are updated to
reate theuni�ed result. During uni�
ation, variables in its �rst argument are bound preferentially.6 Details of theindexing te
hnique used to retrieve fa
ts are dis
ussed later.Smart Unify uni�es the two fet
hed fa
ts with their respe
tive body literals. Noti
e that the fa
t bindenvsthat it is
alled with are the original fa
t bindenvs, that do not in
orporate the
hanges due to the uni�
ationin Step 2.1 of Apply Rule. The same is true for Rename and Reunify. Uni�
ation in Step 2.1 of Apply Rule
reates variable bindings that
ross bindenvs. Sin
e we do not allow su
h bindings in fa
ts, we ignore thebindings
reated in Step 2.1 on
e fa
ts have been fet
hed in Step 2.3.1.a. Smart Unify in
orporates our mainoptimization ideas, and is des
ribed in detail in Se
tion 5.4.1. Renaming of variables in the rule and thefa
ts may need to be done in the
ourse of Smart Unify. Smart Unify returns a renamed and instantiatedversion R0 of the rule R. (Instead of renaming rule variables during rule appli
ation, their renaming may bedeferred to the point when the head fa
t is
reated. We dis
uss this optimization in Se
tion 5.9.)6In other words, if two free variables, one from the left argument and one from the right argument are to be uni�ed, thevariable from the left argument is bound to the other variable.61

In the
ase when there is only one non-meta literal in the body of the rule, Smart Unify is not
alled.Rename and Reunify is instead used to rename rule variables in a manner similar to Smart Unify, and to
reate a renamed and instantiated version R0 of rule R.In general, the rule
an
ontain the meta-literal goal id. Su
h a literal is evaluated after the literal toits left has been evaluated (it is important that meta-literals are evaluated after literals to their left areevaluated). The goal id literal generates a single answer ea
h time it is evaluated. Insert Head Fa
t
reatesa head fa
t, and inserts it into the appropriate relation. It
he
ks for subsumption of the fa
t (if required;in some
ases subsumption-
he
king is not used) before inserting it.Let us now
onsider pro
edure Smart Unify.Pro
edure Smart Unify (R; hs1; env1i; hs2; env2i; hR0; r env0i)./** Due to MGU MTTR rewriting, any rule with two program predi
ateshas a query/supplementary/initial query literal and an answer literal inits body. Hen
e one of hs1; env1i and hs2; env2i is a query/supplementary/initial query fa
t, and the other an answer fa
t.**/1. If hs1; env1i is the query/supplementary/initial query fa
t,set s = hs1; env1i; a = hs2; env2ielse set s = hs2; env2i; a = hs1; env1i.2. If R is a supplementary (Type 2) rule,Then exe
ute Return Unify (R; s; a; hR0; r env0i).If it su

eeds, return su

ess.3. Return Rename Fa
t and Unify(R; s; a; hR0; r env0i).end Unify.Smart Unify makes use of knowledge about MGUMTTR rewriting. In a MGUMTTR rewritten program,any rule with two program predi
ates in its body must be either a Type 2 (supplementary) rule or a Type6 (base fa
t) rule. In either
ase the body of the rule has a query/supplementary/initial query literal andan answer literal. Let us ignore for now the
all to Return Unify, and assume that Smart Unify
allsRename Fa
t and Unify (we will
ome ba
k to Return Unify later).Rename Fa
t and Unify renames variables so that the variable names used in the two fa
ts and the ruleare disjoint. First
onsider the
ase that the rule is not a Type 0 rule QR3. The main optimization here isthat variables in the query/supplementary fa
t are not renamed. Variables in the rule and in the answer fa
tare renamed instead. The reason for renaming fa
ts in this manner is dis
ussed later. After the variablesare renamed, the (renamed) fa
ts are uni�ed with the renamed rule. The renamed rule R0, interpreted inbindenv r env0 is the result of unifying the fa
ts with the rule. Note that sin
e both the fa
ts and the ruleused the same bindenv after renaming, all bindings in the bindenv are lo
al to the bindenv (and hen
e inthe form required in Se
tion 5.3).If the rule is a Type 0 rule QR3, a further optimization is used. Su
h a rule
reates answers for the user's62

query from fa
ts for answer, and is of the following form:QR3 : q(A): �initial query(; ID;); answer(ID; q(A)):Note that the arguments of initial query are all \don't
are" (` ') ex
ept for the ID argument. The valuestored in the ID argument is an integer, and the variable ID gets bound to this value. Hen
e no renamingis needed for initial query fa
ts used in the rule.Note that r env0 is the bindenv from the versioned query/supplementary fa
t, and hen
e a versiondes
endant of the bindenv of the original query/supplementary fa
t. The identi�ers stored in the bindenvsof fa
ts are updated by Update Context Ids. We dis
uss details of updates to the identi�ers later. Thevalues in these identi�er �elds are used in Return Unify.Pro
edure Rename Fa
t and Unify(R; s; a; hR0; r env0i)1. Set r env0 = a new version of s:bindenv.2. Set s0 = hs:stru
ture; r env0i.3. If R is not a Type 0 rule QR3Set a0 to be a fully dereferen
ed version of a, with free variables renamedwith numbers starting from just above the highest numbered variablein r env0.Add all new variable to r env0.4. Set a0:bindenv = r env0.5. Let R0 be a renamed version of R with variable names startingfrom after the highest numbered variable in r env0.Add all variables in R0 to r env0.6. Unify the query/supplementary literal in hR0; r env0i with s0,preferentially binding variables in R0.7. Unify the answer literal in hR0; r env0i with a0,preferentially binding variables in R0.8. If the uni�
ations fail, Then return failure.9. Update Context Ids(R0; r env0; s).10. Return su

ess.end Rename Fa
t and Unify.In the
ase that Smart Unify is not
alled from ApplyRule, Rename and Reunify is
alled instead. Re-name and Reunify renames the variables in the rule so that they are disjoint from the variables in the solebody fa
t, and redoes the uni�
ation performed in Step 2.2. The bindenv r env0 is now a
hild of the bindenvof the fa
t hstr1; env1i.Insert Head Fa
t inserts the derived fa
t into the appropriate relation, after performing subsumption-
he
king if required. Before doing so, it dereferen
es variables in the fa
t.Pro
edure Rename and Reunify(R; hstr1; env1i; hR0; r env0i)63

1. Set r env0 = new version of env1.2. Let R0 be a renamed version of R with variable names startingfrom after the highest numbered variable in r env0.Add all variables in R0 to r env0.3. Unify the body literal of hR0; r env0i with the fa
t hstr1; r env0i.4. Update Context Ids(R0; r env0; hstr1; env1i).end Rename and ReunifyPro
edure Insert Head Fa
t(hR0; r env0i)1. If subsumption-
he
king is to be done, and the head fa
t ofhR0; r env0i is subsumed by an existing fa
tThen return.3. Set h to be a dereferen
ed version of the head of R0.5. Insert hh; r env0i into the appropriate relation.end Insert Head Fa
t.Ignoring the
all to Return Unify, it is not hard to see that Apply Rule is
orre
t (i.e., it generates alland only those fa
ts that follow (using mgus) from the rule and the given fa
ts). In all
ases, versions of fa
tbindenvs are
reated so that existing fa
ts are not a�e
ted by the a
tions of Apply rule. Sin
e rules in theMGU MTTR rewritten program have at most two body literals, and the �rst literal is either a base or derivedliteral, for all su
h rules Apply Rule performs the uni�
ation of fa
ts with the rule in a fairly straightforwardmanner if we ignore Return Unify. We des
ribe the a
tions of Return Unify and prove
orre
tness in a moreformal fashion later.5.4.1 Context Identi�ers and Return-Uni�
ationThe uni�
ation of the answer fa
t with the answer literal in rules that use supplementary predi
ates (Type2 rules) has no
ounterpart in Prolog. This answer-return uni�
ation is done impli
itly by Prolog whilegenerating the answer fa
t, sin
e answer fa
ts are not shared by di�erent
alls; Prolog does not have toperform a uni�
ation on returning an answer. In bottom-up evaluation answer fa
ts have to be expli
itlyuni�ed with a rule in order to generate new fa
ts. It is important that this operation be done eÆ
iently inbottom-up evaluation; else bottom-up evaluation
ould be mu
h slower than Prolog.Pro
edure Return Unify performs answer-return uni�
ation in O(V) time whenever it su

eeds. It usesinformation stored with fa
ts, that is maintained by pro
edure Update Context Ids. We des
ribe the pro
e-dures below. We refer to the test made in Step 1 of Pro
edure Return Unify as the test for return-uni�
ation,and the a
tions performed by Return Unify as return-uni�
ation.Pro
edure Update Context Ids(R0; r env0; fa
t)Let head be the head of hR; r env0i.1) Swit
h Type(R): 64

Type 0: /* Initialization rules*/Set head:par id = 0;If the head of R is initial querySet head:
ont id = new Context identi�er.Else set head:par id = fa
t:
ont id:Type 1: /* supplementary rule from query; fa
t = query fa
t*/Set head:par id = fa
t:par idSet head:
ont id = new
ontext identi�er.Type 2: /* supplementary rules; fa
t = supplementary fa
t */Set head:par id = fa
t:par id.Set head:
ont id = new
ontext identi�er.Type 3: /* answer rules; fa
t = supplementary fa
t */Set head:par id = fa
t:par id.Type 4: /* query rules, ex
ept for last literal;fa
t = supplementary fa
t */Set head:par id = fa
t:
ont id.Type 5: /* query rules, for last literal; fa
t = supplementary fa
t */Set head:par id = fa
t:par id.Type 6: /* answer rules, for base predi
ates; fa
t = query fa
t */Set head:par id = fa
t:par id.end Update Context IdsWe shall show several interesting properties about the propagation of
ontext identi�ers. The essentialidea is that ea
h supplementary fa
t (whi
h
an be viewed as a \
ontext") has a distin
t
ont id value. ForType 4 rules, the par id of the query fa
t generated is set to the
ont id of the body supplementary fa
t.Su
h query fa
ts will result in answers being generated for the query, and used with the body supplementaryfa
t. Answers that have this value in their par id �elds will be used with this supplementary fa
t, and sharebindenvs with it in a manner made pre
ise later. The par id value, in some sense, identi�es the representationof the fa
t. There
an be more than one
opy of ea
h fa
t, ea
h with its own representation and its ownpar id value. With subsumption-
he
king, all but one
opy of ea
h fa
t are eliminated.For Type 5 rules, the par id of the query fa
t generated is set to the par id of the body supplementaryfa
t. Su
h a query implements tail-re
ursion, and any answer generated will not be used with the bodysupplementary fa
t. Instead it will be used with a parent
ontext (supplementary/initial query fa
t) whose
ont id is equal to the par id of the body supplementary fa
t.The
ontext identi�ers are quite di�erent from the l
ont and l
id identi�ers used in QSQR evaluation[Vie86, Vie88℄. We dis
uss the di�eren
es in Se
tion 5.11.Pro
edure Return Unify (R; s; a; hR0; r env0i)/* s is a supplementary fa
t, and a an answer fa
t. */65

1. If s:
ont id 6= a:par idThen return failure.2. Set r env0 = new version of a:bindenv.3. Let R0 be a renamed version of R with variable names startingfrom after the highest numbered variable in r env0.Add all variables in R0 to r env0.4. Bind ea
h variable in the supplementary literal of hR0; r env0ito the
orresponding argument of s:stru
ture./* This step is well de�ned as des
ribed below. */5. Bind ea
h variable in the answer literal of hR0; r env0ito the
orresponding argument of a:stru
ture./* This step is well de�ned as des
ribed below. *//* This may
hange some variable bindings that were made in Step 4. */6. Update Context Ids(R0; r env0; s).7. Return su

ess.end Return UnifyEa
h argument of the supplementary literal is a distin
t variable. Hen
e the
on
ept of having forea
h variable in the supplementary literal a \
orresponding argument" in the fa
t (Step 4 of Return Unify)is well-de�ned. It is harder to see that the
on
ept is well-de�ned for Step 5. Su
h a literal is of theform answer(ID; q(X)), where X is a tuple of distin
t variables, due to the prepro
essing des
ribed inSe
tion 5.2.1. The
on
ept is well de�ned only be
ause all fa
ts used with the above literal are of the formanswer(id; q(a)).7 The arguments \
orresponding" to the variables in X are the arguments of q(a) in theabove fa
t.The bindings
reated by Return Unify when it su

eeds are su
h that hs; r env0i is the same as thesupplementary literal of hR0; r env0i, and ha; r env0i is the same as the answer literal of R0; r env0. That is,the a
tions of Return Unify
ompute a uni�er for the (renamed) rule, the (renamed) supplementary fa
t andthe answer fa
t. Further, the uni�er is a most general uni�er. Return Unify makes use of the informationabout the fa
t representation that is stored in the par id and
ont id �elds, in order to
ompute the uni�ereÆ
iently.The idea is roughly as follows (we prove
orre
tness formally later). When a query fa
t q is generatedfrom a supplementary fa
t s, q:bindenv is a new version of s:bindenv. Hen
e it inherits all variable bindingsthat are in s:bindenv. Suppose
omputation pro
eeds and an answer is generated for the query fa
t. If thetest in Step 1 of Return Unify su

eeds, then the bindenv of the answer fa
t is a des
endant of the bindenvof the supplementary fa
t (as we shall show). The updates to the bindenv are su
h that a free variable maybe
ome bound, but on
e a variable is bound, its binding does not
hange. Thus, if we repla
e the bindenv ofthe supplementary fa
t s by a:bindenv, the resultant fa
t s0 is an instan
e of s. Thus bindenv repla
ementuni�es the supplementary and answer fa
ts with the rule body. Most importantly, bindenv repla
ement
anbe done very fast | in O(V) time. A full uni�
ation (whi
h would have to be done in the absen
e of the7If we had fa
ts of the form answer(id; Y), the
on
ept of
orresponding arguments for the variables in X is ill-de�ned.66

information about the fa
t representation)
ould take time linear in the size of the terms to be uni�ed.5.4.2 ExamplesWe now present examples of the use of our te
hniques in the evaluation of the dappend and append programs.Example 5.4.1 Appending two di�eren
e lists
an be done in time O(V) with our term representation. Weillustrate the use of Return Unify using the following program. We have added a literal test(1) to the end ofthe rule in order to suppress tail-re
ursion optimization for the
all to dappend; the addition of this literalhelps illustrate our te
hniques better.path(L1; L2; L) : � dappend(L1; L2; L); test(1)dappend(dlist(X;Y); dlist(Y; V); dlist(X;V)):The prepro
essed form of the above program is as follows:path(L1; L2; L) : � dappend(L1; L2; L); test(1):dappend(V 1; V 2; V 3) : � V 1 = dlist(X;Y); V 2 = dlist(Y; V); V 3 = dlist(X;V):The MGU MTTR rewriting of this part of the program is as follows (we have applied some optimizationsto simplify the program; in parti
ular, we have unfolded some uses of goal id and =; also, we leave out Type0 rules for simpli
ity).R1 : sup1;0(HId; L1; L2; L; ID;A) : �query(path(L1; L2; L); ID;A);goal id(dappend(L1; L2; L); ID):R2 : query(dappend(L1; L2; L); ID; answer(ID; dappend(L1; L2; L))) : �sup1;0(HId; L1; L2; L; ID;A):R3 : sup1;1(HId; L1; L2; 0; A) : � sup1;0(HId; L1; L2; ID;A); answer(ID; dappend(L1; L2; L)):R4 : A : � sup1;1(HId; L1; L2; 0; A); test(1):R5 : A : � query(dappend(V 1; V 2; V 3); ID;A);V 1 = dlist(X;Y); V 2 = dlist(Y; V); V 3 = dlist(X;V):Suppose we have a query fa
tquery(path(dlist([ajbjX ℄; X); dlist([
jY ℄; Y); P); 0; answer(P)) : 0and a base fa
t test(1). Evaluation of the program on these fa
ts is depi
ted in Figure 7. The par id of ea
hfa
t is shown following the fa
t. For supplementary fa
ts, the
ont id is shown following the par id. Weuse pointers from fa
ts to their bindenvs in the �gure. Several fa
ts point to some of the bindenvs | thisnotation should be interpreted as ea
h fa
t having its own version of the bindenv, and is done only to keepthe �gure
on
ise.The main points to note in the �gure are the following. When using rules R1, R2, and R5, there isonly one derived predi
ate in the rule body. No renaming is done ex
ept for rule variables. Uni�
ation isstraightforward, and the fa
ts shown are
reated. The bindenvs get progressively re�ned, and more variablesare added to the bindenv (we have used the optimization of deleting rule variables if they are not referred67

Iteration Rule Fact Derived

dlist([a|b|X],X) dlist([c|Y],Y)

X Y P

 answer(P)

 3 R5 answer(1,): 1

X Y P L1 L2 L

5 R3 :0 :2

answer(P)

6 R4 answer() :0

query(, 1,) : 1

0 query(path(, , P), 0,): 0

1 R1 sup_1_0(0 , , , P, 1,) :0 :1

sup_1_1(0, , , 0,)

2 R2

X Y P L1 L2 L

dappend(, , P) answer(1, dappend(, , P))

dlist(, Y)

Figure 7: Evaluation of Program That Uses dappend
68

to in the head fa
t
reated after dereferen
ing). The par id �elds are shown for all fa
ts. The
ont id �eldsare shown for supplementary fa
ts.We now
ome to the use of rule R3. Return Unify su

eeds on this rule sin
e the par id of the answerfa
t is equal to the
ont id of the supplementary fa
t. The bindenv of the answer fa
t is su
h that if theoriginal supplementary fa
t is interpreted in the new bindenv, the variable P is bound to the result ofdappending the two given lists. This is be
ause X and P have been bound appropriately in the answer fa
tbindenv. Sin
e Return Unify su

eeds, no renaming is required, and uni�
ation takes O(V) time. This stepwould have taken time proportional to the size of the di�eren
e lists, had bottom-up evaluation without ouroptimizations been used. Finally rule R4 is used to
reate an answer to the query we were given. Here, thebase fa
t test(1) would have been renamed if it had variables. The supplementary fa
t is not renamed.Overall, the time
ost of the evaluation shown is O(V), regardless of the sizes of the di�eren
e lists. 2Example 5.4.2 The append program is de�ned as follows.append([℄; X;X):append([H jT ℄; L; [H jL1℄) : � append(T; L; L1):Prepro
essing generates the following program (we have simpli�ed the program a little to keep the example
on
ise):append(X1; X2; X3) : � X1 = [℄; X2 = X3:append(X1; L;X2) : � X1 = [H jT ℄; X2 = [H jL1℄; append(T; L; L1):The MGU MTTR rewriting of the original program was dis
ussed in Se
tion 3.4.2. The MGU MTTRrewriting of the modi�ed program is very similar, provided we treat the equality literals as base literals. Weomit the program for brevity.We note that ea
h rule in the rewritten program has only one derived literal in the body. Hen
e only rulevariables are renamed. Uni�
ation
osts are O(V) per inferen
e8 | the derived literals all have as argumentsdistin
t variables, and the uni�
ations performed by the equality literals are all straightforward. Returnuni�
ation is not important for this program, but variables in the query fa
ts are modi�ed and the versionedterm representation is
riti
al for eÆ
ien
y. Overall the
ost of evaluation of a query on append is O(n � V),where the �rst argument of the query is a list of length n. 25.5 Corre
tness of Apply RuleWe present a sequen
e of lemmas that are used to show that the a
tions performed by Return Unify are
orre
t, and hen
e Apply Rule is sound. We �rst show that given a supplementary fa
t s, if for any fa
t f ,f:par id = s:
ont id, then f:bindenv is a des
endant of s:bindenv. Further, we show that there is a query qgenerated from the supplementary fa
t, and any variable that is not a

essible from q has the same bindingsin f:bindenv as in s:bindenv. This property is proved formally in Lemmas C.1.1 and C.1.2 in Appendix C.1.The idea is to show using indu
tion on lengths of derivation sequen
es, that if par id value of a fa
t isinherited from the
ont id �eld of a supplementary fa
t, then so is the bindenv.8We assume that o

ur
he
ks are not used. 69

Lemma 5.5.1 Suppose that there is a query fa
tq = query(pi(ai); id1; answer(id1; pi(ai)))generated by a Type 4 rule (i.e., from a non-tail-re
ursive literal), and an answer fa
t a = answer(id1; pi(bi)).Suppose also that q:par id = a:par id. Let q str2 denote the last argument of q:stru
ture. Thenhq str2; a:bindenvi � ha:stru
ture; a:bindenvi2 The detailed proof is presented in Appendix C.1. The basi
 idea is to show that if the
onditions of thelemma hold, the stru
ture in the answer fa
t is a dereferen
ed version of the stru
ture in the query fa
t. Theformal proof is by indu
tion on lengths of derivation sequen
es, and uses a
ase analysis of the di�erent ruletypes.Lemma 5.5.2 Suppose that Return Unify su

eeds on rule R with fa
ts s and a. Then hR0; r env0i is anmgu of R0 with (a renamed variant of)s and a. 2The detailed proof is presented in Appendix C.1. The idea is that if Return Unify su

eeds, the instan-tiated rule generated is generated by a most general uni�er. We show that the instantiation is a uni�eressentially by using Lemma 5.5.1. We then show that it is a most-general uni�er by showing that anybindings introdu
ed by the uni�er are ne
essary for uni�
ation.5.5.1 Soundness and Completeness of EvaluationBy Lemma 5.5.2, Return Unify performs uni�
ation
orre
tly. The rest of Apply Rule is relatively straight-forward. Note that whenever we modify variables in a fa
t bindenv, we have ensured that the version weuse is a new version, and hen
e none of these steps a�e
t stored fa
ts. Thus we have the following theorem.Theorem 5.5.3 Let PMGU T be a MGU MTTR rewritten program and R a Semi-Naive version of a rulein PMGU T . Then a
all to Apply Rule(R) generates all and only those fa
ts that follow from R using theset of fa
ts available in the relations. 2We
all a version of Semi-Naive evaluation (des
ribed in Se
tion 2.2.3) that uses pro
edure Apply Rule toperform rule appli
ation as Opt-NG-SN evaluation. We
all the query evaluation te
hnique that �rst rewritesthe program and query using MGU MTTR rewriting, and then evaluates it using Opt-NG-SN evaluation asOpt-NGBU evaluation.From the above theorem, and the soundness and
ompleteness of Semi-Naive evaluation, we have thefollowing result.Theorem 5.5.4 Let PMGU T be a MGU MTTR rewritten program. Then Opt-NG-SN evaluation of PMGU Tis su
h that (1) any fa
t generated is subsumed by fa
ts in the least model of PMGU T , and (2) every fa
t inthe least model of PMGU T is subsumed by the fa
ts generated. 2From the soundness and
ompleteness results of MGU MTTR rewriting (Theorems 3.4.1 and 3.4.2), wethen have the following theorem. 70

Theorem 5.5.5 Let P be a program and Q a query on the program. Let PMGU T be the program generatedfrom P and Q by MGU MTTR rewriting. Then Opt-NG-SN evaluation of PMGU T is su
h that (1) Everyfa
t generated as an answer for Q is an answer to Q, and (2) Every answer to Q is subsumed by the set ofanswers generated.5.6 Cost of Optimized EvaluationWe now examine the
osts of the basi
 steps in bottom-up evaluation that are not present in top-downevaluation without memoing. Note that the extra
osts mentioned below are also in
urred by top-downevaluations that perform memoing. We have dis
ussed versioning and its
ost, in Se
tion 5.3, and havelooked at the
ost of extra uni�
ations, in Se
tion 5.4.1.Indexing of Fa
ts: We index supplementary and answer fa
ts using hash-indi
es on the goal-id �elds.The indexing was dis
ussed in Se
tion 3.3.4. Retrieving fa
ts
an be done in
onstant time per indexingoperation and retrieved fa
t, and fet
hes only fa
ts that will unify. Inserting fa
ts into the index
an be donein
onstant time.Subsumption Che
king: For the purpose of
omparison of Opt-NGBU evaluation with Prolog� evaluation,we assume that no subsumption-
he
king is done.Subsumption-
he
king of non-ground fa
ts is in general
ostly, but provides bene�ts by avoiding repeated
omputation, and is is important in many
ases. We dis
uss the
osts and bene�ts of subsumption-
he
kingin Se
tion 5.8.5.6.1 Cost of Inferen
es Using Apply RuleWe now examine the
osts asso
iated with inferen
es made using Pro
edure Apply Rule. In general, whenunifying a variable with a term, we need to perform an \o

ur
he
k" to ensure that the variable is notpresent within the term. Most implementations of Prolog do not perform the o

ur
he
k, and unifying avariable with a term takes
onstant time. In our
ontext, the uni�
ation would take O(V) time. However,if we do perform o

ur
he
ks in a naive fashion, Return Unify would take time linear in the size of thefa
ts. But we
an show that an o

ur
he
k is not ne
essary for soundness in Return Unify. This is be
ausethe rule literals have distin
t variables that are not present in the fa
ts; all the uni�
ation operations inReturn Unify bind a rule variable to a term in one of the fa
ts, and hen
e no o

ur
he
ks are needed.The following proposition is straightforward.Proposition 5.6.1 Pro
edure Return Unify runs in O(V) time. 2We also have the following lemma.Lemma 5.6.2 Suppose that an MGU MTTR rewritten program is evaluated using Opt-NG-SN evaluationwithout subsumption-
he
king. Then every
all to Return Unify su

eeds. 2The proof is presented in Appendix C.2. The essential idea is that the goal-id values and par id valuesare propagated through fa
ts in lo
k-step if subsumption-
he
king is not used. A supplementary fa
t andan answer fa
t unify only if their goal-id values are the same. We show that if they are the same, then the71

ont id of the supplementary fa
t will be the same as the par id of the answer fa
t, and hen
e Return Unifywill always su

eed.As a result of the prepro
essing, every body o

urren
e of literals of the form supi;j(ti) or answer(ID; pi(ti)) is su
h that ti is a tuple of distin
t variables. Arguments similar to those for Return Unify then showthat o

ur
he
ks are not needed for Rename and Reunify. Hen
e pro
edure Rename and Reunify
an beimplemented to run in O(V). Inserting fa
ts into a hash-index on the goal-id �eld takes
onstant time. Hen
epro
edure Insert Head Fa
t runs in time O(V) + the
ost of subsumption-
he
king (if it is performed). In all
ases below, we assume that the
ost of renaming a rule and adding its variables to the appropriate bindenvis O(V).Suppose Return Unify is
alled, and su

eeds on a rule instantiation. Then the time taken by Apply Rulefor that rule instantiation, ignoring the time taken for subsumption-
he
king, is O(V).If Return Unify is not
alled, or is
alled and fails, there are four
ases based on the type of the rule.1. The �rst
ase is when there is only one literal in the rule body. In this
ase, the
ost of evaluation isessentially the
ost of uni�
ation of the fa
t and the literal. Due to our prepro
essing, the argumentsof the literal are distin
t variables, and evaluation takes O(V) time.2. The se
ond
ase is when the se
ond literal in the rule body is an answer literal. If no subsumption-
he
king is performed, Return Unify always su

eeds for this
ase. We dis
uss the
osts if subsumption-
he
king is performed, in Se
tion 5.8.3. The third
ase is when the se
ond literal in the rule body uses the meta-predi
ate goal id. If subsump-tion-
he
king is not performed, the meta-predi
ate goal-id runs in
onstant time per
all.The �rst literal in the rule uses a supplementary predi
ate, and has as arguments distin
t variables.Hen
e uni�
ation for this literal
an be done in time O(V). The total
ost of rule instantiation is O(V)in the absen
e of subsumption-
he
king.4. The fourth
ase is when the se
ond literal in the rule body is a base literal. Rename Fa
ts and Unifyrenames the base fa
t. Prolog evaluations based on stru
ture
opying make
opies of base fa
ts whenusing them, and have the same overhead. Typi
ally, base fa
ts is assumed to be of
onstant size.5.7 A Comparison With Prolog�We now perform a detailed
omparison of the
osts of Opt-NGBU query evaluation (i.e., MGU MTTR+ Opt-NG-SN evaluation) without subsumption-
he
king and Prolog evaluation. We make the followingsimplifying assumption:A1: Given terms a, a1 and b, if a is equivalent to a1 then the time taken to unify a and b is the same asthe time taken to unify a1 and b.Two terms may be equivalent, but may be represented by di�erent stru
tures. The a
tual stru
tures
reated depend on the details of the uni�
ation algorithm; for instan
e, if the uni�
ation algorithm delaysdereferen
ing of variables when performing uni�
ation, the resultant representation is di�erent from therepresentation if dereferen
ing is always used. The main tradeo� is that in some
ases dereferen
ing ofunused terms is avoided by delayed dereferen
ing, but on the other hand some variables may have to be72

dereferen
ed several times. We do not fa
tor this low level de
ision into our
omparison. We also ignorethe e�e
ts of path-
ompression when dereferen
ing variables. Path
ompression
an result in a substantialimprovement in speed for some programs, if it is performed. Most Prolog implementations do not perform it,sin
e it
ompli
ates the maintenan
e of trail information. Path
ompression
an be implemented in bottom-up evaluation using fully-persistent bindenvs (see Se
tion 5.3.2). We assume it is not done in either
ase, inorder to simplify the dis
ussion.We also assume that bottom-up evaluation as well as Prolog� evaluation use the same indexing te
hniquefor base relations.Attempted derivations in Opt-NG-SN evaluation are split into
ases based on the rule type, and we usethe same mapping that was used to prove Theorem 4.3.1, to show that for ea
h derivation in Opt-NGBUquery evaluation (without subsumption-
he
king), Prolog evaluation has an a
tion of \almost" the same
ost.The details of the
omparison are presented in Appendix C.3. We sket
h the basi
 idea below. Attemptedderivations using Type 0, Type 3, Type 4 and Type 5 rules are shown to take O(V) time ea
h. If there aren su
h derivations, the mapping shows that Prolog performs
(n) a
tions, ea
h of at least unit
ost. The
ost of an attempted derivation using su
h a rule is primarily the
ost of evaluation of the equality literal.We show that Prolog� evaluation performs an equivalent uni�
ation a
tion. For Type 2 rules that have ananswer literal in the body, Return Unify always su

eeds, and hen
e the
ost of an attempted derivationO(V). For Type 2 rules that have a goal id literal in the body, the
ost of an attempted derivation is O(V),whi
h is mapped to an a
tion of Prolog� evaluation that takes at least unit time. For Type 2 rules that havea base literal (for e.g., an equality literal) in the body, we show that any attempted derivation is mapped toan a
tion of Prolog� evaluation that performs the same indexing operations and uni�
ation. Thus the loss ofspeed of due to Opt-NGBU evaluation is at most a fa
tor of O(V) in this
ase. We then have the followingtheorem.Theorem 5.7.1 Let P be a program, and Q a query. Given any database, suppose the
ost of Prolog�evaluation of Q is t units of time.9 Opt-NGBU evaluation without subsumption-
he
king evaluates the queryon the given database in time O(t � V). (The size of the program is not taken into a

ount in this time
omplexity measure.) 2The proof of the above theorem is presented in Appendix C.3.Table 3 summarizes a
omparison of the
ost of various steps in Opt-NGBU evaluation without subsump-tion-
he
king with the
orresponding
osts in Prolog evaluation. This table may be
ontrasted with Table 2to see the bene�ts of Opt-NG-SN evaluation.With Dietz's versioning te
hnique [Die89℄, V is O(log log t) for the following reason. As we noted inSe
tion 5.3, V is O(log logn), where n is the number of versions of bindenvs that are
reated. Ea
h attemptedderivation
reates at most three bindenv versions. The number of a
tions performed by Prolog� evaluationis at most t sin
e ea
h a
tion has at least unit
ost. Hen
e the number of attempted derivation steps is atmost
1 � t +
2, for
onstants
1 and
2 that are independent of t (Theorem 4.3.1). The O(log log t) boundon V then follows.9Where ea
h a
tion of Prolog� evaluation takes at least unit time.73

Operation Bot. Up (Opt.) PrologUni�
ationa. Answer-return O(V) O(1)b. Other O(V� size of terms) O(size of terms)Indexinga. Answer-return O(1) O(1)b. Other O(V �Pfa
ts size of fa
t) O(Pfa
ts size of fa
t)Subsumption Che
king | |Creation of head fa
t O(1) O(1)Table 3: Opt-NGBU Evaluation (without subsumption-
he
king) vs. PrologCorollary 5.7.2 Let P be a program, and Q a query. Given any database, suppose the
ost of Prolog�evaluation of Q is t units of time. Opt-NGBU evaluation without subsumption-
he
king evaluates the queryon the given database in time O(t � log log t). (The size of the program is not taken into a

ount in this time
omplexity measure.) 2The above result shows that the
ost of memoing fa
ts (ignoring the
ost of
he
king for subsumption)
an be made quite small, in the sense of time
omplexity. The optimization te
hniques we developed in this
hapter are of
onsiderable theoreti
al importan
e, sin
e they help us establish the above result. This resultassumes that the size of the program is a
onstant, We
an relax the assumption that the size of the programis
onstant, as dis
ussed brie
y in Se
tion 5.9.The question of how bottom-up and top-down methods
ompare is
onsidered important, and has beenunder investigation by several resear
hers [Ull89a, Bry90, Ram88, Sek89℄. Most of this resear
h, with theex
eption of [Ull89a℄, has restri
ted itself to
omparisons in terms of the number of fa
ts generated or thenumber of inferen
es made. Our result
arries the
omparison of top-down and bottom-up methods fartherthan the results of Ullman [Ull89a℄.1. Our result extends the
lass of programs
onsidered from safe Datalog to full logi
 programs.2. Our result
ompares bottom-up evaluation with a sophisti
ated model of Prolog evaluation, whi
hin
orporates tail-re
ursion optimization, unlike earlier work.We remind the reader that our analysis ignores
onstant
osts, and the e�e
t of fa
tors su
h as virtualmemory.5.8 Subsumption Che
king in Bottom-Up EvaluationIn general, subsumption-
he
king is a
ostly operation, and we are not aware of eÆ
ient subsumption-
he
king te
hniques for the
ase of arbitrary non-ground fa
ts. However, there are spe
ial
ases for whi
hsubsumption-
he
king
an be done eÆ
iently.For ground fa
ts, subsumption is the same as equality, and hash-
onsing [Got74, SG76℄
an be used toperform subsumption-
he
king in
onstant time in many
ases.10 In Se
tion 5.10 we dis
uss an eÆ
ient10EÆ
ient hash-
onsing requires that the ground terms are built up from smaller ground terms. This is not true if groundterms
an be
reated by instantiating variables within an existing non-ground term.74

subsumption-
he
king te
hnique for a restri
ted
lass of non-ground fa
ts. We use this te
hnique to optimizeSemi-Naive evaluation for a restri
ted
lass of programs.Without subsumption-
he
king, Semi-Naive evaluation is still sound and
omplete. However, derivations
an be repeated, and in the worst
ase a
omputation that terminates with subsumption-
he
king may loopfor ever, repeating derivations, if subsumption-
he
king is not used.Subsumption-
he
king
an be done for some predi
ates and not for others, and need be done only if thebene�ts from avoiding repeated
omputation and possible avoiding of in�nite loops is worth the
ost. Forinstan
e, there are
ases where query fa
ts (after adornment as in [BR87b℄) are ground, although answerfa
ts may not be ground. In many su
h
ases, it suÆ
es to perform subsumption-
he
king on the groundquery fa
ts.If subsumption-
he
king is performed, Return Unify may fail for for some answer-return uni�
ations.These uni�
ations o

ur with Type 2 rules of the following form:: : : : �supj;i(: : : ; ID;A); answer(ID; : : :):Our indexing s
heme ensures that any answer fa
t and supplementary fa
ts fet
hed by indexing will unifywith the rule. Suppose fa
ts supj;i(v; id; ans) and answer(id; p(b)) are fet
hed by indexing. If Return Unifydoes not su

eed with these fa
ts, it means that the answer fa
t was generated from a query fa
t that isequivalent to (but not the same as) the query fa
t that was generated using supj;i(a; id; ans). This meansthat the query fa
t generated from supj;i(a; id; and) was eliminated by subsumption-
he
king.Prolog would have solved the above repeated subgoal, whereas bottom-up evaluation with subsumption-
he
king avoids the repeated
omputation. The bene�t of avoiding repeated
omputation has to be balan
edagainst the
ost of
he
king for subsumption, and the
ost of rule appli
ation when Return Unify fails. These
ond of these
osts is as follows.Let n be the size of the answer fa
t. Then the fa
t
an be renamed in time O(n � V). Uni�
ation
anbe done in time linear in the size of the result of uni�
ation, and the overall
ost of rule instantiation is Vtimes the size of the answer fa
t after uni�
ation. If the
omputation of the answer fa
t would have takenmore time than V times the size of the answer fa
t after uni�
ation,
opying the fa
t is no more expensivethan re
omputing it. To de
ide if subsumption-
he
king for goals is useful in a given
ontext, we also haveto in
lude the
ost of subsumption-
he
king.5.9 Optimizations and Dis
ussionThe evaluation te
hnique we des
ribed
an be extended and optimized in several di�erent ways. The te
h-niques des
ribed in this
hapter
an be adapted in a straightforward manner to work with the MGU Magi
Templates rewriting instead of MGU MTTR rewriting. In fa
t, MGU Magi
 Templates
an be
onsidereda spe
ial
ase of MGU MTTR rewriting where the last literals in the rules are not treated as tail-re
ursive(and Type 4 query rules generated for these literals instead of Type 5 query rules). The proofs of
orre
tness
hange a little due to the di�eren
es in the form of the query fa
ts generated.We
an use adornments (see e.g. [BR87b℄) with MGU MTTR rewriting (or with MGU Magi
 rewriting)under some restri
tions on how adornments are generated. The idea is as follows. Consider any argumentof a literal that is a a free variable that appears nowhere else in or before the literal in the rule. Any query75

fa
t
reated from this literal will have a distin
t free variable in su
h an argument. Only su
h argumentsmay be
onsidered free when adorning a literal. Arguments adorned f are proje
ted out of the query literalsand fa
ts. The proof that Return Unify works
orre
tly be
omes a little more
ompli
ated, but Opt-NG-SNevaluation does work
orre
tly if the adornment is done subje
t to the above restri
tions.Rule variables are added at the end of bindenv of the head fa
t. We dereferen
e head variables before
reating the head fa
t. This often (always, in the
ase when the program generates only ground fa
ts) resultsin none of the rule variables being referen
ed from the head fa
t that is
reated. In
ase none of the rulevariables are referen
ed from the
reated head fa
t, we
an drop these variables from the versioned bindenv(and the number of the highest numbered variable in the bindenv
hanges appropriately).Dropping rule variables from the bindenv of the head fa
t
an be quite useful for the following reason.Throughout our dis
ussion we assumed a loss in eÆ
ien
y of O(V)
ompared to Prolog� evaluation. In the
ase of range-restri
ted programs, where no non-ground fa
ts are generated, the optimization of removingunreferen
ed rule variables from the bindenv results in bindenvs that have no variables at all. Su
h bindenvsneed not be stored expli
itly. Hen
e we
an evaluate su
h a program without any O(V) overhead. Similarly,if if variables in non-ground fa
ts are not instantiated (for example in the append program on non-groundlists), O(V) redu
es to O(1).In the dis
ussion earlier, we assumed that the rule is renamed during Apply Rule. The renaming neednot be done expli
itly, but
an be a
hieved by a two step pro
ess. During rule appli
ation we maintaina separate bindenv for rule variables. During uni�
ation we maintain a trail of variable bindings. When
reating the head fa
t, we add the rule variables to the bindenv of the head fa
t, and use the trail to ba
k-pat
h all variables that were bound to rule variables. We
an
ombine this optimization with the optimizationmentioned above, to avoid
reating slots for rule variables in the bindenv of the head fa
t.The
reation of a new version of env1 in Step 2.1 of Apply Rule is not really ne
essary in a sequentialimplementation. Unify binds variables in its �rst argument preferentially. For prepro
essed MGU MTTRrewritten programs, in the
all to Unify in Step 2.2 of Apply Rule, only variables in the rule get bound;variables in the fa
t bindenv are not a�e
ted. Thus we do not need to
reate a new version of env1 in thisstep; if required, a version of env1 is
reated later by Rename Fa
ts and Unify.Theorem 5.7.1 assumes that the size of the program is a
onstant. The primary reason for this assumptionis that ea
h iteration of Semi-Naive evaluation applies all the rules, and may make only one derivation. Themapping of
osts des
ribed in Se
tion 4.2 depends on this assumption.We
an relax this assumption using a rule indexing s
heme for MGU MTTR (and MGUMagi
 Templates)rewritten programs. We do not go into details, but the idea is as follows. We keep tra
k of Æpoldi relationsthat are non-empty, and use these to index rules that
an be used to make derivations using these relations.There are only a
onstant number of Type 0 rules, and we do not need to index them. For Type 1 and Type 6rules, we
an use any indexing te
hnique that Prolog uses to �nd rules that unify with a subgoal. For Type 2rules that use an answer literal, we
an use the goal-identi�er �eld to dire
tly index supplementary or answerfa
ts, and use only rules for whi
h mat
hing supplementary and answer fa
ts are available. Other Type 2rules have only one derived relation | the supplementary relation. We use the non-empty Æ supplementaryrelations to index su
h rules. Semi-naive rewritten Type 3, Type 4 and Type 5 rules always su

eed in makingan inferen
e if there is a fa
t for the Æ relation in their body; indexing su
h rules using the non-empty Æ76

relations is straightforward.Using this rule indexing te
hnique for MGU MTTR and MGU Magi
 Templates programs, along withthe optimizations des
ribed in Se
tion 4.2.2, we
an (a) extend Theorem 4.3.1 to remove the assumption thatthe size of the program is a
onstant, (b) extend the model of Semi-Naive evaluation to show that the
ost ofevaluation
an be
ompletely mapped to the
ost of attempted derivations, even without the assumption of
onstant program size, and (
) extend Theorem 5.7.1 to remove the assumption that the size of the programis a
onstant.5.9.1 More Example ProgramsWe present a brief analysis of the bene�ts of our optimization te
hniques on some example programs. Wehave implemented our optimization te
hniques on the CORAL dedu
tive database system [RSS92b℄, and wepresent some preliminary performan
e �gures.Example 5.9.1 Consider the well-known program to append lists (Example 3.4.1), with a query involvingnon-ground lists.The following table presents performan
e numbers on lists of the spe
i�ed lengths. The number of distin
tvariables in the list is shown in parentheses. The
olumn \Unoptimized" refers to evaluation without theApply Rule optimizations we des
ribed in this
hapter. The
olumn \Optimized" refers to evaluation usingthe optimizations des
ribed in this
hapter but with MGU Magi
 rewriting. The
olumn \Tail-Re
" refersto evaluation using MGU MTTR rewriting and the optimizations des
ribed in this
hapter.Dataset Unoptimized Optimized Tail-Re
Length 25 (3 vars) .31 .19 .08Length 50 (3 vars) 0.98 .35 .15Length 100 (3 vars) 3.85 .67 .30Length 100 (25 vars) 3.87 .69 .30Length 100 (ground) .44 .55 .30The numbers show that for ground lists, optimized evaluation with MGU Magi
 rewriting is not mu
hworse than unoptimized evaluation, while optimized evaluation using MGU MTTR rewriting is faster thanboth these. For non-ground lists, the time
ost of optimized evaluation grows linearly with the size of thelists, while for unoptimized evaluation, the
ost grows approximately quadrati
ally. 2Example 5.9.2 This program illustrates the use of di�eren
e lists in a program that is best evaluatedbottom-up. We assume that the query is ?path(1; X;C; P) (the single sour
e shortest path problem).path(X;Y;C; dlist([Y jD℄; D)) : � edge(X;Y;C):path(X;Y;C1 + C2; P) : � path(X;Z;C1; P1); edge(Z; Y; C2); dappend(P1; dlist([Y jD℄; D); P):�aggregate sele
tion groupby(path(X;Y;C; P)[X;Y ℄;min(C)):dappend(dlist(X;Y); dlist(Y; V); dlist(X;V)):This program keeps tra
k of the verti
es in paths that it
omputes, and stores the list as a di�eren
e list77

to allow eÆ
ient
on
atenation of edges to the list. Prolog is not suitable for evaluation of this program (orother path programs) sin
e it
an get into in�nite loops with
y
li
 data.The use of the aggregate sele
tion annotation and its eÆ
ient implementation is dis
ussed in Chapter 6.We dis
uss this example ahead of that
hapter in order to illustrate the use of non-ground data-stru
turesin a program that is best evaluated bottom-up. The annotation�aggregate sele
tion groupby(path(X;Y;C; P)[X;Y ℄;min(C))in the program spe
i�es that for answer fa
ts for the predi
ate path, for ea
h value for X and Y , only fa
tswith minimum value for C should be retained.For the sake of brevity, we omit the rewritten version of the program, but assume that the aggregatesele
tion on path is also used for answer fa
ts for path (i.e., fa
ts of the form answer(id; path(: : :))). Weuse MGU Magi
 Templates with adornments; tail-re
ursion optimization is not useful for this program sin
efor the rules de�ning path, the last literal is not re
ursive to path.Due to the use of adornments, query fa
ts for path are ground, and store only bindings for the �rstargument of path. We use subsumption-
he
king for su
h fa
ts. Further, supplementary fa
ts generatedfrom these query fa
ts are ground, and as a result, we do not need to rename path fa
ts when applyingrules in the rewritten program.11 The aggregate sele
tion is used to prune answer fa
ts for path; no othersubsumption-
he
king is done for answer fa
ts. Subsumption-
he
king is not done for dappend fa
ts either.Without the use of di�eren
e-lists, we
ould either generate the paths in reverse order using list
ons,whi
h is unappealing, or we
ould use append instead of dappend; whi
h would
ost O(V) time per append.Let the evaluation time of a version of this program using ordinary lists, and
ons instead of append beO(f(E; V)).12 Then the evaluation time of the program using append would be O(V � f(E; V)), whi
h is
onsiderably slower if V is large.If we used a naive version of rule appli
ation, the
ost of
reating new lists by dappending two di�eren
elists will take time linear in the size of the lists, whi
h
an be O(V). This would lead to a time
omplexityof O(V � f(E; V)).Using our optimizations, ea
h query generated for dappend is solved using the rule for dappend in timeO(V), and Return Unify su

eeds for the answer-return uni�
ation, when answers to queries on dappend aregenerated, and takes time O(V). This leads to an overall time
omplexity of O(V � f(E; V)).The number of versions of bindenvs that are
reated is O(f(E; V)), and the number of path fa
ts that are
omputed is O(f(E; V)). Hen
e, if we use Dietz's versioning s
heme, V is O(log log f(E; V)). Ea
h bindenvhas O(V) variables sin
e the maximum path length is O(V). Hen
e, if we use Warren's versioning s
heme(as we do in our implementation) V is O(log V). In either
ase, the time
omplexity is not mu
h worse thanthe time
omplexity of evaluation using ground lists with
ons, and has the bene�t of generating path listsin the
orre
t order.We ran two variations of this program on the CORAL system. Both variations used the query ?path(X;Y). The �rst used a di�eren
e list representation, and the se
ond used an ordinary list representation, but11Our implementation dete
ts whi
h fa
ts are ground and tries to avoid renaming non-ground fa
ts. Hen
e this optimizationis in
orporated automati
ally.12The time
omplexity depends on the number of distin
t shortest paths between pairs of nodes. If we store only one shortestpath between ea
h pair of nodes, f(E; V) = E � V , as we show in Example 6.6.2. This
an be improved to E � log V by usingother optimizations, as we show in Example 6.6.3. 78

used
ons rather than append. The se
ond variation generated only ground fa
ts, but generated path lists inreverse order. The ground program ran in 0:6 se
onds on a sample dataset, while the non-ground programran in 0:8 se
onds. Thus the loss of speed due to the non-ground data-stru
ture is reasonably small (33%),while providing the bene�t of printing out paths in the
orre
t order. 25.10 Bottom-Up vs. Prolog� for a Restri
ted Class of ProgramsIn this se
tion we present a summary of results from Sudarshan and Ramakrishnan [SR92b℄ that
omparebottom-up evaluation using MTTR rewriting with Prolog� evaluation for a sub
lass of range-restri
tedprograms. All fa
ts generated by a range restri
ted program are ground. However, MTTR rewriting (asalso MGU MTTR rewriting) of a range-restri
ted program results in a program that is not range-restri
ted(even if the adornment step of [BR87b℄ is performed). The
omparison is presented in two parts | the �rstin terms of number of derivations, and the se
ond in terms of time
omplexity for programs that generateonly a restri
ted kind of non-ground fa
ts.In Se
tion 3.1 we showed that Magi
 rewriting
ould perform some unne
essary inferen
es if non-groundfa
ts are generated. However, if only ground fa
ts are generated, an equivalent of Theorem 4.3.1 holds forthe
ase of MTTR rewriting, provided subsumption
he
king is used in the evaluation. This is shown by thefollowing theorem, from [SR92b℄.Theorem 5.10.1 [SR92b℄ Let P be a range-restri
ted program and Q a query on P . Let P T be the MTTRrewriting of P with query Q. Then there is a mapping M of derivations in the Semi-Naive evaluation ofP T to a
tions of the Prolog� evaluation of Q on P , su
h that not more than three di�erent derivations ofbottom-up evaluation of P T are mapped to the same a
tion of Prolog� evaluation. 2Theorem 4.3.1 showed that even if subsumption-
he
king is not performed, Semi-Naive evaluation of anMGU MTTR rewritten program performs no more than a
onstant fa
tor worse than Prolog� in terms ofnumber of a
tions. However, Semi-Naive evaluation without subsumption
he
king of an MTTR rewrittenprogram
ould loop when Prolog terminates, as the following program (adapted from [NR91℄) illustrates.Example 5.10.1 Consider the following program.q() : � p(a); p(a); r(a):p(a):r(a):Query: ?-q():The MTTR rewritten form of the above program has (among other rules) the following rules.R1 : query(q(); q()):R2 : query(p(a); p(a)) : � query(q(); A):R3 : A : � query(p(a); A):R4 : query(p(a); p(a)) : � query(q(); A); p(a):A query fa
t query(p(a); p(a)) is generated using rules R1 and R2. If subsumption-
he
king is not performed,rules R3 and R4 enter into an in�nite loop. Rule R3 uses the newly generated fa
t query(p(a); p(a)) and79

generates fa
t p(a). Rule R4 uses the newly derived fa
t p(a)13 (whi
h is not eliminated sin
e subsumption
he
king is performed), and generates a fa
t query(p(a); p(a)). This fa
t is not eliminated either, and the
y
le repeats. 2We now de�ne a
lass of fa
ts that we
all NGSF fa
ts, and de�ne a
lass of programs that we
allNGSF programs, that generate only NGSF fa
ts. Later in the se
tion we summarize details of an evaluationte
hnique for NGSF programs.De�nition 5.10.1 (NGSF Fa
ts and Programs) [SR92b℄ Let p be a predi
ate in program P . A fa
tp(t) is said to be non-ground stru
ture free (NGSF) i� ea
h argument of the fa
t is either a ground term ora variable. The de�nition is easily extended to tuples t.We extend this de�nition to allow limited forms of stru
ture introdu
ed by MTTR rewriting (similar ex-tensions
an be used with MGU MTTR rewriting). A fa
t of the form query(p(t); q(s)) (resp. supi;j(u; q(s)))is said to be NGSF i� p(t) and q(s) (resp. u and q(s)) are NGSF.We say that a program is non-ground stru
ture free (NGSF) i� every fa
t derived in an NSN evaluation14of the program is non-ground stru
ture free. 2For example, p(f(a; g(b)); X), query(p(X;Y); q(X;Y)), supi;j(f(a); p(f(a); X)), and p(X; g(
; g(
; g(
)));X) are non-ground stru
ture free, but the fa
ts p(f(X)) and query(p(f(X)); q(X)) are not.For the
lass of NGSF programs, one
an perform ea
h of the basi
 operations in bottom-up evaluation(uni�
ation, indexing and subsumption-
he
king) at unit
ost, as des
ribed in Sudarshan and Ramakrishnan[SR92b℄. Sin
e variables are present only at the outermost level of fa
ts, renaming of variables
an be donewith unit time
ost. Uni�
ation is then done at unit
ost by using hash-
onsing [Got74, SG76℄. A s
hemefor indexing based on \pattern-forms" that en
ode the patterns of variables in ea
h fa
t is presented in[SR92b℄, and it is shown that indexing of relations
an be done at unit
ost per retrieved fa
t for NGSFprograms. The same basi
 pattern-form s
heme is used for subsumption-
he
king, and it is shown that forNGSF fa
ts, subsumption-
he
king
an be done at an amortized
ost of O(1) per fa
t. Finally, these resultsare put together, and the model of semi-naive evaluation presented in Se
tion 4.2 is used to show that the
ost of evaluation is O(1) per fa
t derived.We now de�ne a
lass of programs form whi
h the MTTR rewriting is NGSF.Condition Strongly NGSF Evaluable: We say that a program P with query Q is strongly NGSFevaluable if P satis�es the following
ondition:1. P is range restri
ted2. For every rule in P , for every literal p(t) in the body of the rule, any variable that appears with anen
losing fun
tion symbol in p(t) also appears in a literal to the left of p(t) in the rule.3. Those variables in the head of the rule that appear only in the last literal in the body of the rule donot appear with en
losing fun
tion symbols in the head of the rule.4. The query on the program does not have any variables that are en
losed in fun
tion symbols. 213Re
all that if a rule R has a derived literal in its body, in Semi-Naive evaluation ea
h derivation that uses R must use anewly generated fa
t for one of the derived literals in the body.14The order in whi
h derivations are made in a bottom-up evaluation is not deterministi
. This leads to a non-determinismin the set of fa
ts
omputed, if subsumption-
he
king is used. To avoid this problem, we use NSN evaluation in this de�nition.80

The intuition behind this
ondition
an be understood as follows: First, all fa
ts produ
ed by the programare ground. Se
ond, evaluation of the query on the program will not
reate any subgoal
ontaining non-ground stru
tures. Third, when tail re
ursion optimization is used on these programs, stru
tures in answersto subgoals on tail-re
ursive predi
ates will not be used to \build" larger stru
tures in the head of the rule.Without the restri
tion provided by the Part 3 of Condition Strongly NGSF Evaluable, P T may
omputefa
ts with large non-ground stru
tures that are hard to handle in bottom-up evaluation.If P with query Q is Strongly NGSF Evaluable, then P T (the MTTR rewritten version of the program)is non-ground stru
ture free. (The de�nition of strongly NGSF evaluable is overly stri
t, sin
e it does notmake use of bindings provided by queries, and
an be weakened.) We then have the following theorem.Theorem 5.10.2 [SR92b℄ Suppose we are given a program P that is Strongly NGSF Evaluable. Let tP bethe running time of a Prolog� evaluation of P , and let tB be the running time of Semi-Naive evaluation ofP T (the MTTR rewritten version of the program). Then there is some
onstant
, that is independent of tPand tB (but may be dependent on the arity of predi
ates in P , and the textual size of P) su
h that tB �
�tP .2 The above result also holds using MGU MTTR rewriting, although only the
ase of MTTR rewriting is
onsidered in [SR92b℄.Contrast the above theorem with Theorem 5.7.1. The above theorem shows that for a sub
lass of range-restri
ted programs (that properly
ontains range-restri
ted Datalog), bottom-up evaluation with subsump-tion
he
king, in the worst
ase,
an be only a
onstant fa
tor slower than Prolog�. Theorem 5.7.1 providesa weaker bound, but applies to all de�nite
lause programs. It is easy to �nd examples (in the sub
lass) forwhi
h the behavior of Prolog� is mu
h worse than that of bottom-up evaluation (for some programs Prolog�does not terminate, although bottom-up evaluation does).5.11 Related WorkWe are not aware of any work related to optimizing semi-naive evaluation for the
ase when non-groundfa
ts are generated. However, there has been some related work in the area of top-down evaluation withmemoization, and in the linguisti
s
ommunity.D. S. Warren [War89℄ des
ribes the XWAM, an implementation of memoization for Prolog. The XWAMuses a depth-�rst sear
h,
oupled with memoization of subgoals and answers to avoid repeated
omputation.The te
hniques des
ribed there are for the
ase of ground Datalog programs. There is a brief mention ofpossible extensions to the s
heme to programs that generate variables, by using bindarrays. However, nodetails are provided.Pereira [Per85℄ des
ribes an implementation of parsers for uni�
ation based grammer formalisms. In theseparsers,
omplex phrase types are built by in
remental re�nement of phrase types. A naive implementation
opies phrase types; by using \virtual
opy memory" (i.e., versioned memory), Pereira shows how to redu
ethe
ost of
opying the phrase types. There is a problem in this
ontext that
orresponds to the renamingproblem; for spe
ial
ases of grammers, \renaming"
an be avoided, but in general it must be performed.Thus there is no equivalent in this
ontext to the return uni�
ation optimizations that we present.81

The
ontext identi�ers we use are quite di�erent in fun
tion from the l
ont, and l
id identi�ers used inQSQR evaluation [Vie86, Vie88℄. The l
ont and l
id identi�ers
orrespond to the goal identi�ers that weuse. If a goal is generated more than on
e, it is given the same goal-id. The goal-id of the supplementaryfa
t (
ontext) is that of the goal that is generated from it, and the goal-id of an answer is the goal-id of thegoal that generated it. In
ontrast, ea
h supplementary fa
t has a di�erent
ont id. The par id of a query isinherited from a supplementary fa
t that generated it. But sin
e a query may be generated independentlyfrom several di�erent supplementary fa
ts, only one of the
opies of the query (with its asso
iated par idvalue) is retained, if subsumption-
he
king is used. The same is true of par id values for answer fa
ts.5.11.1 Memoization for Other Evaluation S
hemesThe optimizations des
ribed in this
hapter work at the level of rule appli
ation, and are essentially indepen-dent of the
ontrol strategy used during evaluation. They
an be applied to other memoing evaluation s
hemessu
h as QSQR [Vie86, Vie88℄ and Alexander [RLK86, Sek89℄. They
an also be used in
onjun
tion with te
h-niques that order the inferen
es made in a bottom-up evaluation (e.g., [RSS90, RSS92a, GGZ91, SR91℄).15It is also possible to use the idea of persistent versioning to implement memoization of goals and answersin Extension Tables [Die87℄.16 However, sin
e Extension Tables uses the basi
 tuple-at-a-time depth-�rstme
hanism of Prolog, the
onne
tion between goals and answers is impli
itly maintained and \return uni-�
ations" are not expli
itly performed. (A negative
onsequen
e is that the method is not
omplete eventhough it does memoing.) Sin
e variables in the run-time sta
k and the heap may have to be versioned, itappears that fairly large portions of memory have to be versioned. In Opt-NGBU evaluation, we
an avoidversioning rule variables in most
ases, and for programs that (with adornment) generate only ground fa
tsand queries, all bindenvs are empty, and have no versioning
osts. While these
onsiderations do not a�e
tthe asymptoti

ost of versioning, the
onstant overheads for versioning are likely to be higher for ExtensionTables.QSQR (like its extension QoSaQ) is a top-down evaluation strategy that is
losely related to the bottom-up evaluation of Supplementary Magi
 programs. QSQR is set-oriented, and represents goals and answersexpli
itly, mu
h like Supplementary Magi
. QSQR has been implemented for Datalog, for whi
h versioningis not important sin
e large data stru
tures are not
reated. However, there appears to be no inherentproblem in using QSQR for general logi
 programs. The te
hniques we developed in this
hapter (as well asthe
orresponding analysis)
an be applied with minor modi�
ations to QSQR.5.12 Con
lusionThe results in this
hapter are signi�
ant in two ways. First, they provide an eÆ
ient memoing te
hnique forprograms that generate non-ground fa
ts. This is signi�
ant sin
e naive te
hniques for handling non-groundfa
ts in memoing evaluations are ineÆ
ient, and we do not know of any other optimizations that are usefulin this
ontext. The
ost bene�ts are illustrated by the programs that we dis
ussed. Se
ond, they extend15Some of these te
hniques modify Magi
 rewriting in minor ways. Corresponding
hanges may need to be made in ouroptimization te
hnique.16We dis
uss the ETinterp algorithm sin
e it has better asymptoti
 properties; similar remarks apply to the ET* algorithm,whi
h additionally repeats some
omputation. 82

our understanding of the similarities between top-down and bottom-up further than previous results, whi
h
onsidered only programs that generated only ground fa
ts. We have shown that bottom-up evaluation isasymptoti
ally
lose to Prolog even in the worst
ase (within a fa
tor of log logm, wherem is bounded by the
ost of Prolog evaluation). There is mu
h
urrent resear
h in the area of persistent versioning s
hemes. If amore eÆ
ient versioning s
heme is developed, we
an redu
e the overheads in our s
heme
orrespondingly. Wehave implemented the optimization te
hniques des
ribed in this
hapter (modulo tail-re
ursion optimization)on the CORAL dedu
tive database system.

83

Chapter 6Optimization of AggregationIn this
hapter we develop an optimization te
hnique for bottom-up evaluation, using a notion of relevan
eof fa
ts to some aggregate operations su
h as min and max. Our notion of relevan
e (Se
tion 6.3)
an beseen as an extension of the notion of relevan
e used in optimizations su
h as Magi
 sets rewriting [BMSU86,BR87b, Ram88℄. The optimization te
hnique
onsists of two parts | a rewriting te
hnique that \pushes"aggregate sele
tions into rules in the program (Se
tions 6.4 and 6.5), and an evaluation te
hnique that makesuse of aggregate sele
tions when evaluating the rewritten program (Se
tion 6.6).The optimization te
hnique is able to dete
t many fa
ts as irrelevant, and avoids using them to makederivations. As an example of the power of our te
hniques, we start with a naive program to �nd shortestpaths, and show how our optimization te
hniques dedu
e the \optimality prin
iple" for this program. Theoptimized evaluation of this program is equivalent to Dijkstra's algorithm (Example 6.6.3).6.1 Introdu
tionDatabase query languages su
h as SQL provide aggregation operations that let one
ompute aggregate valuesover sets of answers. The use of aggregation with re
ursive queries has been
onsidered by several resear
hers(e.g., [BNR+87, MPR90℄), and has been implemented in LDL [NT89℄. Generalized forms of transitive
losurewith aggregation are a restri
ted form of re
ursive queries with aggregation (and
an be expressed using thenotation of LDL [NT89℄). Several resear
hers (e.g., [RHDM86, ADJ88, CN89, Ede90℄) have
onsideredoptimizations for this spe
ial
lass of programs. The advantages of the ri
her language of re
ursive querieswith aggregation is
lear, but unless e�e
tive optimization te
hniques are developed, the performan
e ofspe
ialized systems based on supporting the limited
lass of generalized transitive
losure queries
annot bemat
hed. In this
hapter we
onsider optimizations of re
ursive queries with aggregate operations.Consider the (very naive) program shown in Figure 8, for
omputing the lengths of shortest paths betweennodes in the relation edge(X;Y;C), where C is the length of an edge from X to Y . It essentially enumeratesall path lengths and
hooses shortest path lengths among them. The notation s p length(X;Y;min(hCi)) inthe head of rule R1 denotes that for ea
h value of X;Y all possible C values that are generated by the bodyof the rule are
olle
ted in a set, and the min aggregate operation is applied on the set of values. For ea
hvalue of X and Y , an s p length fa
t is
reated with the result of the min operation as the third argument.84

R1 : s p length(X;Y;minhCi): �path(X;Y;C):R2 : path(X;Y;C1) : � path(X;Z;C); edge(Z; Y;EC); C1 = C +ECR3 : path(X;Y;C) : � edge(X;Y;C):Query: ?-s p(X;Y;C): Figure 8: Program Simple ShortCostR1 : shortest path(X;Y; P; C) : � s p length(X;Y;C); path(X;Y; P; C):R2 : s p length(X;Y;minhCi) : � path(X;Y; P; C):R3 : path(X;Y; [edge(Z; Y)jP ℄; C1) : � path(X;Z; P; C); edge(Z; Y;EC); C1 = C +EC:R4 : path(X;Y; [edge(X;Y)jnil℄; C) : � edge(X;Y;C):Query: ?-s p(X;Y; P; C): Figure 9: Program Simple ShortPathThe formulation of the program as above is desirable sin
e it is de
larative,
an be queried in manydi�erent ways and is easy to write. It is easily augmented with additional
onstraints su
h as \the edges allhave a given label" (for instan
e,
ights on United Airlines alone must be
onsidered), or \there must beno more than three hops on the
ight". The standard bottom-up evaluation of su
h a program is extremelyineÆ
ient sin
e it
onstru
ts paths of every possible length in the graph, and generates an in�nite numberof fa
ts with
y
li
 graphs. In
ontrast, the above problem
an be solved in polynomial time using eitherWarshall's algorithm or Dijkstra's shortest path algorithm (see [AHU74℄). It
an also be evaluated eÆ
ientlyif it is expressed using spe
ialized operators for transitive
losure ([RHDM86, ADJ88, CN89℄).We propose an optimization te
hnique for bottom-up evaluation, using a notion of relevan
e of fa
ts tosome aggregate operations su
h as min and max. Our notion of relevan
e
an be seen as an extension ofthe notion of relevan
e used in optimizations su
h as Magi
 sets rewriting [BMSU86, BR87b, Ram88℄. Todemonstrate the power of our te
hniques, we use a more
omplex version of the shortest path program, thata
tually
omputes paths (Figure 9), and informally present some of the basi
 ideas behind our optimizationte
hnique, in the following example.Example 6.1.1 Consider Program Simple ShortPath (Figure 9). The predi
ate path(X;Y; P; C) is de�nedto
ompute paths between ea
h pair of nodes X;Y , with P being a list of nodes on the path, and C beingthe length of the path. The predi
ate s p length(X;Y;C) de�ned in rule R2 �nds the length C of theshortest path from X to Y for ea
h pair of nodes X;Y . The use of s p length in rule R1 sele
ts path fa
ts
orresponding to shortest paths.Aggregate operation min has the property that non-minimal values in a set are unne
essary for theaggregate operation on the set. Using this property, we
an dedu
e that a fa
t path(a; b; p1;
1) is relevant tothe rule de�ning the query predi
ate shortest path only if there is no fa
t path(a; b; p2;
2) su
h that
2 <
1.We use tests
alled aggregate sele
tions to
he
k whether a fa
t is relevant;
onditions su
h as the above areused in the tests.The rewriting (automati
ally) dedu
es an aggregate sele
tion on the o

urren
e of the predi
ate pathin rule R2; only fa
ts with minimum length values satisfy the aggregate sele
tion. It then \pushes" this85

aggregate sele
tion into rules that de�ne path, and propagates the sele
tions through the program.The rewriting algorithm outputs a program
ontaining aggregate sele
tions on the predi
ates. For Pro-gram Simple ShortPath, the main di�eren
e between the rewritten program and the original program is thatevery o

urren
e of path in the rewritten program has an aggregate sele
tion that sele
ts shortest paths. Wedis
uss the rewritten program after introdu
ing the notation used to express aggregate sele
tions.The evaluation phase of our te
hnique makes use of the aggregate sele
tion on path, and deletes fa
tson whi
h the aggregate sele
tion test fails (namely all non-minimal paths for ea
h pair of nodes). We
anoptimize the evaluation further by ordering the use of fa
ts in the evaluation: we hide newly generated fa
ts,and expose after ea
h iteration the path fa
t with minimum length among all hidden path fa
ts.Ordering the use of fa
ts as above, redu
es the time
omplexity to the same as that of Dijkstra's algorithm(O(E � logV) on a graph with E edges and V nodes), if we store only one shortest path between ea
h pairof nodes. We dis
uss details in Se
tion 6.6.2. The evaluation me
hanism also works (with a higher time
omplexity) when edge lengths are negative, so long as there are no negative length
y
les. 2Re
ently Ganguly et al. [GGZ91℄ independently examined Datalog programs with min or max aggregateoperations. Their work addresses problems that are similar to those that we
onsider, but the approa
hes aredi�erent and the te
hniques are
omplementary. We present a
omparison of our te
hniques with those ofGanguly et al. in Se
tion 6.8.1, and des
ribe several advantages of our approa
h. Knuth [Knu77℄ generalizesDijkstra's algorithm to deal with a
lass of \superior
ontext free grammers". Our evaluation te
hniquegeneralizes Knuth's te
hniques in a very natural manner, and the algorithms redu
e to Knuth's algorithmsin the spe
ial
ase of \superior
ontext free grammers". We dis
uss this issue brie
y in Se
tion 6.8.1.We note that the evaluation te
hniques presented in this
hapter are orthogonal to the optimizationte
hniques for non-ground fa
ts that were presented in Chapter 5, although we restri
t the use of non-ground terms with aggregation. We dis
uss this issue brie
y in Se
tion 6.8. There are programs, su
h as theprogram in Example 5.9.2, where both optimizations are of use.The rest of the
hapter is organized as follows. We present basi
 de�nitions and ba
kground material inSe
tion 6.2. Our notion of relevan
e is developed in Se
tion 6.3, where we also introdu
e aggregate sele
tionsand
onstraints as a way of spe
ifying relevan
e information. Te
hniques for propagation of aggregatesele
tions and
onstraints through single rules are developed in Se
tion 6.4. In Se
tion 6.5 we present analgorithm to rewrite programs by propagating aggregate sele
tions through the program, starting from thequery. In Se
tion 6.6 we show how to evaluate rewritten programs. We dis
uss extensions and related workin Se
tion 6.8.6.2 De�nitions and Ba
kground MaterialWe use V ars(t) to denote the set of variables that o

ur in a term t. Similarly, V ars(t) denotes the set ofvariables that o

ur in a tuple of terms t. Given a domain D, we use the notationM(D) to denote multisets1of elements from D.We de�ne the predi
ate dependen
e (PD) graph of a program as the digraph whose nodes are the predi
atesof the program, and whose edges are de�ned as follows: There is an edge from predi
ate a to predi
ate b if1Also referred to as bags. 86

there is a rule de�ning b that uses predi
ate a in its body. The strongly
onne
ted
omponents (SCCs) of aprogram are the strongly
onne
ted
omponents of its predi
ate dependen
e graph. The redu
ed PD graph ofa program is de�ned as the result of
ollapsing together all nodes in the PD graph that belong to the sameSCC. The redu
ed PD graph is a
y
li
, and de�nes a partial ordering of the SCCs of a program. We saythat an SCC S1 is lower than SCC S2 if S1 pre
edes S2 in the partial ordering de�ned by the redu
ed PDgraph.Example 6.2.1 Consider the following program.R1 : p(X) : � q(Y); d(X;Y):R2 : q(X) : � p(Y); e(X;Y):R3 : p(X) : � r(X):This program has four SCCs | one
ontaining q and p, one
ontaining d, one
ontaining e, and one
ontaining r. We use the set of predi
ates in an SCC to refer to the SCC. The partial ordering of the SCCsis as follows: ea
h of fdg, feg and frg pre
edes fp; qg. 2We view an aggregate fun
tion as any fun
tion agg f :M(D)! D1 for some domains D and D1. Notein parti
ular that D1
ould be the same as D, as is the
ase for most aggregate fun
tions we
onsider, su
has min, max, sum et
. We also allow D1 to be M(D), thereby allowing aggregate fun
tions su
h as leastk,that returns a multiset of the least k elements from a given multiset. Note that if we
onsider the domain tobe 2D, i.e., sets of elements from D rather than multisets of elements from D, the aggregate fun
tions arestill appli
able, sin
e 2D �M(D).The
ardinality of an element in a multiset is de�ned in a straightforward manner. Multiset membershipis de�ned using
ardinality:s 2 S �
ardinality(s; S) 6= 0Similarly, multiset
ontainment is de�ned asS1 � S2 � 8s 2 S1;
ardinality(s; S1) �
ardinality(s; S2)Other set operations �;�;� and = are similarly extended to multisets. Set di�eren
e \�" is extended tomultisets by the following de�nition:8s, if
ardinality(s; S1)�
ardinality(s; S2) � 0,then
ardinality(s; S1� S2) =
ardinality(s; S1)�
ardinality(s; S2)else
ardinality(s; S1� S2) = 0.We also de�ne a binary operation n as follows:8s 2 S2,
ardinality(s; S1nS2) = 08s 62 S2;
ardinality(s; S1nS2) =
ardinality(s; S1)In this
hapter we
onsider de�nite
lause programs extended with the aggregation operations that wedes
ribe later in this se
tion. We assume that the programs are range-restri
ted.2 This means that only2That is, every variable in the head of ea
h rule also appears in the body of the rule, and all fa
ts are ground.87

ground terms
an be generated, whi
h is reasonable for the most part in the
ontext of aggregate fun
tions,sin
e the result of aggregate fun
tions (
onsider, for example, min) on non-ground values is usually notwell-de�ned. Non-ground terms are useful in arguments of fa
ts that are not aggregated upon, and inSe
tion 6.8 we dis
uss how the above restri
tion
an be relaxed in some
ases. We assume that programtransformations su
h as Magi
 Sets have already been
arried out; their use is largely orthogonal to theoptimizations des
ribed in this
hapter.In order to de�ne the semanti
s of a program, we have to �rst de�ne a universe for the program. Inthis we follow [BNST91, BRSS92℄, where extended Herbrand universes are de�ned. Su
h universes allowterms that are sets; the universes are easily extended to allow multisets (for instan
e by en
oding multisetsas sets of ordered pairs helement;
ardinalityi). Note that although we allow the generation of multisetsthrough aggregation, we assume that the relations in the program are sets of fa
ts, and not multisets (i.e.,dupli
ate elimination is done when evaluating the program). It is not hard to relax this assumption, butthis assumption simpli�es the dis
ussion.The syntax that we use for aggregation with set/multiset grouping is very similar to that used inLDL [NT89℄ for grouping. The syntax is as follows.p(t; agg fhY i): �q(: : :):We refer to the argument agg fhY i as the grouping argument, and Y as the grouping variable. The variablesin t are referred to as group-by variables. For simpli
ity in des
ribing our algorithms, we assume that there isat most one grouping argument in the head of a rule, and we usually show the grouping argument as the lastargument of the head of the rule. These restri
tions are easy to relax sin
e every program
an be rewrittento be in the required form. For simpli
ity, we also assume that there is at most one literal in the body of arule that uses aggregation. This assumption
an be relaxed using a straightforward rewriting.De�nition 6.2.1 We say that the fa
t p(a; v) follows from a rulep(t; agg fhY i): �q(: : :):and a given set of fa
ts I if the following holds:1. Let S be the set of instantiations of the variables in the rule s.t. the instantiation of q(: : :) is in I . LetX = V ars(t), and x an instantiation of the variables in X that maps t to a.Then �Y �X=xS 6= ;, and v = agg f(�Y �X=xS), where � is a multiset proje
tion (i.e., it does not dodupli
ate elimination).2. The set of fa
ts I
ontains all true q fa
ts, (and all other q fa
ts are false).Given a rule R that uses aggregation, and a set of fa
ts I , we de�ne TR(I) as the set of all fa
ts thatfollow from R and I . 2Example 6.2.2 Suppose we have a rulep(X;Y;minhCi): �q(X;Y;C):Given that the set of all true q fa
ts is fq(1; 2; 3); q(1; 2; 5); q(1; 3; 4)g, the fa
ts p(1; 2; 3) and p(1; 3; 4) followusing the rule. 2 88

The semanti
s used in LDL di�ers from the above in that � is a set proje
tion operator. For aggregateoperations su
h as max or min the di�eren
e in semanti
s is irrelevant. For other aggregate operations su
has sum, we
an get the set proje
tion semanti
s by using agg fhsethY ii instead of agg fhY i.A program is said to be strati�ed if for every rule in the program that uses aggregation in the head, everypredi
ate used in the body is in a lower SCC than the SCC of the head predi
ate.Example 6.2.3 The following program is a minor variant of the program in Example 6.2.1. The SCCs ofthis program are the same as those of the program in Example 6.2.1.R1 : p(X) : � q(Y); d(X;Y):R2 : q(X) : � p(Y); e(X;Y):R3 : p(minhXi) : � r(X):This program is strati�ed sin
e in rule R3, the body predi
ate r is in a lower SCC than the head predi
atep. If we repla
ed r by q, the program would not be strati�ed, sin
e p and q in rule R3 are in the same SCC.2 We make the following assumption:A0: All programs
onsidered in this
hapter are strati�ed.De�nition 6.2.1 requires that the set of all true fa
ts for the body predi
ate be available before aggregation
an be used. For strati�ed programs, this
an be done in a fairly straightforward fashion. We des
ribe thesemanti
s of strati�ed programs informally below. See [BNST91℄ for a formal de�nition. We de�ne thesemanti
s SCC by SCC, pro
eeding in a total order
onsistent with the partial ordering of the SCCs. Thesemanti
s for ea
h SCC de�nes the set of true fa
ts for predi
ates in the SCC. The semanti
s of basepredi
ates is given by the set of fa
ts in the database. Now
onsider an SCC Si, and suppose we have de�nedthe semanti
s for all lower SCCs. De�nition 6.2.1 now de�nes TR for rules in Si that use aggregation, sin
ethe set of all true fa
ts for lower SCCs is �xed by the semanti
s of the lower SCCs. For other rules, TR is asde�ned in Se
tion 2.1.3. De�neTSi(I) = [R2SiTR(I)The semanti
s of SCC Si is de�ned to be the least �xpoint of TSi , given the set of fa
ts for lower SCCs.3The semanti
s of the program is de�ned to be the union of the semanti
s of ea
h SCC in the program.A strati�ed program
an be evaluated using Semi-Naive evaluation, an SCC at a time, in a total orderof SCCs that is
onsistent with the partial order of the SCCs [BNST91, BNR+87℄. We des
ribe this pro
essbrie
y. Assume that all SCCs that pre
ede a given SCC Si have been evaluated. This is trivially true forSCCs that have only base predi
ates. We
an now evaluate SCC Si using Semi-Naive evaluation as follows.For all predi
ates in lower SCCs, the �xpoint has been evaluated, and all su
h predi
ates are
onsideredas base predi
ates for the purpose of Semi-Naive evaluation. Rule appli
ation is generalized to handleaggregation in a straightforward fashion, sin
e all body predi
ates in a rule with aggregation are de�nedin lower SCCs, and hen
e are treated as base predi
ates. Semi-Naive rewriting and Semi-Naive evaluationare performed as usual, for the rules in SCC Si. Semi-Naive evaluation of the program terminates when allSCCs in the program have been evaluated.3We
an show that TSi is monotone and
ontinuous, and hen
e it has a least �xpoint [BNST91℄.89

Semanti
s
an be given to programs that use non-strati�ed aggregation, and there are evaluation me
h-anisms for several su
h
lasses of programs. We do not explore this issue here, but refer the reader to[Ros90, KS91, RS92, BRSS92, RSS92a, Van92℄ for more details.6.3 Views of Relevan
e In Logi
 ProgramsThe idea of relevan
e of fa
ts to a query is used by Prolog and other top-down evaluation te
hniques, as wellas by program rewriting te
hniques su
h as Magi
 [BR87b, Ram88℄. Suppose we have a ruleR : p(t): �q1(t1); q2(t2); : : : ; qn(tn):Assume for simpli
ity that we have a left-to-right rule evaluation (in the fashion of Prolog). Then a fa
tqi(ai) is relevant if there is an instantiationR0 : p(a): �q1(a1); q2(a2); : : : ; qi(ai):of (the head and �rst i body literals of) R su
h that the head fa
t p(a) is relevant, and all instantiated fa
tsq1(a1); : : : ; qi�1(ai�1) have been derived. Thus, the notion of relevan
e is lo
al to a rule and to a set of fa
tsthat
an instantiate it.In
ontrast, in the shortest path problem we
an de
ide that a parti
ular fa
t path(a; b; p1;
1) is irrelevantif a shorter path (fa
t) has been found. Su
h information is \global", in the sense that relevan
e dependson fa
ts other than those used to instantiate a rule. We develop this notion of relevan
e for programswith aggregate operations in the rest of this se
tion, in three steps. (1) If agg f is an aggregate fun
tionand S a multiset of values, we
onsider when some values in S
an be ignored without a�e
ting agg f(S)(Se
tion 6.3.1). (2) We use the ideas of step 1 to de�ne when a fa
t is relevant (Se
tion 6.3.2). (3) Weintrodu
e aggregate sele
tions and aggregate
onstraints as a way of expli
itly identifying irrelevant fa
ts(Se
tion 6.3.3).6.3.1 Relevan
e and Aggregate Fun
tionsGiven a multiset of values and an aggregate fun
tion on the multiset, not all the values may be neededto
ompute the result of the aggregate fun
tion. For instan
e, if the aggregate fun
tion is min, no valueex
ept the minimum value is needed. We now formalize the notion of values being unne
essary for aggregatefun
tions.De�nition 6.3.1 (In
remental Aggregate Sele
tor (In
Sel) Fun
tions) Let agg f be an aggregatefun
tion agg f :M(D)! D1, for some domains D and D1. We say that agg f is an in
remental aggregatesele
tor (In
Sel) fun
tion if there exists a fun
tion unne

agg f :M(D)! 2D su
h that1. 8S 2M(D);8S1; (Snunne

agg f (S)) � S1 � S) agg f(S1) = agg f(S)2. unne

agg f is monotone. i.e., 8S1 � S2; s:t: S2 2M(D), unne

agg f (S1) � unne

agg f (S2)3. 8S 2M(D); unne

agg f (S) = unne

agg f (Snunne

agg f (S))4. unne

agg f does not map all elements of M(D) to ;.90

2 Given a multiset of fa
ts S, the set of fa
ts unne

agg f (S) is \unne
essary" in the following sense:Values in unne

agg f (S)
an be dropped from S without a�e
ting the result of agg f(S), due to Part 1 ofthe above
ondition. Part 2 of the above
ondition lets us dete
t unne
essary values before the entire multisetof values is
omputed|when we have
omputed some S1 � S, any value dete
ted as unne
essary for agg fon S1 is also guaranteed to be unne
essary for agg f on S; a value that is ne
essary for S1 may howeverbe unne
essary for S. Part 3 of this
ondition ensures that if a value is dete
ted to be unne
essary for anaggregate operation on a multiset, it will
ontinue to be dete
ted as unne
essary if we dis
ard unne
essaryvalues from the multiset4. Part 4 of the
ondition ensures that the de�nition of In
Sel fun
tions is nottrivialized by the use of a trivial unne

agg f fun
tion.Consider an In
Sel fun
tion agg f on domain M(D). There may be more than one possible fun
tionunne

agg f as required by the de�nition of In
Sel fun
tions.De�nition 6.3.2 (unne
essaryagg f) For ea
h in
remental aggregate sele
tor fun
tion agg f that isallowed in our programs, a fun
tion unne

agg f (as above) is
hosen, and is denoted by unne
essaryagg f .The fun
tion ne
essaryagg f :M(D)! 2D is de�ned asne
essaryagg f (S) = set(Snunne
essaryagg f (S))2 We do not
onsider how this
hoi
e is made, but assume it is made by the designer of the system basedon the following
riterion. Given two su
h fun
tions f and g, we say f �0 g i� 8S � D; f(S) � g(S);
learly>0 (the stri
t version of �0) is an (irre
exive) partial order. Preferably, a fun
tion that is maximal underthe (irre
exive) partial order >0 is
hosen.Note that unne
essaryagg f (S)
ould be in�nite. We do not
onstru
t unne
essaryagg f (S), but requirethat we
an eÆ
iently test for the presen
e of a value in unne
essaryagg f (S), for �nite S.Example 6.3.1 The fun
tion min on reals, with unne
essarymin(S) = fx 2 D j x > min(S)g is an In
Selfun
tion. The fun
tion max on reals with unne
essarymax symmetri
ally de�ned is also an In
Sel fun
tion.Other examples (with the fun
tions unne
essaryagg f appropriately de�ned), in
lude the aggregate fun
tionthat sele
ts the kth largest element of a multiset for some
onstant k, and the aggregate fun
tion that sumsup the k largest elements of a multiset. 2Assumption 6.3.1 In the rest of this
hapter we assume that the optimization te
hniques are applied onlyon In
Sel fun
tions. 2We also assume that a suite of In
Sel fun
tions and the
orresponding fun
tions unne
essaryagg f aregiven to us. In an a
tual implementation we would expe
t the system implementor to de�ne su
h as suiteof fun
tions.4Part 3 of Condition In
Sel is used in Theorem 6.6.1 to show that inferen
es are not repeated. None of the other resultsrequire aggregate fun
tions to satisfy this
ondition. 91

6.3.2 Relevan
e of Fa
tsWe now use the notion of ne
essity with respe
t to an aggregate fun
tion in de�ning our extended notion ofrelevan
e of fa
ts. The semanti
s for a program de�nes a model for the program, and our notion of relevan
eis de�ned with respe
t to this model (whi
h we
all the intended model of the program).De�nition 6.3.3 (Relevan
e of Fa
ts) Consider a program P with a query on it. A fa
t q(a) is relevantto the query i� one of the following is true:1. q(a) is an answer to the query, or2. q(a) o

urs in the body of an instantiated rule without aggregation in the head su
h that every literalin the body is true in the intended model, and the head fa
t of the rule is relevant to the query, or3. There is a (ground) fa
t p(a; v) that is relevant to the query, and a rule R in the programR : p(t; agg fhY i)): �q(t1):su
h that(a) Let S be the set of all possible substitutions � su
h that t1[�℄ = a1, and q(t1)[�℄ is true in theintended model. Let Y [S℄ denote the multiset of values for Y generated by substitutions in S.Then v = agg f(Y [S℄)).(b) There is a � 2 S s.t. q(a) = q(t1)[�℄, where Y [�℄ 2 ne
essaryagg f (Y [S℄).2A fa
t is said to be irrelevant to the query if it is not relevant to the query. In future, we simply say relevant(resp. irrelevant) when we mean \relevant to the query" (resp. \irrelevant to the query").Example 6.3.2 Consider a program with one ruleR : p(X;minhY i): �q(X;Y):and fa
ts q(5; 4); q(5; 6) and q(5; 3). Let the query on the program be ?p(X;Y). Fa
t p(5; 3) is generated asan answer. With X = 5, the set of fa
ts that mat
h the body of the rule have Y values of 3; 4 and 6, ofwhi
h only 3 is ne
essary for min. Hen
e q(5; 3) is relevant to the query. q(5; 3) is a base fa
t, and no fa
tsare used to derive it. Therefore there are no other relevant fa
ts. Hen
e q(5; 4) and q(5; 6) are irrelevant tothe query, while q(5; 3) is relevant.Also, by the above de�nition, for the shortest path length program (Figure 8) all path fa
ts, ex
ept those
orresponding to shortest paths, are irrelevant. This
an be seen by working ba
kwards from answers tothe query. Fa
ts for the predi
ate s p length are the only fa
ts that are dire
tly relevant (by Part 1 of thede�nition). Of the path fa
ts used to derive these fa
ts, the only relevant ones are shortest paths (by Part3 of the de�nition). By examining the rules for path, we
an verify that any path fa
t that is used to derivea shortest path, and is relevant by Part 2 of the de�nition, is itself a shortest path. 292

Our extended notion of relevan
e is very tight, and in general we may not be able to determine therelevan
e of a fa
t without a
tually
omputing the intended model of the program. The te
hniques wepresent will use suÆ
ient but not ne
essary
onditions to test for irrelevan
e. During the evaluation of someprograms we may generate a fa
t, and later dis
over that it is irrelevant, for instan
e when some other\better" fa
t is generated. On
e a fa
t is found to be irrelevant, by \withdrawing" the fa
t we may beable to determine that other fa
ts generated using it
an no longer be generated, and hen
e
an also be\withdrawn". The
ost of su
h
as
ading withdrawals
ould be very high, and so we
on�ne ourselves toonly dis
arding irrelevant fa
ts. Although not \withdrawing"
omputation
ould result in some additionalirrelevant
omputation, the gains in eÆ
ien
y from our optimization without \withdrawing"
omputation
an still be signi�
ant.6.3.3 Aggregate Constraints and Sele
tionsWe now introdu
e some
on
epts that allow us to spe
ify relevan
e information. Informally, sound aggregatesele
tions are used to spe
ify tests for relevan
e of fa
ts|if there is a sound aggregate sele
tion on a predi
atein our rewritten program, and a fa
t for the predi
ate does not satisfy the sele
tion, the fa
t is irrelevant.Aggregate sele
tions are introdu
ed by our rewriting algorithm and the information is used by our evaluationalgorithm. The syntax (using a variant of Starburst SQL groupby) and semanti
s of aggregate sele
tions aredes
ribed in the next few de�nitions.De�nition 6.3.4 (Atomi
 Aggregate Sele
tion) An atomi
 aggregate sele
tion has the following syn-tax:
(u) : groupby(p(t); [X ℄; agg f(Y))Here
(u) denotes a literal or a
onjun
tion of literals, and X a set of variables su
h that X � V ars(t). Wemust have Y 2 V ars(t), and agg f must be an In
Sel fun
tion.Consider a program P with an asso
iated intended model. Given the set of fa
ts for predi
ate p in theintended model of P , we have a set of instantiations of t. Sin
e X � V ars(t) and Y 2 V ars(t), for ea
hvalue d of X in the set of instantiations of t, we have a
orresponding multiset of values for Y ; we denotethis multiset by Sd. We
onstru
t (
on
eptually) a relation unne

 agg(X;Y) with a tuple (d; e) for ea
h d,and ea
h e 2 unne
essaryagg f (Sd).Let
(a) be a ground
onjun
tion. We say that
(a) satis�es the atomi
 aggregate sele
tion si i� there existsa substitution � su
h that (1)
(a) =
(u)[�℄, (2) � assigns ground terms to all variables in V ars(u)[X[fY g,and (3) (X;Y)[�℄ is not in unne

 agg 5. 2In the above de�nition, the variables in [X℄ are
alled group-by variables and the variable Y is
alled thegrouping variable in the atomi
 aggregate sele
tion. The variables in the set ((V ars(t)�X)�fY g) are lo
alto the groupby, and
annot be quanti�ed or instantiated from outside the groupby.5Note that the relation unne

 agg
ould be in�nite. To a
tually perform the test, we
ould take an instantiation of Y , andtest if it is in unne
essaryagg f (X)[�℄ without a
tually
onstru
ting the whole (possibly in�nite) set unne
essaryagg f (X)[�℄,or the (possibly in�nite) relation unne

 agg. 93

Example 6.3.3 The following is an example of an atomi
 aggregate sele
tion:path(X;Y; P; C) : groupby(path(X;Y; P1; C); [X;Y ℄;min(C))In the above atomi
 aggregate sele
tion, the group-by variables are X and Y , and the grouping variable isC. We have not spe
i�ed where the literal path(X;Y; P; C) o

urs | it
ould be, for instan
e, a literal in arule body, or it
ould be taken to refer to fa
ts for the predi
ate path; we shall make the use of the literalmore pre
ise in su

eeding de�nitions.Suppose the set of fa
ts in path ispath(a; b; [a;
; b℄; 20):path(a; b; [a; b℄; 30):path(a;
; [a;
℄; 10):path(
; b; [
; b℄; 10):The ground literal path(a; b; [a; b℄; 30) does not satisfy the aggregate sele
tion | the literal binds thegroup-by variables X;Y to a; b, and the C values for this group are 20 and 30; hen
e, 30 is irrelevant for themin aggregate fun
tion on this group. However, path(a; b; [a;
; b℄; 20) satis�es the aggregate sele
tion. Theground literal path(d; e; [d; e℄; 200) satis�es the sele
tion, sin
e there is no fa
t, in the set of fa
ts for path,that binds the group-by arguments X;Y to d; e, and hen
e no value is
lassi�ed as irrelevant for this group.2De�nition 6.3.5 (Aggregate Sele
tion) An aggregate sele
tion s is a
onjun
tion of atomi
 aggregatesele
tions, s = (s1 ^ s2 ^ : : : ^ sn). A ground
onjun
tion
(a) satis�es an aggregate sele
tion s = (s1 ^ s2 ^: : : ^ sn) i� it satis�es ea
h of the atomi
 aggregate sele
tions si individually. 2We use the short form
(u) : g1 ^ g2 to denote (
(u) : g1) ^ (
(u) : g2). We often say \the aggregatesele
tion s on the body of R" to denote the aggregate sele
tion
(u) : s, where
(u) is the body of rule R.Note that a
onjun
tion of aggregate sele
tions is also an aggregate sele
tion.Our approa
h to rewriting the program
onsists of pla
ing aggregate sele
tions on literals and rule bodiesin the program in su
h a fashion that if a fa
t/rule instantiation does not satisfy the aggregate sele
tion itis guaranteed to be irrelevant. Hen
e we de�ne the
on
ept of sound aggregate sele
tions formally below.De�nition 6.3.6 (Sound Aggregate Sele
tion) An aggregate sele
tion s is a sound aggregate sele
tionon the body of a rule R i� only irrelevant fa
ts are produ
ed by instantiations of the body of R that do notsatisfy s.An aggregate sele
tion s is a sound aggregate sele
tion for a literal p(t) in the body of a rule R i� onlyirrelevant fa
ts are produ
ed by instantiations of R that use for literal p(t) any fa
t p(a) that does not satisfys. An aggregate sele
tion s is a sound aggregate sele
tion on a predi
ate p i� any fa
t p(a) is irrelevant if itdoes not satisfy s. 2Given a sound aggregate sele
tion on a literal/rule, we
an (partially) test during an evaluation whethera fa
t or an instantiated rule satis�es it. The extension of ea
h predi
ate p at that point is a subset of theextension of p in the intended model of the program. Sin
e the aggregate fun
tions are in
remental aggregate94

sele
tors, an answer of \no" at that point means that the answer would be \no" in the intended model of theprogram, and hen
e the fa
t/instantiation is irrelevant. However, an answer of \yes" is
onservative, sin
ethe fa
t/instantiation may be dete
ted to be irrelevant if all fa
ts in the intended model were available.Example 6.3.4 Consider an aggregate sele
tionpath(X;Y; P; C) : groupby(path(X;Y; P; C); [X;Y ℄;min(C))Suppose we have two fa
ts path(a; b; ; 2) and path(a; b; ; 3) at a point in the
omputation. Then we know thatpath(a; b; ; 3) does not satisfy the sele
tion. Later in the
omputation we may derive a fa
t path(a; b; ; 1).At this point we �nd that path(a; b; ; 2) also does not satisfy the sele
tion. 2We de�ne sound aggregate
onstraints next|they di�er slightly from sound aggregate sele
tions, and weuse them in our rewriting algorithm to generate aggregate sele
tions.De�nition 6.3.7 (Sound Aggregate Constraint) An aggregate sele
tion s is a sound aggregate
on-straint for predi
ate p i� every fa
t that
an be derived for p satis�es the aggregate sele
tion s. 2The following are te
hni
al de�nitions that we use primarily to ensure that the aggregate sele
tions thatwe generate
an be tested eÆ
iently. The motivation is that the fa
t/rule instan
e on whi
h we have anaggregate sele
tion must bind all the variables in the aggregate sele
tion.De�nition 6.3.8 (Free Variables) The free variables of an atomi
 aggregate sele
tion
(u) : groupby(p(t); [X ℄; agg f(Y))are the variables in the set (V ars(X)[fY g). The other variables in an atomi
 aggregate sele
tion are boundvariables (sin
e the semanti
s of atomi
 aggregate sele
tions quanti�es these variables within the s
ope ofthe atomi
 aggregate sele
tion).The free variables of aggregate sele
tion s = s1 ^ : : : ^ sn are those variables that are free in at least oneof the atomi
 sele
tions aggregate si. 2De�nition 6.3.9 (Restri
tions of Aggregate Sele
tions) An atomi
 aggregate sele
tion si is said tobe restri
ted to a given set V of variables if every free variable in si o

urs in V . Let s = (s1 ^ s2 ^ : : :^ sn).Then restri
tion(s; V) = ^fsi j si is restri
ted to V g 2Example 6.3.5 Consider the following sele
tion:s =
(u) : groupby(path(X;Y; P; C); [X;P ℄;min(C))^ groupby(path(X;Y; P; C); [X;Y ℄;min(C))The free variables of s are X;Y; P and C, andrestri
tion(s; fX;Y;Cg) =
(u) : groupby(path(X;Y; P; C); [X;Y ℄;min(C)) 295

R1 : shortest path(X;Y; P; C) : � s p length(X;Y;C); path s1(X;Y; P; C):R2 : s p length(X;Y;minhCi)) : � path s1(X;Y; P; C):R3 : path s1(X;Y; [edge(Z; Y)jP ℄; C1) : � path s1(X;Z; P; C); edge(Z; Y;EC); C1 = C + EC:R4 : path s1(X;Y; [edge(X;Y)jnil℄; C) : � edge(X;Y;C):Sele
tions::s1 = path s1(X;Y; P; C) : groupby(path s1(X;Y; P; C); [X;Y ℄;min(C)):Figure 10: Program Smart6.4 Generating Aggregate Constraints and Sele
tionsWe present a qui
k overview of the next few se
tions of the
hapter . We develop our algorithm for prop-agating relevan
e information in two steps. (1) In this se
tion we present a
olle
tion of te
hniques forgenerating sound aggregate sele
tions. (2) In Se
tion 6.5, we present our main rewriting algorithm, Algo-rithm Push Sele
tions, whi
h uses these te
hniques as subroutines. In Se
tion 6.6, we examine an evaluationme
hanism that
an take advantage of sound aggregate sele
tions on predi
ates that are generated by therewriting me
hanism.As a preview of what the te
hniques
an a
hieve,
onsider Program Simple ShortPath (Figure 9). Theresult of rewriting is Program Smart, shown in Figure 10. The rewritten program uses a new predi
atepath s1 whi
h is a version of path, with the sound aggregate sele
tion s1 on it. The predi
ate path itselfis not present in the rewritten program. The other predi
ates have no aggregate sele
tions on them. Thesele
tion s1 tells us that path s1 fa
ts that are not of minimum length between their endpoints are irrelevant.Deleting su
h fa
ts during the evaluation leads to
onsiderable time bene�ts, and is dis
ussed in Se
tion 6.6.2.In the �rst part of this se
tion we des
ribe an initial set of te
hniques for generating aggregate
onstraintsand sele
tions. The te
hniques are shown below. Te
hnique C1 des
ribes a way of dedu
ing sound aggregate
onstraints on predi
ates. Te
hniques BS1, BS2 and BS3 des
ribe three ways to generate sound aggregatesele
tions on the bodies of rules. Te
hnique LS1 des
ribes a simple way of dedu
ing sound aggregate sele
tionson literals. In Se
tions 6.4.1 and 6.4.2 we present a more sophisti
ated analysis that helps us to derivefurther sound aggregate sele
tions on body literals. We note that this set of dedu
tion rules is not
omplete;in Se
tion 6.4.3 we show that it is unde
idable in general whether a body literal satis�es a sound aggregatesele
tion.Te
hnique C1: (Generating Aggregate Constraints)Suppose that there is only one rule de�ning p, and it is of the form:p(t; agg fhY i): �q(tb)Let X = V ars(t), and let agg f be an In
Sel fun
tion su
h that8S 2M(D); agg f(S) = ne
essaryagg f (S)Then p(t; Y) : groupby(q(tb); [X℄; agg f(Y)) is a sound aggregate
onstraint on p.Te
hnique BS1: (Generating Aggregate Sele
tions from Aggregate Constraints)96

Suppose we have a rule of the formhead(th): �
(tb); p(t)and suppose there is an aggregate
onstraint on p of the form: p(t1) : s where all free variables in s arein
luded in V ars(t1). Suppose there exists a renaming � of variables in t1 su
h that p(t) = p(t1)[�℄. Thens[�℄ is a sound aggregate sele
tion on the body of the rule.Te
hnique BS2: (Generating Aggregate Sele
tions from Aggregate Operations)Suppose we have a rule of the formp(t; agg fhY i): �q(tb)where agg f is an In
Sel fun
tion. Let X = V ars(t). Thengroupby(q(tb); [X ℄; agg f(Y))is a sound aggregate sele
tion on the body of rule R.Te
hnique BS3: (Generating Aggregate Sele
tions from Other Aggregate Sele
tions)Consider a rule of the formp(th): �body(tb).Suppose the head predi
ate p has a sound aggregate sele
tion p(t) : s on it, where all free variables in s arein
luded in V ars(t).Suppose there exists a renaming � of free variables in s, and a substitution � of other variables in t su
hthat p(th) = p(t)[�℄[�℄. Then s[�℄ is a sound aggregate sele
tion on the body of the rule.Te
hnique LS1: (Generating Aggregate Sele
tions On Literals)Let s be a sound aggregate sele
tion on the body of a rule R, and let p(t) be a literal in the body of R.Then p(t) : restri
tion(s; V ars(t))is a sound aggregate sele
tion on the literal p(t) in the body of R.The intuition behind Te
hniques C1 and BS2 is straightforward. Te
hniques BS1 and BS3 use an existingaggregate sele
tion/
onstraint to generate a new aggregate sele
tion. To translate an aggregate
onstraintp(t1) : s on a predi
ate p into an aggregate sele
tion on a rule that uses the predi
ate in the body, one
an
ompute an mgu � of p(t1) with a literal in whi
h the predi
ate is used. The sele
tion s[�℄ is a soundaggregate sele
tion on the body of the rule, sin
e every fa
t that is used for the literal must unify with theliteral, and must satisfy the aggregate
onstraint (see Theorem 6.4.1 for a formal proof). In fa
t, Te
hniqueBS1 uses a renaming � on variables in the aggregate sele
tion/
onstraint, rather than an arbitrary mgu �.The use of renamings is not needed for
orre
tness, but is done in order to restri
t the set of aggregatesele
tions that
an be generated by our rewriting te
hnique, thereby helping us ensure that our rewritingalgorithm terminates. 97

Given an aggregate sele
tion p(t1) : s on a predi
ate p, we
an
ompute an mgu � of p(t1) with the headof a rule that de�nes p. Any fa
t generated by the rule must unify with the head, and if it does not satisfythe aggregate sele
tion, it is irrelevant. Hen
e s[�℄ is a sound aggregate sele
tion on the body of the rule (seeTheorem 6.4.1 for a formal proof). Te
hnique BS3 generates aggregate sele
tions as above, but restri
ts themgu to be a renaming, for the same reasons as those des
ribed for Te
hnique BS1.We have the following theorem showing soundness of the above dedu
tion te
hniques. A formal proof ofthe theorem may be found in Appendix D.Theorem 6.4.1 The aggregate sele
tions generated by Te
hniques C1, BS1, BS2, BS3, and LS1 are soundaggregate sele
tions. 2Example 6.4.1 Consider Program Simple ShortPath (Figure 9). Using Te
hnique C1 and rule R2 we getthe aggregate
onstraints p length(X;Y;C) : groupby(path(X;Y; P; C); [X;Y ℄;min(C))on the predi
ate s p length. Using this aggregate
onstraint with rule R1, Te
hnique BS1 dedu
es thefollowing sound aggregate sele
tion on the body of rule R1:groupby(path(X;Y; P; C); [X;Y ℄;min(C))Using Te
hnique BS2 we get the following sound aggregate sele
tion on the body of rule R2:groupby(path(X;Y; P; C); [X;Y ℄;min(C))If we had a sound aggregate sele
tionpath(X;Y; P; C) : groupby(path(X;Y; P; C); [X;Y ℄;min(C))on the head predi
ate of rule R3, Te
hnique BS3 would derive the following sound aggregate sele
tion onthe body of rule R3:groupby(path(X;Y; P; C1); [X;Y ℄;min(C1))From these sound aggregate sele
tions on the bodies of R1 and R2, using LS1, we dedu
e the soundaggregate sele
tionpath(X;Y; P; C) : groupby(path(X;Y; P; C); [X;Y ℄;min(C))on the literal path(X;Y; P; C) in the body of the rule R1, and the sound aggregate sele
tionpath(X;Y; P; C) : groupby(path(X;Y; P; C); [X;Y ℄;min(C))on the literal path(X;Y; P; C) in the body of the rule R2. 2
98

6.4.1 Pushing Aggregate Sele
tionsWe now look at another way of generating aggregate sele
tions on rule body literals. But �rst we presentsome de�nitions. Aggregate fun
tions su
h as min and fun
tions as + or � intera
t in a parti
ular fashion,and we use this intera
tion to generate sound aggregate sele
tions on literals in the bodies of rules.De�nition 6.4.1 (Distribute Over) Let fn be a total fun
tion fn : D �D � : : : �D ! D that mapsn-tuples of values from D to a value in D. De�ne s fn(U) = Sffn(t) j t 2 Ug. Let agg f be an aggregatefun
tion agg f :M(D)! D1. Let S1; S2; : : : Sn be elements of M(D), and let S = S1 � S2 � : : :� Sn.unne
essaryagg f is said to distribute over fn i� for every (w1; w2; : : : ; wn) 2 S, and for every i, 1 � i �n, wi 2 unne
essaryagg f (Si)) fn(w1; w2; : : : ; wn) 2 unne
essaryagg f (s fn(S))2Example 6.4.2 For example unne
essarymin distributes over \+" for reals and integers, and over � forpositive reals and positive integers, but does not distribute over � for arbitrary reals.unne
essarymin also distributes over the fun
tion min(a1; a2; : : : ; an), and further, surprisingly, alsoover max(a1; a2; : : : ; an). In fa
t, min distributes over any fun
tion that is monotone non-de
reasing on itsarguments. unne
essarymax behaves exa
tly like min on the above fun
tions. Let sum highest k denotethe aggregate fun
tion that sums the highest k values (for some �xed k). Then unne
essarysum highest kdistributes over \+" on reals. 2We assume that the system implementor provides a set of pairs (agg f; fn) for
ommon aggregate fun
-tions agg f and arithmeti
 fun
tions fn su
h that unne
essaryagg f distributes over fn. We dis
uss brie
yin Se
tion 6.8 how to extend the idea of distributes over to allow di�erent aggregate fun
tions for ea
h Si inthe above de�nition.Te
hnique PS1 shows a way of deriving aggregate sele
tions on literals in rule bodies by making use ofdistribution of aggregate fun
tions over ordinary fun
tions.Te
hnique PS1: (Generating Aggregate Sele
tions on Literals)Let R be a rule of the formR : ph(th): � : : : ; pi(ti;W i); : : : ; Y = fn(W1; : : : ;Wn)su
h that there is no aggregate operation in the head of R. Suppose1. There is a sound atomi
 aggregate sele
tion on the head of R, of the formgroupby(ph(th); [X℄; agg f(Y))2. unne
essaryagg f distributes over fn,3. Ea
h of W1; : : : ;Wn; Y are distin
t variables,4. Ea
h Wi appears exa
tly on
e in the literal pi(ti;W i), and appears in no literal other than Y =fn(W1; : : : ;Wn).5. Y does not appear in any other literal in the body of the rule, and does not appear in X.99

Then for ea
h literal pi(ti;W i) in the body of the rule, the following is a sound atomi
 aggregate sele
tionon the literal:pi(Z;Wi) : groupby(pi(Z;Wi); [Z℄; agg f(Wi))where Z is a tuple of distin
t variables of the same arity as ti.Theorem 6.4.2 Te
hnique PS1 is sound. 2The proof of this theorem may be found in Appendix D.Example 6.4.3 Suppose we have a sound atomi
 aggregate sele
tiongroupby(path(X;Y;C); [X;Y ℄;min(C))on the head of the following rule:path(X;Y;C): �path(X;Z;C1); edge(Z; Y; C2); C = C1 + C2:Te
hnique PS1 derives a sound aggregate sele
tion of the formgroupby(path(X;Z;C1); [X;Z℄;min(C1))on the body literal path.Now suppose we have a sound atomi
 aggregate sele
tiongroupby(path(X;Y; P; C); [X;Y ℄;min(C))on the head of rule R3 of Program Simple ShortPath. Te
hnique PS1 derives a sound aggregate sele
tionof the form groupby(path(X;Z; P; C); [X;Z; P ℄;min(C)) on the body literal path(X;Z; P; C) in rule R3.However, this literal has a \stronger" sound aggregate sele
tion groupby(path(X;Z; P; C); [X;Z℄;min(C)).In Se
tion 6.4.2 we see how the stronger sele
tion
an be derived. 26.4.2 Extended Te
hniques for Pushing Sele
tionsThe sele
tions generated by Te
hnique PS1 are too weak in the following sense. Often there are argumentsof literals that need not be introdu
ed in the group-by variables of the aggregate sele
tion generated, asis illustrated in Example 6.4.3. The dedu
tion te
hnique
an be extended using the following idea. Inthe proof of Te
hnique PS1, we partitioned the multiset SY based on the values of variables other thanfW1; : : : ;Wn; Y g, and we showed that within ea
h partition we have a
ross produ
t of the SWi values.This
ross produ
t is important for distributing agg f over fn. We
an make the partitions of
oarsergranularity by not in
luding some variables in the partition, and yet have a
ross produ
t as above. We
anthen generate stronger sound aggregate sele
tions on body literals. We �rst present some de�nitions thathelp in the generalization. 100

De�nition 6.4.2 (Cross-Partitioning Variables) Consider a ruleR : ph(th): � : : : ; pi(ti;W i); : : : ; Y = fn(W1; : : : ;Wn):with an aggregate sele
tiongroupby(ph(th); [X ℄; agg f(Y))that satisfy the
onditions of PS1. A set of variables V is said to be
ross-partitioning if1. fY;W1;W2; : : : ;Wng \ V = ;.2. Given any instantiation of the variables in V [X:(a) Let S denote the set of instantiations of (W1;W2; : : : ;Wn) generated by su

essful instantiationsof the rule with the given binding for V [X.(b) Let SWi denote the set of instantiations of Wi generated by su

essful instantiations of pi(ti;W i)with the given binding for V [X.Then either S is empty, or S = SW1 � SW2 � : : :� SWn.2 The set of all variables in the rule other than fY;W1;W2; : : : ;Wng is a
ross-partitioning set, as isshown by the proof of soundness of Te
hnique PS1. However, there may be smaller sets of
ross-partitioningvariables.Example 6.4.4 We
ontinue with Example 6.4.1. Suppose we have a sound atomi
 aggregate sele
tiongroupby(path(X;Y; P; C1); [X;Y ℄;min(C1)) on the head of rule R3:R3 : path(X;Y; [edge(Z; Y)jP ℄; C1) : � path(X;Z; P; C); edge(Z; Y;EC); C1 = C +EC:Then the set of variables fX;Y; Zg forms a
ross-partitioning set. The reason is that with a given valuefor X;Y; Z, whatever values one �nds for C using path
an be used with whatever values that one gets forEC using edge. The value of P does not a�e
t the
ross-produ
t. 2We dis
uss the issue of automati
ally determining sets of variables that are
ross-partitioning, in Se
-tion 6.4.2.Te
hnique PS2: (Extended Te
hnique For Generating Aggregate Sele
tions on Literals)Consider a rule R that with an aggregate sele
tion satis�es the
onditions of Te
hnique PS1. Supposesome set V of variables is a
ross-partitioning set. De�ne an argument of pi(ti;W i) to be a partitioningargument if1. it is not a variable, or2. it is a variable that appears elsewhere in the same literal, or3. it is a variable that is in X [V . 101

Let Z be a tuple of distin
t variables of the same arity as ti. Let Z 0 be the set of variables in Z that
orrespond to partitioning arguments. Then the following is a sound atomi
 aggregate sele
tion on literalpi(ti;W i):pi(Z;Wi) : groupby(pi(Z;Wi); [Z 0℄; agg f(Wi))
Theorem 6.4.3 Te
hnique PS2 is sound. 2The proof of this theorem is presented in Appendix D.Example 6.4.5 We
ontinue with Example 6.4.4. Using Te
hnique PS2, we dedu
e the following soundaggregate sele
tion on the literal path:path(X;Y; P; C) : groupby(path(X;Z; P; C); [X;Z℄;min(C))This sele
tion is \stronger" than the sele
tion generated by Te
hnique PS1, sin
e it sele
ts the minimum
ost for ea
h X;Z pair, rather than for ea
h X;Z; P triple. 2Dete
ting Sets of Cross-Partitioning VariablesWe now see how to determine a set of
ross-partitioning variables for a rule. We �rst present some de�nitions.The idea behind the following de�nitions is that if a variable in a literal does not appear elsewhere in therule or in the aggregate sele
tion, we get a
ross-produ
t of SWi sets as in De�nition 6.4.2, even if we do notin
lude the variable in the
ross-partitioning set.De�nition 6.4.3 (Strongly Non-Constrained Arguments) Suppose we are given a rule and an ag-gregate sele
tion on the rule. Consider any literal in the rule. The strongly non-
onstrained arguments ofthe literal as those arguments that are distin
t variables that (1) o

ur nowhere else in the body of the rule,and (2) do not appear as a free variable in the aggregate sele
tion. 2De�nition 6.4.4 (Strongly Non-Constrained Variables) Consider a rule R and an aggregate sele
tions as in Te
hnique PS1. A variable in R is strongly non-
onstrained if it o

urs in a non-
onstrained argumentof some literal pi(ti;W i). 2Proposition 6.4.4 Consider a rule R and an aggregate sele
tion s as in Te
hnique PS1. Let V denotethe set of all variables in the rule. Let N denote the set of non-
onstrained variables in the rule. ThenC = V �N � fW1;W2; : : : ;Wn; Y g is a
ross-partitioning set for rule R. 2The proof of this proposition may be found in Appendix D.Example 6.4.6 We revisit Example 6.4.4. Suppose we have a sound atomi
 aggregate sele
tiongroupby(path(X;Y; P; C1); [X;Y ℄;min(C1)) 102

on the head of rule R3:R3 : path(X;Y; [edge(Z; Y)jP ℄; C1) : � path(X;Z; P; C); edge(Z; Y;EC); C1 = C +EC:Then the third argument of path(X;Z; P; C) is a non-
onstrained argument sin
e it is a variable thatdoes not appear elsewhere in the rule body. Hen
e P is a non-
onstrained variable. The set of variablesfX;Y; Zg forms a
ross-partitioning set, as required by Proposition 6.4.4. 26.4.3 An Unde
idability ResultWe note that the set of dedu
tion rules we presented for sound aggregate sele
tions is not
omplete. De-pending on the a
tual fa
ts for a predi
ate, it is possible that a literal has a sound aggregate sele
tion onit, but the sound aggregate sele
tion
annot be dedu
ed synta
ti
ally. The following theorem shows that noset of dedu
tion rules
an be
omplete.Theorem 6.4.5 It is unde
idable whether an aggregate sele
tion is sound.Proof: Consider a rulep(X;C): �q(X;C); test(C):and suppose we have a sound aggregate sele
tionp(X;C) : groupby(p(X;C); [X ℄;min(C))Then q(X;C) : groupby(q(X;C); [X ℄;min(C))is a sound aggregate sele
tion on the literal q i� for every X , the minimum value of C in q(X;C) satis�estest(C). However, with arbitrary logi
 programs, satis�ability is unde
idable [SS82℄, and hen
e it is unde
id-able if the aggregate sele
tion on the literal is sound. The theorem
an be extended to aggregate sele
tionson predi
ates, by letting the given rule be the only one that uses of q. 2It is
on
eivable that we
an derive a set of rules that are
omplete for the
lass of dedu
tions that useonly (lo
al) synta
ti

riteria. However, su
h a set of rules would be too weak in pra
tise, as is illustratedby the program in Example 6.4.3. Here, distribution of min over + depends
riti
ally on the semanti
s for+. Hen
e no dedu
tion rule that used purely synta
ti

riteria would dedu
e the required sele
tion.6.4.4 Strength of Aggregate Sele
tionsAn aggregate sele
tion s is stronger than an aggregate sele
tion t (denoted as s � t), if whenever t
lassi�esan instantiation as irrelevant, then so does s. Sele
tions s and t are equivalent (in symbols, s � t) if s � tand s � t. Note that the ordering > (i.e., the stri
t version of �) is an irre
exive partial ordering. It is nota total ordering sin
e aggregate sele
tions may be in
omparable.The following are suÆ
ient
onditions for an aggregate sele
tion s to be stronger than t.Compare Aggregate Sele
tions(s; t): 103

1. Suppose s and t are atomi
 aggregate sele
tions of the following form:s =
1(: : :) : groupby(p(t); [X1℄; agg f(Y))t =
2(: : :) : groupby(p(t); [X2℄; agg f(Y))(a) If
1(: : :) =
2(: : :), and V ars(X1) � V ars(X2) then s � t.(Note that the �rst and third arguments of the above groupby's must be the same.)(b) If there is some substitution � on the variables of
1(: : :) su
h that
1(: : :)[�℄ =
2(: : :), and s[�℄ isstronger than t, then s is stronger than t.2. Suppose s =
1(: : :) : as1 ^ as2 ^ : : : ^ asm and t =
2(: : :) : at1 ^ at2 ^ : : : ^ atn where ea
h asi and atjis atomi
. Then s � t if for ea
h atj there exists an asi su
h that
1(: : :) : asi �
2(: : :) : atj .Proposition 6.4.6 The
onditions in Compare Aggregate Sele
tions(s; t) are suÆ
ient
onditions for s tobe stronger than t. 2The formal proof of the above proposition may be found in Appendix D.6.5 The Aggregate Rewriting AlgorithmIn this se
tion we present a rewriting of the program based on the propagation of sound aggregate sele
tions.The rewriting algorithm is somewhat similar to the adornment algorithm used in Magi
 sets rewriting (see[Ull89b℄). When it dete
ts that an o

urren
e of a predi
ate p in the body of a parti
ular rule has a soundaggregate sele
tion s on it, it
reates a new labeled version p s of p and notes that predi
ate p s has aggregatesele
tion s on it. That o

urren
e of predi
ate p is repla
ed by p s, and by using aggregate sele
tion s, (
opiesof) rules de�ning p are spe
ialized to de�ne p s.The rewriting algorithm is shown below. In Step 7 of the algorithm, s is a sound aggregate sele
tionon the head of R0, and this, along with any aggregate
onstraints on body predi
ates, may be used withte
hniques from Se
tion 6.4 to generate new aggregate sele
tions.Algorithm Push Sele
tions(P; P as)Input: Program P , and query predi
ate query pred.Output: Rewritten program P as.1) Derive sound aggregate
onstraints on the predi
ates of the programusing the dedu
tion rules.2) Push query pred nil onto sta
k.3) While sta
k not empty do4) Pop p s from the sta
k and mark p s as seen.5) For ea
h rule R de�ning p do6) Set R0 = a
opy of R with head predi
ate repla
ed by p s.104

7) Derive sound aggregate sele
tions for ea
h body literal pi of R0using the dedu
tion rules.8) For ea
h pi in the body of R0 do9) Let si denote the
onjun
tion of sound aggregate sele
tionsderived for pi; drop from si any atomi
 aggregate sele
tionsthat are weaker than other atomi
 aggregate sele
tions in si.10) If a version pi t of pi su
h that t � si has been seen,11) Then
hoose one su
h, and set si = t ;12) Else push pi si onto sta
k, and output sele
tion si on pi si.13) Output a
opy of R0, with ea
h pi repla
ed by pi si.End while.End Algorithm.Postpro
essing 1: For ea
h predi
ate p, for ea
h version p s of p,
hoose the weakest version p t of p inthe rewritten program su
h that s � t. Repla
e all o

urren
es of p s in bodies of rules in the rewrittenprogram by p t. Finally, remove all rules that are not rea
hable from the query.Postpro
essing 2: Suppose we have a predi
ate q in the rewritten program, with an atomi
 aggregatesele
tion s = groupby(p(t); [X℄; agg f(Y)) on it. If q is a version of p with aggregate sele
tion s on it, renamep in the above sele
tion to q. Otherwise, if p is absent from the rewritten program rename p in the sele
tionwith a predi
ate
hosen as below: if a version p s of p with aggregate sele
tion s, exists,
hoose it. If not,sele
t a version6 p s1 of p if any su
h version exists. If no p s1 was found, p is not
onne
ted to the querypredi
ate|drop the sele
tion s from predi
ate q.If in the rewritten program there are two versions of p, p s and p t su
h that s > t, there is no point inusing the stronger version p s | all the fa
ts
omputed for p s will be
omputed for p t. Postpro
essing 1des
ribes how to repla
e the stronger version of p by the weaker version.As a result of the renaming of predi
ates followed by rea
hability analysis in Postpro
essing 1, predi
atesused in aggregate sele
tions may not be present in the rewritten program. Postpro
essing 2 des
ribes howto �x this problem.Example 6.5.1 Applying this algorithm to Program Simple ShortPath, we get the optimized program,Program Smart shown in Figure 10. The algorithm starts with the query predi
ate shortest path. Creationof aggregate
onstraints, and pushing them into rules is done as dis
ussed in earlier examples, and theoperation of Algorithm Push Sele
tions is fairly straightforward. As a result of the rewriting we get the rulesof Program Smart, but with path s1 having the following sound aggregate sele
tion on it:path s1(X;Y; P; C) : groupby(path(X;Y; P; C); [X;Y ℄;min(C)):On postpro
essing, we rename predi
ate path in the above sele
tion to path s1, to get Program Smart. To6We omit details on how to make this
hoi
e. 105

get the bene�ts of the rewriting, the evaluation must make use of the aggregate sele
tions present in ProgramSmart. We des
ribe how to do this in the next se
tion. 2Theorem 6.5.1 (Corre
tness of Rewriting) Let P be any program, and P as the aggregate rewrittenversion of the program.1. P as and P are equivalent in the set of answers they generate for the query predi
ate.2. The aggregate sele
tion on ea
h predi
ate in P as is a sound aggregate sele
tion on the predi
ate.2 The proof of this theorem is presented in Appendix D The basi
 idea is that the dedu
tion rules generatesound aggregate sele
tions on body literals. The rewriting te
hnique
reates
opies of the predi
ates ofthe body literals, su
h that all uses of the predi
ate have the aggregate sele
tion on them, and hen
e theaggregate sele
tion on the literal be
omes an aggregate sele
tion on new predi
ate.Theorem 6.5.2 (Termination) Algorithm Push Sele
tions terminates on all �nite input programs, pro-du
ing a �nite rewritten program. 2The above theorem shows that the generated program is �nite. This is assured essentially be
ause ourdedu
tion te
hniques bound the number of di�erent aggregate sele
tions that
an be generated. The formalproof is presented in Appendix D.The rewritten program
ould potentially be large, but, as is the
ase with the adornment algorithmfor Magi
 sets rewriting, this is very unlikely to happen in pra
ti
e|the rewritten program is likely to benot mu
h larger than the original program. To ensure that the rewritten program is small we
ould adoptheuristi
s su
h as bounding the number of atomi
 aggregate sele
tions in an aggregate sele
tion to some �xedsmall value, or bounding the number of di�erent aggregate sele
tions on ea
h predi
ate. We omit detailshere; these restri
tions may in
rease the number of fa
ts
omputed, but will not a�e
t
orre
tness.Proposition 6.5.3 (Strati�
ation) If the initial program is strati�ed w.r.t. aggregation, then the ag-gregate rewritten program is also strati�ed w.r.t. aggregation. 2Proof: We simply assign ea
h predi
ate p s to the same stratum as p. It
an then be seen that everyaggregation operation in the rewritten program respe
ts this strati�
ation. 26.6 Aggregate Retaining EvaluationIn this se
tion we see how to evaluate a rewritten program making use of aggregate sele
tions on predi
ates.Essentially, on
e we know that a fa
t does not satisfy a sound aggregate sele
tion on it we know that thefa
t is irrelevant, and any use if the fa
t will only generate irrelevant fa
ts.We de�ne Aggregate Retaining Evaluation (Agg-retaining Evaluation) as a modi�
ation to Semi-Naiveevaluation (Se
tion 2.2.3) : At the end of ea
h iteration of Semi-Naive evaluation, (in Step 2.2 of AlgorithmSN Evaluate) the following extra a
tions are performed:106

1. Any fa
t that does not satisfy an aggregate sele
tion is marked as deleted. Any fa
t marked deleted isnot used in further derivations.2. For ea
h fa
t marked deleted, if(a) there is an aggregate sele
tion with a groupby that uses the predi
ate of the fa
t, and(b) the fa
t a�e
ts the unne
essary set for the groupby,then the fa
t is retained for use in that groupby. Otherwise, the fa
t is dis
arded.Part 2 of the above may seem hard to test. In fa
t, it is not
riti
al that it be tested. Retaining a deletedfa
t that satis�es Part 2 of the
ondition above does not a�e
t the derivations made later on. Moreover,there are straightforward suÆ
ient
onditions for it, su
h as the following.If a fa
t for a predi
ate p fails a sound atomi
 aggregate sele
tionp(t) : groupby(p(: : :); [: : :℄; : : :)(i.e., the groupby uses the same predi
ate p) dis
arding the fa
t will not a�e
t the unne
essary set for thisgroupby. This is be
ause Part 3 of
ondition In
Sel ensures that if a value in a set is unne
essary for a set,dis
arding it will not a�e
t the unne
essary value for the set. If all uses of p in atomi
 aggregate sele
tionsare of the above form, and a fa
t for p fails all the atomi
 aggregate sele
tions, then dis
arding the fa
t willnot a�e
t the unne
essary set for the groupby's in any sele
tion.Example 6.6.1 Predi
ate path s1 in Program Smart has a sound aggregate sele
tionpath s1(X;Y; P; C) : groupby(path s1(X;Y; P; C); [X;Y ℄;min(C)):If a fa
t is generated with any value for X and Y and another fa
t with the same value for X and Y alreadyexists, we know that the one with the greater C value does not satisfy the aggregate sele
tion. Agg-retainingevaluation of Program Smart dis
ards fa
ts with higher
ost. If there is more than one stored fa
t withthe same value for X;Y;C, the fa
ts
an di�er only in their P value. If a fa
t fails the aggregate sele
tion,it
annot a�e
t the set of fa
ts that are found irrelevant by the aggregate sele
tion, and the fa
t
an bedis
arded. 2The soundness and partial
ompleteness of Agg-retaining evaluation are fairly straightforward to show.The main
on
ern is termination. One might worry that Agg-retaining evaluation
ould dis
ard a fa
t, thenre
ompute it, and reuse it to make derivations sin
e it does not re
ognize that it was used earlier. In theworst
ase, an in�nite loop
ould result if this happens. The following theorem shows that this
annothappen. The essential idea is to show that on
e a fa
t is found irrelevant, it
ontinues to be found irrelevantlater in the
omputation. The proof of the theorem is presented in Appendix D.Theorem 6.6.1 (Soundness, Completeness, Non-Repetition) Aggregate Retaining evaluation ofP as gives the same set of answers for query pred as Semi-Naive evaluation of P , and does not repeatany inferen
es. Further, the Aggregate Retaining evaluation of P as terminates whenever the Semi-Naiveevaluation of P terminates. 2 107

R1 : s p length(X;Y;minhCi)) : � path s1(X;Y;C):R2 : path s1(X;Y;C1) : � path s1(X;Z;C); edge(Z; Y;EC); C1 = C +EC:R3 : path s1(X;Y;C) : � edge(X;Y;C):Sele
tions::s1 = path s1(X;Y;C) : groupby(path s1(X;Y;C); [X;Y ℄;min(C)):Figure 11: Program Smart ShortCost6.6.1 Pragmati
 Issues Of Testing Aggregate Sele
tionsFor
on
reteness, we let the set of aggregate fun
tions that we
onsider in this se
tion be the following: min,max, and for small integers k (up to some arbitrary number) the fun
tions least k, highest k, sum of least kand sum of highest k.Our sele
tion propagating te
hniques ensure that all free variables in a groupby of an atomi
 aggregatesele
tion also appear in the
orresponding literal on whi
h the sele
tion is applied. When testing an atomi
aggregate sele
tion on a fa
t f , we have a unique ground instantiation of the group-by and grouping variablesof the sele
tion; the test of the aggregate sele
tion
an be performed eÆ
iently for all the aggregate fun
tionsthat we
onsider in this se
tion.If the test determines that fa
t f is irrelevant, f is dis
arded, else it is retained | for the aggregatefun
tions we
onsider, dis
arding f does not a�e
t the set of values that are
lassi�ed as irrelevant. As the
omputation pro
eeds, the set of unne
essary values for the \group" to whi
h f belongs (i.e., the set of fa
tswith the same values in the grouped arguments)
ould grow larger, and this might enable us to determinethat f is irrelevant, although this
ould not be dete
ted earlier. By sorting the set of fa
ts on the groupedarguments, this \re-testing"
an be done eÆ
iently. The
ost of sorting is small for the aggregate operationswe
onsider in this se
tion; in the
ase of max or min aggregate operations there is at most one value storedfor ea
h group (however, there
an be more than one fa
t with the same value).Proposition 6.6.2 (Bounds on Performan
e) Given a program that uses only the aggregate operations
onsidered in this se
tion, and a database, let the time for Agg-retaining Evaluation of the program on thedatabase be tR, and let tO be the time taken to evaluate the original program on the database. There is a
onstant k (independent of the database) su
h that tR � k � tO. 2This means that Agg-retaining evaluation of the rewritten program
an do at most a
onstant fa
tor worsethan Semi-Naive evaluation of the original program | the
onverse is not true.Example 6.6.2 Given a graph with n nodes, the number of shortest paths between ea
h pair of points maybe exponential in n. Hen
e we
annot get a worst
ase time bound better than exponential in n for theshortest-path problem if we maintain all shortest paths as in Program Smart (Example 6.5.1). We instead
onsider two variants of this program below.Consider Program Simple ShortCost, from Se
tion 6.1. This program does not maintain path information.The rewriting for this program is similar to the rewriting for Program Simple ShortPath (Figure 9), and therewritten program, Program Smart ShortCost, is shown in Figure 11.108

R1 : s p length(s; Y;minhCi)) : � path s1(s; Y; C):R2 : path s1(s; Y; C1) : � path s1(s; Z; C); edge(Z; Y;EC); C1 = C +EC:R3 : path s1(s; Y; C) : � edge(s; Y; C):Sele
tions::s1 = path s1(X;Y;C) : groupby(path s1(X;Y;C); [X;Y ℄;min(C)):Figure 12: Program Smart SingleSour
eCostDue to the aggregate sele
tion, there
an be at most O(V 2) path s1 fa
ts at any point in the evaluation.These fa
ts
an be used with the E edge fa
ts. Rule R2
an be thought of as extending ea
h edge ba
kward,and ea
h edge
an be extended ba
k to at most V nodes. Rule R1
an generate at most E path fa
ts. Thisshows that E � V inferen
es are made per iteration, and hen
e there are at most E � V path fa
ts used inea
h iteration. Ea
h iteration then takes time E �V , assuming that hash-based indi
es are used for path andedge fa
ts. There are at most V iterations, sin
e iteration i
omputes all shortest paths of length i. Thus,Agg-retaining evaluation of Program Smart ShortCost takes time O(E � V 2).To
ompute shortest paths from a single sour
e, we
an use a version of Simple ShortCost where the vari-able in the �rst argument of ea
h path literal in the program is bound to the sour
e node s.7 We do not showthis program, but instead dire
tly show its aggregate rewritten version, Program Smart SingleSour
eCost,in Figure 12. An analysis similar to that for Program Smart ShortCost shows that Program Smart Single-Sour
eCost runs in time O(E � V).Note that the above bounds hold even if there are negative length edges, so long as there are no negative
y
les in the edge graph.In Sudarshan and Ramakrishnan [SR92a℄, we dis
uss extensions to aggregate fun
tions to allow theprogram to spe
ify that only one shortest path (
hosen arbitrarily) is required. The rewriting algorithms arealso extended to handle these extensions to aggregate fun
tions. It is easy to modify Program Smart to geta program that
omputes shortest paths from a given sour
e node. We
an use these extensions to
reate aversion of this program that sele
ts a single shortest path. The extended Aggregate rewriting of this programgenerates a rewritten program that maintains at most one shortest path between the sour
e node and ea
hother node. We show in [SR92a℄ that pre
isely the same time bounds as for Program Smart SingleSour
eCostare appli
able to the Agg-retaining evaluation of the rewritten program. 26.6.2 Ordered Aggregate Retaining EvaluationConsider the shortest path problem with a given starting point. Dijkstra's algorithm takes O(E � log(V))time if we use a heap data stru
ture to �nd the minimum
ost path at ea
h stage. However, Agg-retainingevaluation of Program Smart SingleSour
eCost (Example 6.6.2) takes O(E � V) time. We
an get the e�e
tof Dijkstra's algorithm by extending at ea
h stage only the shortest path that hasn't been extended yet. Inother words, we use only the path fa
ts that are of minimal
ost among those that haven't yet been used.This important observation is made in [GGZ91℄ and is used in their evaluation algorithm (see Se
tion 6.8.17The Fa
toring transformation [NRSU89℄ and the Magi
 Sets rewriting on Program Simple ShortCost, with a query havingthe �rst argument bound results is a similar program being generated. Aggregate Rewriting optimizes the resultant programsu

essfully. 109

for a brief des
ription). Their evaluation te
hnique works for the
lass of \monotoni
 min programs" | see[GGZ91℄ for a pre
ise de�nition. The basi
 idea behind their te
hnique
an be applied to a
lass of programsthat we
all
ost-in
ationary programs. These are de�ned below.A
ost domain is a domain with a partial ordering on it. A
ost predi
ate is one with a distinguishedargument
alled the
ost argument, that takes values from the
ost domain.De�nition 6.6.1 (Cost-In
ationary Programs) A strongly
onne
ted
omponent (SCC) of a programis said to be
ost-in
ationary-min if either it has no aggregate sele
tions, or all the following
onditions hold:1. All aggregate sele
tions on predi
ates in the SCC use only the min aggregate operation.2. Every predi
ate in the SCC has a
ost argument.3. For ea
h predi
ate de�ned in the SCC, the min operation in ea
h aggregate sele
tion (if any) on it ison the
ost argument of the predi
ate.4. Every rule in the SCC is in
ationary on the
ost argument, i.e., for every su

essfully instantiated rule,the values in
ost arguments of body predi
ates are less than the value in the
ost argument of thehead of the instantiated rule.An SCC is said to be
ost-in
ationary-max if the
onditions above hold, with min repla
ed with max,and less repla
ed with greater.A program is said to be
ost-in
ationary if ea
h of its SCCs is either
ost-in
ationary-min or
ost-in
ationary-max. 2We make use of an idea in [GGZ91℄ to derive an improved evaluation te
hnique, Ordered AggregateRetaining Evaluation (Ordered-Agg Evaluation) , for SCCs that have aggregate sele
tions, and are
ost-in
ationary-min. The basi
 idea is to use lower
ost fa
ts before higher
ost fa
ts are used. We make use ofa me
hanism
alled sloppy-delta iteration for adapting Semi-Naive evaluation for fa
t orderings, des
ribedin [SKGB87℄. All derived relations are split into a visible part and a hidden part
ontaining fa
ts that arenot used to make derivations until they are moved into the visible part.Ordered Aggregate Retaining Evaluation:To evaluate
ost-in
ationary-min SCCs, we adapt Semi-Naive evaluation as follows.1. Newly derived fa
ts are put into the hidden parts of the respe
tive relations. The fa
ts in the hidden partsof relations are ordered based on the
ost argument of the fa
t.2. Whenever a �xpoint is rea
hed with the visible parts of relations, we �nd the fa
t with the least
ost fromamong all the fa
ts in the hidden parts of relations and move it into the visible part.3. Fa
ts from the hidden as well as the visible relations are marked deleted (and possibly dis
arded) when anaggregate sele
tion �nds them to be irrelevant, as is done in Agg-retaining evaluation.The te
hnique for
ost-in
ationary-max SCCs is very similar to the above, with the ordering of elementsreversed; we omit details. A
ost-in
ationary program is evaluated by using the appropriate version of110

Ordered-Agg evaluation te
hnique for ea
h SCC, and evaluating the SCCs in a total order
onsistent withthe partial ordering of the SCCs.The e�e
t of the above evaluation is exa
tly the same as if Ganguly et al.'s evaluation te
hnique wereused, for the
ase of
ost-in
ationary programs. The following example illustrates its bene�ts.Example 6.6.3 The Aggregate rewritten single sour
e shortest path
ost program, Program Smart Single-Sour
eCost, is shown in Figure 12.All path fa
ts generated by Program Smart SingleSour
eCost have the sour
e node s as the �rst argument.Ordered-Agg evaluation of Program Smart SingleSour
eCost works as follows. First, all edges from s areused, and path fa
ts
reated using rule R3. These path fa
ts are hidden, and a lo
al �xpoint is rea
hed.Now a shortest path among the hidden path fa
ts is sele
ted and used. This generates new path fa
ts, andall these are hidden. A lo
al �xpoint is rea
hed, and a shortest path among the hidden path fa
ts is sele
tedagain. If there are two path fa
ts to the same node, if one of them is of higher
ost than the other, theaggregate sele
tion using min deletes the fa
t of higher
ost.We assume that the edge weights are non-negative. The evaluation explores paths in order of in
reasing
ost sin
e edge weights are non-negative | any path fa
t generated must be of equal or higher
ost thanthe path fa
t used to generate it. Thus when a hidden path fa
t is exposed, it is guaranteed to be a shortestpath from s. Evaluation thus mimi
s Dijkstra's algorithm. The time
omplexity analysis is essentially thesame as that used for Dijkstra's shortest path algorithm | the analysis is as below.Suppose we use a heap data stru
ture. The min aggregate sele
tion ensures that for ea
h node, only theminimum
ost path from the sour
e is retained. Thus only O(V) path fa
ts are present at any time.Finding the overall shortest path at ea
h step therefore takes O(log(V)) time, assuming a balan
ed heapis used. At ea
h iteration a \minimal" node is
hosen and the path to it is expanded. Thus some new fa
tsare
omputed and added to the heap.For the node that is
hosen to be expanded in the next iteration, there
an be no shorter path from thesour
e, sin
e every path that is
omputed hen
e will be longer (due to the assumption that edge weights arenon-negative). Thus that node will never be
hosen again to be expanded. Thus in V steps the algorithmterminates. At ea
h step the edges from a node are examined, and the path to the node is expanded alongea
h edge from the node. This
an take a total of at most O(E) time over all steps sin
e ea
h node isexpanded exa
tly on
e, and at most O(E) fa
ts are added to the heap. Thus the heap operations takeO(E � log(V)) time. Thus the total time taken by Ordered-Agg evaluation of this program is O(E � log(V)).Note that even if edge weights are negative, the algorithm works
orre
tly, and terminates provided thereare no negative weight
y
les. However, the time taken by the program may be exponential in the worst
ase.Using the extensions des
ribed in Sudarshan and Ramakrishnan [SR92a℄, we
an
reate a variant ofProgram Smart that
omputes only paths from a single sour
e node, and maintains only one shortest pathbetween ea
h pair of nodes, and we
an use the extended aggregate rewriting on this program. We show in[SR92a℄ that pre
isely the same time bounds as for Ordered-Agg evaluation of Program Smart SingleSour
e-Cost are appli
able to the Ordered-Agg evaluation of the rewritten program. 2Theorem 6.6.3 Consider the Ordered Aggregate Retaining Evaluation of a
ost-in
ationary-min SCC. The111

evaluation is sound, and every fa
t that is used in the evaluation satis�es all aggregate sele
tions on it. Fur-ther, the evaluation does not repeat derivations, and is
omplete and terminates if Agg-retaining evaluationterminates on the SCC.Proof: Soundness follows dire
tly from the soundness of the aggregate sele
tions.At an intermediate �xpoint in an Agg-retaining evaluation,
onsider the fa
t with the least
ost thathas not been used yet, and satis�es any aggregate sele
tions on it. Sin
e the rules in the SCC are
ost-in
ationary-min, no fa
t with lesser
ost
an be derived hen
e. Therefore this fa
t de�nitely satis�es anymin aggregate sele
tion on the predi
ate (with respe
t to the
omplete set of fa
ts).Consider now an SCC for whi
h Agg-retaining evaluation terminates. Sin
e Agg-retaining evaluationterminates, there are only a �nite number of fa
ts that satisfy all aggregate sele
tions present. At ea
hintermediate �xpoint, a new su
h fa
t is
hosen. Hen
e there are only a �nite number of �xpoints. Nowwithin an intermediate �xpoint, only derivations that use the sele
ted fa
t
an be made. Sin
e this is a subsetof the fa
ts derived in Agg-retaining evaluation, ea
h intermediate �xpoint terminates. Hen
e Ordered-Aggevaluation terminates on the SCC. Any deleted fa
ts fails an aggregate sele
tion and hen
e is irrelevant.Completeness then follows from the
ompleteness of sloppy-delta iteration [SKGB87℄.As in Agg-retaining evaluation, on
e a fa
t is found to fail an aggregate sele
tion, it will
ontinue to failthe aggregate sele
tion. The non-repetition property follows from the non-repetition property of sloppy-deltaiteration. 2The above theorem also shows that Ordered-Agg evaluation never makes more derivations than Agg-retaining evaluation for
ost-in
ationary programs. In turn, Agg-retaining evaluation makes no more infer-en
es than Semi-Naive evaluation.Ordered-Agg evaluation also works on programs that are not
ost-in
ationary. For instan
e, the shortestpath program is not in
ationary if there are negative
ost edges. But even in this
ase, Ordered-Aggevaluation of Program Smart fun
tions
orre
tly, and terminates if there are no negative
ost
y
les, althoughit may not be very eÆ
ient if negative edges are present.6.7 ExamplesWe now see some more examples of programs to whi
h our te
hniques are appli
able.Example 6.7.1 The following program de�nes the earliest �nish time of a task, given the �nish times ofpre
eding tasks.R1 : e fin(X;maxhT i) : � fin(X;T):R2 : fin(X;T) : � pre
edes(X;Y); fin(Y; T1); delay(X;D); T = T1+D:R3 : fin(X;T) : � first(X); delay(X;T):This program
an be optimized using our te
hniques, and in the resultant program fin is repla
ed by fin s,where s is the aggregate sele
tionfin s(X;T) : groupby(fin s(X;T); [X ℄;max(T))112

The rules and other predi
ates are the same, but finish fa
ts that don't have maximal times are dedu
ed tobe irrelevant. We
an extend this program to
ompute the
riti
al path, and still apply our optimizations.The aggregate rewritten program
an be evaluated using Agg-retaining evaluation. We
annot useOrdered-Agg evaluation sin
e the program is not
ost-in
ationary | it uses max, but the
ost value ofthe head of a rule is greater than that of the body, whereas it should be less for
ost-in
ationary-max SCCs.Note that the evaluation of the program would take time O(E � V). If we ordered the use of fa
ts su
h thata vertex is expanded only after all its prede
essors have been expanded, we
an do better. This
an in fa
tbe a
hieved by using the Ordered Sear
h evaluation feature [RSS92a℄ provided in the CORAL dedu
tivedatabase system [RSS92b℄. The time
omplexity of evaluation is then O(E). 2Example 6.7.2 Consider the following program. Predi
ate path2(X;Y;H;C) denotes a path where X andY are sour
e and destination, H denotes hops, and C denotes
ost.R1 : p best(X;Y;H;C) : � p few(X;Y;H); p short(X;Y;H;C):R2 : p few(X;Y;minhHi) : � p short(X;Y;H;C):R3 : p short(X;Y;H;minhCi) : � path2(X;Y;H;C):/* ... Rules for path2 ... */Query: ?-p best(X;Y;H;C):The program �nds
ights with the minimum number of hops, and within su
h
ights, �nds those withminimum
ost. Our te
hnique generates the sound aggregate sele
tion on path2:path2(X;Y;H;C) : groupby(path2(X;Y;H;C); [X;Y;H ℄;min(C))^ groupby(path2(X;Y;H;C); [X;Y ℄;min(H))The rewritten program is the same as the original program (modulo renaming of predi
ates other thanp best), ex
ept for having the above sound aggregate sele
tion on path2, as well as aggregate sele
tionson p few and p best. In the evaluation of the rewritten program all paths that have more hops than theminimum for a given start and end point, as well as all paths that are not of minimum
ost for a given startand end points and a given number of hops are dis
arded. 2Example 6.7.3 The following program
an be used to �nd the
ost of the
heapest three paths, andillustrates the ability of our te
hniques to handle aggregate operations other than min and max. We usethe aggregate operation least3 that given a multiset, returns a multiset
ontaining the three least values inthe given multiset.8R1 : shortest3(X;Y; least3hCi) : � path(X;Y;C):/* ... Rules for path as in Figure 8 ... */Query: ?-shortest3(X;Y;C):Aggregate operation least3 is an In
Sel fun
tion, with unne
essaryleast3(S) de�ned as all values greaterthan the third lowest value in multiset S. Also, the fun
tion unne
essaryleast3 distributes over \+". Hen
eour rewriting te
hnique pro
eeds on the rules for path in this program in a manner very similar to the shortest8Sin
e the Herbrand universe does not in
lude multisets, we need to use an extended Herbrand universe when assigning asemanti
s to this program [BNR+87℄. 113

R1 nearest sgbff (X;Y;minhDi) : �query(nearest sgbff (X)); sgbff (X;Y;D):R2 : sgbff (X;Y;D) : � query(sgbff (X)); up(X;Z1); sgbff (Z1; Z2; D1);down(Z2; Y); D = D1 + 1:R3 : sgbff (X;Y; 1) : � query(sgbff (X)); f lat(X;Y):R4 : query(sgbff (X)) : � query(nearest sgbff (X)):R5 : query(sgbff (Z1)) : � query(sgbff (X)); up(X;Z1):R6 : query(nearest sgbff (s)):Figure 13: Program Nearest Same Generation
ost program, and the rewritten rules are similar to the rules of Program Smart ShortCost (Figure 11). ex
eptthat min is repla
ed by least3. In the evaluation of the rewritten program, only the
heapest three pathsbetween pairs of points are retained. 2Our optimization te
hniques are orthogonal to Magi
 rewriting [BR87b, BNR+87℄ and are appli
able toprograms that
annot be expressed using transitive
losure, as the next example shows.Example 6.7.4 Consider Program Nearest Same Generation (from [GGZ91℄) in Figure 13, that
omputesthe \nearest" among all nodes in the \same generation" as a node s. Our te
hniques
an be applied tooptimize this program. This program has been rewritten using the Magi
 Templates transformation, withadornment [BR87b℄.9The rewriting produ
es essentially the same program ex
ept that there is an aggregate sele
tion s =sgbff (X;Y;D) : groupby(sgbff (X;Y;D); [X;Y ℄;min(D)) on predi
ate sgbff . In the evaluation of the rewrit-ten program, for ea
h X;Y pair only the fa
t sgbff (X;Y;D) su
h that D is minimum is retained. 26.8 Dis
ussionWe note that the evaluation te
hniques developed in this
hapter are orthogonal to the optimization te
h-niques developed in Chapter 5, but there are some restri
tions on the use of non-ground fa
ts with aggre-gation. We require that for all predi
ates, any arguments that are aggregated upon or used as a group-byargument of an aggregate operation or an aggregate sele
tion must be ground. Other arguments
an benon-ground | this does not a�e
t our evaluation te
hnique, although it
an a�e
t our rewriting te
hnique.The optimization te
hniques developed here
ontrol the use of fa
ts, and use tests for irrelevan
e. The op-timization te
hniques developed in Chapter 5 work at the level of fa
t representation, and rule appli
ation.Example 5.9.2 illustrates a program for whi
h both optimization te
hniques are useful.Our rewriting te
hniques
an be implemented using suÆ
ient
onditions for various tests as we mentionedin the
ourse of the paper. In addition to this, our rewriting te
hniques provide a basis for human analysisof a program, with the subsequent introdu
tion of aggregate sele
tions by a human rather than a rewritingsystem. This is useful in
ases where the required
onditions are met, but the suÆ
ient
onditions are notpowerful enough, or in systems where the rewriting algorithm has not been implemented. We then have asound basis for the introdu
tion of aggregate sele
tions, rather than an ad ho
 approa
h.9The notation di�ers somewhat from that of Beeri and Ramakrishnan [BR87b℄. Literals of the form magi
 p(: : :) in therewriting of [BR87b℄ are written as query(p(: : :)) in our notation.114

Although, for simpli
ity, we only
onsidered programs without negation, our results
an be extended todeal with programs that use strati�ed negation. The Magi
 rewriting of a program with strati�ed negation oraggregation may not be strati�ed [BNR+87℄. Evaluation te
hniques have been developed for non-strati�edprograms generated by Magi
 rewriting of strati�ed programs, as well as for more general
lasses of non-strati�ed programs (see, e.g., [Ros90, KS91, RSS92a℄). We believe our rewriting te
hniques
an be generalizedto handle some of these
lasses of programs, and the evaluation te
hniques used for these
lasses of programs
an be generalized to use aggregate sele
tions, just as we generalized Semi-Naive evaluation to use aggregatesele
tions.Van Gelder [Van92℄
onsiders programs with unstrati�ed aggregation whose meaning is easier to under-stand if aggregation is pulled out of re
ursion. Our evaluation te
hniques
an be viewed as
omplementingVan Gelder's ideas, by letting the user spe
ify a strati�ed program, and automati
ally transforming it intoone where aggregation has been pushed into re
ursion (through the use of aggregate sele
tion).In Se
tion 6.4.1 we examined the
ase of unne
essaryagg f distributing over a fun
tion. The de�nitionof distributes over (De�nition 6.4.1)
an be extended in a straightforward manner by allowing a di�erentfun
tion unne
essaryagg f i for ea
h argument of the fun
tion. This would let us distribute unne
essaryminthrough to the �rst argument of \�", and get an unne
essarymax fun
tion on the se
ond argument of \�".Te
hnique PS1 generalizes in a straightforward manner.We
an extend De�nition 6.4.3 by allowing the strongly non-
onstrained arguments to have variablesthat o

ur as arguments of \non-
onstraining fun
tion" literals | fun
tions that are total on the type of thevariable, and whose results is `assigned' to a variable that does not appear in the rule body or in the groupbyvariables of the aggregate sele
tion. This
an be further generalized to allow for fun
tion
omposition in therule body, where the result of a fun
tion is used as an argument of another non-
onstraining fun
tion, Thede�nition of non-
onstrained variables
an then be
orrespondingly generalized by also de�ning all variablesthat appear only in non-
onstraining literals to be non-
onstrained variables. Proposition 6.4.4 generalizes
orrespondingly, and the basi
 idea in the proof remains un
hanged.Su
h an extension would be useful if, for instan
e, in Example 6.4.6, we had a literalappend(P; [edge(X;Y)℄; P1)in the body, and P1 is used only in the head of the rule. append is a total fun
tion on the type list; thisinformation
ould let us dedu
e that P is a non-
onstrained variable. Similarly, if we had extra argumentsfor path, for instan
e one that maintains the number of nodes in the path, we may be able to dedu
e thatthe argument is non-
onstrained. Su
h dedu
tions are useful in generating stronger aggregate sele
tions asin Example 6.4.5.6.8.1 Related WorkSeveral papers in the past [RHDM86, ADJ88℄ addressed optimizations of generalized forms of transitive
lo-sure that allowed aggregate operations. Cruz and Norvell [CN89℄ examine the same problem in a generalizedalgebrai
 framework. On the other hand, we deal with a language that
an express more general re
ursivequeries with aggregation, and do not make use of any spe
ial syntax.Knuth [Knu77℄
onsiders a
lass of problems that
an be viewed in the framework of \superior
ontext115

free grammers". Superior
ontext free grammers
an be viewed as
ost-in
ationary-min programs with onere
ursive binary predi
ate (
all it g). A superior fun
tion is one whose value is greater than the values ofea
h of its arguments. The
ost argument of the head of ea
h rule in the program is
omputed as a superiormonotone non-de
reasing fun
tion of the
ost arguments of the body literals. The non-
ost argument of pholds the name of the non-terminal in the superior
ontext-free grammer. The problem is to solve the queryquery(X;minhCi): �g(X;C):Our rewriting te
hniques apply to this program, sin
e min distributes over any monotone non-de
reasingfun
tion, and we
an use Ordered-Agg evaluation on it sin
e the fun
tion is superior. The e�e
t is exa
tlythe same as using Knuth's algorithm. Knuth notes several appli
ations of su
h grammers, su
h as �ndingthe length of the shortest path, �nding the expe
ted number of
omparisons in an optimum binary sear
htree (given probabilities of a

ess of keys and gaps between keys), and optimum
ode-generation algorithmsfor
ompilers. Our evaluation te
hnique generalizes this
lass, sin
e we do not require the fun
tions to besuperior (although Ordered-Agg evaluation may not be appli
able). Further, we allow arbitrary programs,whi
h generalize the
lass of superior
ontext-free grammers. For instan
e, sin
e we allow the use of fun
tionsymbols, we
an �nd the optimum binary sear
h tree (mentioned above), rather than just �nd the expe
tednumber of
omparisons in the tree.Re
ently Ganguly et al. [GGZ91℄ presented optimization te
hniques for monotone in
reasing (resp. de-
reasing) logi
 programs with min (resp. max) aggregate operations. Informally, there must be a single
ostargument for ea
h predi
ate in the program and the program must be monotone on this argument. Theytransform su
h a program into a (possibly unstrati�ed) program with negation whose stable model yieldsthe answers to the original program, but does not
ontain any irrelevant fa
ts. They also present an eÆ
ientevaluation me
hanism for
omputing the stable model for the transformed program, whi
h is essentiallyequivalent to Dijkstra's algorithm for the
ase of shortest-path.Our results were obtained independently of Ganguly et al. [GGZ91℄. The results of Ganguly et al.
omplement this work in two important ways. Their idea of ordering of fa
ts in the
omputation (whi
h wehave adapted and extended in Se
tion 6.6.2) o�ers signi�
ant improvements in time
omplexity, and unlikeour te
hnique, theirs
an handle monotoni
 min programs even if the use of min is unstrati�ed.Our te
hniques improve on those of Ganguly et al. in several ways. First, our te
hniques handle programswith multiple aggregate operations in
luding min and max, least k, et
. Thus we
an handle a programthat maintains path information. Se
ond, our te
hniques are appli
able to strati�ed programs that arenot monotoni
. This means that we
an handle problems su
h as the
riti
al path problem. However,our te
hniques are not appli
able to non-strati�ed programs. Third, we allow predi
ates with multiple
ost arguments and allow multiple atomi
 aggregate sele
tions on the same predi
ate. The use of thesegeneralizations is illustrated in Examples 6.7.2 and 6.7.3, whi
h
annot be handled by Ganguly et al.We note that the rewriting te
hniques of Ganguly et al. only work eÆ
iently with a version of the programthat does not maintain a
tual paths. There are other
ommon examples of programs that
an bene�t fromour optimizations, although they
annot be handled by [GGZ91℄ sin
e they are not
ost in
ationary. Thesein
lude the shortest path problem with edges of negative weight, and the earliest �nish time problem shownin Example 6.7.1. 1010This program uses max and is monotoni
ally in
reasing, whereas Ganguly et al. require it to be monotoni
ally de
reasing.116

6.9 Con
lusionsWe believe that evaluation with Aggregate Optimization will o�er
onsiderable time bene�ts for a signi�
ant
lass of strati�ed programs that use aggregate operations similar to min and max. We believe that given ate
hnique su
h as that of Ganguly et al. [GGZ91℄, or of Beeri et al. [BRSS89℄ for evaluating spe
ial
lassesof unstrati�ed programs, our optimization te
hniques
an be adapted for su
h
lasses of programs, and
andete
t irrelevant fa
ts using aggregate sele
tions. Our optimization te
hniques may be useful for optimizingnon-re
ursive queries, su
h as SQL queries, that use aggregate operations.

117

Chapter 7Con
lusionIn the �rst part of this thesis, we identi�ed some problems with bottom-up evaluation of programs thatgenerate non-ground terms. We presented a
ombination of an improved rewriting te
hnique and an improvedevaluation te
hnique to address these problems. Our optimization te
hniques provide two bene�ts.First, we were able to show that memoization
an be done at a relatively low
ost in terms of time
omplex-ity (a
ost of a log log fa
tor with respe
t to Prolog evaluation) if we do not perform subsumption-
he
king.Whether or not to do subsumption-
he
king then be
omes a matter of whether the
ost of subsumption-
he
king is paid o� by savings in terms of re
omputation and improved termination properties. Unlike withthe naive approa
h, no signi�
ant extra pri
e (in the sense of time
omplexity) is paid either for storing fa
ts,or for implementing a fair sear
h strategy (breadth-�rst sear
h instead of the depth-�rst sear
h implementedby Prolog).Se
ond, the optimization te
hniques permit eÆ
ient bottom-up evaluation of programs that generatenon-ground fa
ts. We presented examples of programs that are best evaluated bottom-up, and use non-ground data-stru
tures. This result is important sin
e non-ground data-stru
tures have been shown to bevery useful in the
ontext of Prolog evaluation, and we expe
t them to be of importan
e in the
ontext ofdatabases as well.The optimization te
hniques1 have been implemented on the CORAL dedu
tive database system. Theextra
ost added by the optimization te
hniques seems to be reasonably small for programs that generateonly ground fa
ts.There have been some extensions to bottom-up evaluation that
ontrol the order of sear
h (Ramakrishnan,Srivastava and Sudarshan [RSS92a℄). However, it is still an open problem whether Prolog's depth-�rst
ontrolstrategy
an be simulated bottom-up (or by memoing top-down te
hniques), without a loss of eÆ
ien
y forthe
ase where all answers are required. A related issue is that of intelligent ba
ktra
king (see, e.g., [CD85℄),whi
h allows termination of
omputation for a subgoal before all answers to the subgoal have been generated.A restri
ted form of intelligent ba
ktra
king
an be in
orporated within the evaluation of a rule in bottom-upevaluation. The
hoi
e annotation [NT89, GPSZ91℄ as well as the any aggregate sele
tion [SR92a℄ providesome of the bene�ts of intelligent ba
ktra
king a
ross rules, in the
ontext of bottom-up evaluation. How toprovide the full bene�ts of intelligent ba
ktra
king is an open problem, and is related to the sear
h strategy1Modulo tail-re
ursion optimization 118

used. Another area of future work is eÆ
ient bottom-up evaluation of programs with negation in rule bodies(see, e.g. [Ros90, KSS91, RSS92a℄).In the se
ond part of this thesis we developed optimization te
hniques that are useful for programs thatuse aggregate operations along with grouping operations. We developed a notion of relevan
e that extendsthe notion used by Magi
 rewriting, and presented an evaluation te
hnique, based on aggregate sele
tions,that makes use of this extended notion of relevan
e. We presented a rewriting te
hnique that
an dedu
eaggregate sele
tions; it is powerful enough to dedu
e the \optimality prin
iple" for the shortest path program.The examples we presented illustrate the importan
e of
ontrol of dedu
tion. We also identi�ed a
lass ofprograms for whi
h there is an eÆ
ient
ontrol strategy based on ordering the use of fa
ts. The shortest pathprogram falls into this
lass, as does the larger
lass of superior
ontext free grammars, and the evaluationte
hnique generalizes Dijkstra's shortest path algorithm.Future work in this area in
ludes studying the e�e
t of
ontrol on evaluation. Extending the set of rulesfor dedu
ing aggregate sele
tions is also of importan
e. Another area of interest is to develop te
hniques to\push" aggregate operations su
h as sum and
ount into rules, even though they do not provide aggregatesele
tions. This
ould redu
e the
ost of evaluation
onsiderably in many
ases.

119

Appendix AProofs From Chapter 3
A.1 Proofs From Se
tion 3.3Lemma 3.3.1 Let P be any program, and Q a query on P . Consider a step in a derivation sequen
e forPMGUQ su
h that the evaluation prior to that step has property MGU-Prop.Suppose a supplementary fa
t supj;i(id; vi; idi+1) is derived at this step. Let supj;i be a supplementarypredi
ate generated from a rule Rj of P ,Rj : p(t): �p1(t1); p2(t2); : : : ; pn(tn):su
h that the body of Rj is non-empty.Then there are fa
ts answer(id1; p1(a1)); : : :, answer(idi�1; pi�1(ai�1)), and a fa
t query(p(s); id), su
hthat1. Ea
h idm; 1 � m � i, is the id of an mgu-subgoal generated from ?p(s), and2. The substitution for variables of Rj spe
i�ed by vi, is inMGU(hp(t); p1(t1); : : : ; pi�1(ti�1)i; hp(s); p1(a1); : : : ; pi�1(ai�1)i)Proof: We prove this by indu
tion on i (where the supplementary predi
ate is supj;i).The base
ase has i = 0. For this
ase, any sup1j;0 fa
t must be generated using a rulesup1j;0(ID; V ; p1(t1)): �query(p(t); ID):Sin
e bottom-up evaluation uses mgus, in any fa
t
reated thus p1(t1) is an mgu-subgoal generated fromthe subgoal with id ID, and the bindings of variables in V satis�es Part 2 of this lemma. The rule de�ningsupj;0 merely repla
es the goal with its id. Hen
e the
laim holds for the basis
ase.Now suppose it holds for all values up to some k� 1, and
onsider k. Suppose a fa
t sup1j;k(id; vk; pk+1(bk+1)) is generated. It must be generated from a rule of the form:sup1j;k(I; V ; pk+1(tk+1)): �supj;k�1(I; V ; I1); answer(I1; pk(tk)):120

using some fa
t supj;k�1(id; vk�1; idk) and some fa
t answer(idk ; pk(ak)). Hen
e, by indu
tive assumption,there is a fa
t query(p(s); id), and there are fa
tsanswer(id1; p1(a1)); : : : ; answer(idk�2; pk�2(ak�2)that satisfy the ne
essary
onditions, and id1; : : :, idk�1 are ids of mgu-subgoals generated from the subgoalwith id i.Further, the bindings of variables in vk�1
orrespond to an mgu for the rule pre�x, by Part 2 of thelemma and indu
tion hypothesis. By the statement of the lemma, pk(ak)) is an mgu-answer to the subgoalwith id idk. When making a derivation mgus are used. From this and the stru
ture of supplementary rulesit follows that the the substitution for variables of Rj spe
i�ed by vk, is inMGU(hq(t); p1(t1); : : : ; pk(tk)ihq(t); p1(a1); : : : ; pk(ak)i)Hen
e the variable bindings
reated satisfy Part 2 of the lemma.Using arguments exa
tly the same as in the base
ase, the last argument of the generated sup1j;k fa
t isan mgu-subgoal, generated from id. And as before, the rule de�ning supj;k repla
es the subgoal by its id.Hen
e Part 1 of the lemma follows.This
on
ludes the indu
tion step and the proof of this lemma. 2Lemma A.1.1 Let P be any program, and Q a query on P . Consider a step in a derivation sequen
efor program PMGUQ su
h that the evaluation prior to that step has property MGU-Prop. Suppose a fa
tanswer(id; p(a)) is derived at this step.Then p(a) is an mgu-answer to the subgoal with identi�er id.Proof: Su
h a fa
t
an be generated using a rule of one of three forms. The �rst
ase is of rules of the form:answer(I; h(t)): �supj;0(I; V ;):The proof is straightforward for su
h rules, sin
e the supj;0 fa
t used in the body is generated by a mostgeneral uni�
ation of the subgoal with identi�er id with the head of a rule with an empty body from P , andthe supj;0 fa
t stores the variable bindings in V . These variable bindings are used to
reate the head fa
tfor the same rule from program P .The se
ond
ase is of rules of the form:answer(I; h(t)): �supj;n�1(I; V ; I1); answer(I1; pn(tn)):The supplementary fa
t used in the body of the rule R must satisfy Lemma 3.3.1. The proof of this
asethen dire
tly parallels the arguments in the indu
tion step of the proof of Lemma 3.3.1.1 We omit details,for brevity.The third
ase is of Type 6 rules, whi
h are of the form:answer(I; h(t)): �query(bi(Xi); ID; answer(I; h(t)); bi(Xi):1Note that this proof does not used indu
tion | it merely uses the arguments from the indu
tion step of the proof ofLemma 3.3.1. 121

Let the query fa
t used be query(bi(ai); id; answer(id1; h(s)) and bi(bi). By indu
tion hypothesis, ?bi(ai) isan mgu-query on bi, and the rule appli
ation
omputes an mgu of ai and (a variant of) bi. The result of theuni�
ation is then an mgu-answer, and by Part 2 of MGU-Prop, the result follows. 2Theorem 3.3.2 Given any program P and query Q, the bottom-up evaluation of PMGUQ has propertyMGU-Prop.Proof: The proof is by indu
tion on derivation sequen
es for PMGU . The theorem holds trivially for theempty derivation sequen
e. Now suppose it holds prior to step m in a derivation sequen
e. By indu
tiveassumption all subgoals generated earlier are mgu-subgoals, and all answers generated earlier are mgu-answers.Consider �rst the
ase that a fa
t of the form query(pi(ti); id) is derived at step m. If the fa
t is generatedfrom an initial query fa
t, it is an mgu-subgoal by de�nition. Otherwise the fa
t must be generated usingof a rulequery(pi(ti); ID): �supj;i�1(HId; V ; ID):with some fa
t supj;i�1(hid; v; id). By Part 2 of Lemma 3.3.1, v
ontains bindings generated from an mguas required by the de�nition of mgu-subgoals. Hen
e ?pi(ti) is an mgu-subgoal. Now id is the identi�er ofthe subgoal got by applying to pi(ti) the substitution that is stored in v (using the rule de�ning sup1j;i�1).Hen
e ?pi(ti) is an mgu-subgoal, with identi�er id.Now
onsider the
ase that a fa
t of the form answer(id; p(a)) is derived in step m. It follows fromLemma A.1.1 and the indu
tion hypothesis that p(a) is an mgu-answer to a subgoal with identi�er id.This
ompletes the indu
tion step and the proof of this theorem. 2Theorem 3.3.3 Given any program P and query Q, the bottom-up evaluation of PMGUQ is
omplete withrespe
t to Q, i.e., if a fa
t p that is an answer to Q is present in the least model of P , then p is subsumedby a fa
t
omputed in the bottom-up evaluation of PMGUQ .Proof: We prove the following result: (p stands for any predi
ate, in the following) if a fa
t query(p(b); id)is available to the evaluation of PMGUQ , then for every fa
t p(a) that uni�es with p(b), and is generatedby a bottom-up evaluation of program P (the original program), evaluation of PMGUQ generates a fa
tanswer(id; p(
)) su
h that p(
) subsumes p(a)[mgu(a; b)℄. Given this fa
t, an answer p(
) will be generatedby rule QR3. The theorem then follows from the
ompleteness of bottom-up evaluation of P .Assume that this result is not true, and
onsider the shortest derivation sequen
e of P su
h that a fa
tp(a0) produ
ed in the derivation sequen
e
ontradi
ts this property. If p is a base predi
ate, a Type 6 rulewould generate the required answers using the base fa
ts.We now
onsider the
ase that p is a derived predi
ate. Let p(a) = p(b)[mgu(a0; b)℄. Now,
onsider therule Rj (in P) whose instan
e R00j is used to derive p(a0). Let Rj and R0j = R00j [mgu(a0; b)℄ be as follows:Rj : p(t): �p1(t1); p2(t2); : : : ; pn(tn):R0j : p(a): �p1(a1); p2(a2); : : : ; pn(an):Let � be su
h that R0j = Rj [�℄.Claim: If a fa
t query(p(b); id) is made available, su
h that b subsumes a, then for ea
h 0 � i � n� 1 theevaluation of PMGUQ generates 122

(1) a fa
t supj;i(id; vi; idi+1) su
h that the variable bindings in vi subsume the bindings of variables in �,and(2) a fa
t answer(idi+1; pi+1(
i+1)) su
h that
i+1 subsumes ai+1.Proof of Claim: We prove this
laim by indu
tion on i. The
laim is trivial in
ase the body of Rj isempty, and we assume that this is not the
ase.We
onsider the basis
ase �rst. The subgoal ?p(b) must unify with p(t) sin
e a is an instan
e of t aswell as an instan
e of b. Hen
e the body of the rule de�ning sup1j;0 uni�es with query(p(b); id), and a fa
tsup1j;0(id; v0; p1(d1)) is generated su
h that the bindings in v0 subsume the bindings of variables in �. Fromthis fa
t, a fa
t supj;0(id; v0; id1) is generated, and this fa
t too satis�es part 1 of the
laim.A fa
t query(p1(d1); id1) then gets generated from supj;0(id; v0; id1), su
h that p1(d1) is the result ofapplying the substitution in v0 to p1(t1). Hen
e p1(d1) subsumes p1(a1).By the outer assumption, an mgu-answer answer(id1; p1(
1)) su
h that p1(
1) is at least as general asp1(a1) must be generated by the evaluation of PMGUQ . This �nishes the proof of the basis
ase.Now we look at the indu
tive step for this
laim. Suppose that for values 0 : : : i this
laim holds. Wethen have fa
ts supj;i(id; vi; idi+1) and answer(idi+1; pi+1(
i+1)) that satisfy the
laim. These are then usedto get an instantiated supplementary rule of the following form:sup1j;i+1(id; vi+1; idi+2): �supj;i(id; vi; idi+1); answer(idi+1; pi+1(
i+1)):This instantiated rule then generates the fa
t sup1j;i+1(id; vi+1; idi+2). Now, pi+1(
i+1) subsumes pi+1(ai+1),and the bindings in vi subsume the bindings in �. Hen
e the uni�er for the supplementary rule subsumes �,and these bindings are stored in vi+1. This in turn leads to the generation of a fa
t supj;i+1(id; vi+1; idi+2)that satis�es Part (1) of the
laim.Arguments similar to those in the base
ase show that this leads to the generation of a fa
t query(pi+2(bi+2); idi+2) su
h that pi+2(bi+2) subsumes pi+2(ai+2). As before, by the outer indu
tion hypothesis,an mgu-answer answer(idi+2; pi+2(
i+2)) su
h that pi+2(
i+2) is at least as general as pi+2(ai+2) must begenerated by the evaluation of PMGUQ .This
ompletes the indu
tion step and the proof of the
laim.End Proof of Claim.If the body of Rj is empty, the body of the rule de�ning supj;0 uni�es with query(p(b); id), and a fa
tsupj;0(id; v0) with variable bindings being an mgu of p(b) with p(t) is generated. This mgu is used to generatea head fa
t answer(id; p(
)). Hen
e p(
) subsumes p(a), and both parts of the
laim are satis�ed.If the body of Rj is not empty, the
laim above shows that there are fa
ts supj;n�1(id; vn�1; idn) andanswer(idn; pn(
n)) that satisfy the
onditions of the
laim. There must be a rule de�ning answer(ID; p(t))using supj;n�1 and answers for pn. Arguments similar to those in the indu
tion step show that this rule thenderives derives a fa
t answer(id; p(
)) su
h that p(
) subsumes p(a).This leads to a
ontradi
tion with the assumption, and
ompletes the proof of this theorem. 2A.2 Proofs From Se
tion 3.4Proposition A.2.1 Let P be any program, and Q a query on P . In any evaluation of PMGU T , for anyfa
t of the form query(p; id0; a) or of the form supi;j(id0; v; id1; a) that is derived, argument a must be of123

the form answer(id; q(: : :)) for some predi
ate q. 2Proof: (Sket
h) This result follows the stru
ture of rules in PMGU T through a simple indu
tion on deriva-tions. 2The following lemma provides some intuition behind the variable bindings stored in the supplementaryfa
ts.Lemma A.2.2 Let P be any program, and Q a query on P . Consider a step in a derivation sequen
e forPMGU T su
h that the evaluation prior to that step satis�es property MGU T-Prop.Suppose a supplementary fa
t supj;i(id; vi; idi; a) is derived at this step. LetRj : p(t): �p1(t1); p2(t2); : : : ; pn(tn):be the rule of the original program P from whi
h supj;i was generated.Then there are fa
ts answer(id1; p1(a1)); : : :, answer(idi�1; pi�1(ai�1)), and a fa
t query(p(s); id; A),su
h that1. Ea
h idm; 1 � m � i is the id of an mgu-subgoal generated from ?p(s), and2. The substitution for variables of Rj spe
i�ed by vi, is inMGU(hp(t); p1(t1); : : : ; pi�1(ti�1)i; hp(s); p1(a1); : : : ; pi�1(ai�1)i)Proof: The stru
ture of the supplementary rules in PMGU TQ is exa
tly the same as the stru
ture of thesupplementary rules in PMGUQ , ex
ept that they
arry an additional variable A. In the bodies of the supple-mentary rules, A is used only in the supplementary literals. Thus A does not a�e
t any of the arguments inthe proof of Lemma 3.3.1, and the proof holds un
hanged. For brevity, we do not repeat the proof here. 2Lemma A.2.3 Let P be any program and Q a query on P . Consider a step in a derivation sequen
e forPMGU T su
h that the evaluation prior to that step satis�es property MGU T-Prop.Then the fa
t generated in this step also satisfy the
onditions of MGU T-Prop.Proof: Consider �rst Part 1 of MGU T-Prop. Any fa
t answer(id; p(a)) must be generated using either aType 3 rule or a Type 6 rule. Consider �rst a Type 3 ruleA: �supj;0(I; V ; ; A):using some fa
t supj;0(hid; v; ; answer(id; p(a))),By Lemma A.2.2 there must be a fa
t query(q(s); id0; answer(id; p(a0))) su
h that v is an mgu of q(s)with the head of a rule with empty body. Thus applying the substitution spe
i�ed by v to the subgoal ?q(s),we get an mgu-answer for ?q(s). Hen
e by Part 2 of MGU T-Prop, the result of applying the substitutionspe
i�ed by v to p(a0) is an mgu-answer to id. From the rule de�ning supj;0 it is easy to see that p(a) is theresultant answer.Next
onsider a Type 6 ruleA: �query(bi(Xi); ID;A); bi(Xi): 124

Given a fa
t query(bi(ai); id; answer(id1; q(a))) and a fa
t for bi, the mgu � of the rule with the (renamed)fa
ts results in bi(Xi) being instantiated to an mgu-answer of bi(ai). By Part 2 of MGU T-Prop, theinstantiated q(a) is an mgu-answer to the query with identi�er id1. This
ompletes the proof of this part ofthe lemma.Now
onsider Part 2 of MGU T-Prop. Any query fa
t must be derived either using a Type 4 rule of theform: query(pi(ti); ID1; answer(ID1; pi(ti))): �supi�1(ID; V ; ID1):or a Type 5 rule of the form:query(pn(tn); ID1; A): �supn�1(ID; V ; ID1; A):In the
ase of Type 4 rules, the result follows trivially.Consider now a fa
t query(pn(s); id0; answer(id; q(a))) generated using a Type 5 rule. Suppose this wasgenerated using a fa
t supn�1(id0; v; id1; answer(id; q(a))). By Lemma A.2.2, there must be some fa
ts:answer(id1; p1(a1)); : : :,answer(idi�1; pi�1(ai�1),and a fa
t query(p(s0); id0; answer(id; q(a0))) su
h that ?pn(s) is a mgu-subgoal generated from subgoal?p(s0). Also, it is then easy to see that with� 2MGU(hp(t); p1(t1); : : : ; pi�1(ti�1)i; hp(s0); p1(a1); : : : ; pi�1(ai�1)i)answer(id; q(a)) = answer(id; q(a0))[�℄.Now if pn(s)[
℄ is an mgu-answer to ?pn(s) (where
 is a substitution on the variables in pn(s)), then wewould have p(s0)[�℄[
℄ to be an mgu-answer to the subgoal ?p(s0). Then by Part 2 of Property MGU T-Prop,and the fa
t query(p(s0); id0; answer(id; q(a0))), answer(id; q(a0))[�℄[
℄ is an mgu-answer to the subgoal withidenti�er id. But this implies that answer(id; q(a))[
℄ is an mgu-answer to the subgoal with identi�er id.This then
ompletes the proof of this part of the lemma. 2Theorem 3.4.1 Consider any program P with query Q. Then a bottom-up evaluation of PMGU T hasproperty MGU T-Prop.Proof: We prove this by indu
tion on derivation sequen
es for PMGU T . Ea
h step in the derivation usingrules other than QR2 and QR3 derive fa
ts of the form supi;j , query(: : :), or answer(: : :).For the basis
ase, the �rst fa
t in the derivation sequen
e must be generated from rule QR1, andthis satis�es property MGU T-Prop. Now assume that the evaluation up to some step a in the derivationsequen
e satis�es this property. By Lemmas A.2.2 and A.2.3, the fa
t derived in step a also satis�es propertyMGU T-Prop. This
ompletes the indu
tion. 2Lemma A.2.4 Let P be any program, and Q a query on P . Consider any fa
t p(a) generated by a bottom-upevaluation of program P . Suppose a fa
tquery(p(b); id0; answer(id; q(t)))is available to the evaluation of PMGU TQ , su
h that p(a) uni�es with p(b). Let � 2 MGU(p(b); p(a)) (wlogwe assume that b and t share no variables with a). Then bottom-up evaluation of PMGU TQ generates a fa
tanswer(id; q(t))[
℄ su
h that
 subsumes �. 125

Proof: The proof is by indu
tion on derivation sequen
es in P . Consider a derivation sequen
e, and a steps in the sequen
e su
h that the lemma holds for every fa
t derived prior to s in the sequen
e. Let p(a) bethe fa
t derived in step s of the sequen
e.If p(a) does not unify with p(b), the lemma holds for this step in a trivial fashion. Hen
e we
onsider the
ase where they do unify.If p is a base predi
ate, the lemma follows in a straightforward manner, sin
e p(a) would be used in aType 6 rule with the query fa
t.We now
onsider the
ase that p is a derived predi
ate. Let p(a0) = p(b)[�℄. Now,
onsider the rule Rj(in P) whose instan
e R00j is used to derive p(a). Let Rj and R0j = R00j [�℄ be as follows:Rj : p(t): �p1(t1); p2(t2); : : : ; pn(tn):R0j : p(a0): �p1(a1); p2(a2); : : : ; pn(an):Let � be su
h that R00j = Rj [�℄, so that R0j = Rj [�℄[�℄.Claim: If the fa
t query(p(b); id0; answer(id; q(s))) is made available, then1. for ea
h 0 � i � n� 1 the evaluation of PMGUQ generates a fa
tsupj;i(id; V ; idi+1; answer(id; q(s)))[�i℄su
h that �i subsumes [�℄[�℄, and2. for ea
h 0 � i � n� 2 the evaluation of PMGUQ generates a fa
tanswer(idi+1; pi+1(
i+1))su
h that
i+1 subsumes ai+1.3. the evaluation of PMGUQ generates a fa
tquery(pn(tn); idn; answer(id; q(t)))[�n�1℄where �n�1 subsumes [�℄[�℄.Proof of Claim: The
laim in trivial in
ase the body of Rj is empty; the rest of this proof assumes thatthe body of Rj is non-empty. We prove Parts 1 and 2 of the
laim by indu
tion on i.We �rst
onsider the basis
ase. The subgoal ?p(b) must unify with p(t) sin
e a0 is an instan
e of t as wellas an instan
e of b. Hen
e the body of the rule de�ning sup1j;0 uni�es with query(p(b); id0; answer(id; q(s)))and a fa
t sup1j;0(id; V ; p1(t1); answer(id1; q(s))[�0℄ is generated, su
h that �0 subsumes [�℄[�℄. It is easyto show that a fa
t for supj;0 that satis�es part 1 of the
laim will then be generated in the bottom-upevaluation.If p1(t1) is not the last literal in the body of the rule, it is easy to show that a fa
t of the formquery(p1(t1); id1; answer(id1; p1(t1)))[�0℄, where t1[�0℄ subsumes p1(a1), is generated from this supplemen-tary fa
t. By the outer indu
tion hypothesis, an mgu-answer answer(id1; p1(
1)) su
h that p1(
1) is at leastas general as p1(a1) must be generated by the evaluation of PMGUQ . This �nishes the proof of the basis
ase.126

For the indu
tion step, assume that parts (1) and (2) of the
laim hold for 0 � i � k < n � 1. We
anthen show that Part 1 of the
laim holds for i = k + 1, and if k < n� 2, we
an show that Part 2 holds fori = k + 1. The proof parallels that used in Theorem 3.3.3, sin
e the stru
ture of the rules is similar ex
eptfor the rule for the last literal. We omit the details.This
ompletes the proof of (1) and (2). A fa
t of the form query(pn(tn); idn; answer(id; q(s)))[�n�1℄must be produ
ed by a Type 5 rule. Part 3 of the
laim then follows from Part 1 of the
laim and from thestru
ture of Type 5 rules.End proof of
laimIf the body of the rule is empty, it is easy to show (in a manner similar to the base
ase of the above
laim) that a fa
t is produ
ed for supj;0, and a Type 3 rule then generates a fa
t answer(id; q(t))[
℄ thatsatis�es the properties required by this theorem.If the body of the rule is not empty, the
laim above shows that a fa
t query(pn(tn); idn; answer(id;q(s)))[�n�1℄ is generated. We know that some fa
t pn(
n) that subsumes pn(an) is generated in the derivationsequen
e, before step s (wlog assume it does not share variables with other fa
ts/rules). Hen
e by theindu
tion hypothesis, a fa
t answer(id; q(s))[�n�1℄[Æ℄ su
h that Æ subsumes mgu(pn(
n); pn(tn[�n�1℄)) isgenerated. But �n�1 subsumes [�℄[�℄ and
n subsumes an, and hen
e [�n�1℄[Æ℄ subsumes [�℄[�℄. Let
 be theproje
tion of [�n�1℄[Æ℄ on the variables in s. Hen
e answer(id; q(s))[
℄ = answer(id; q(s))[�n�1℄[Æ℄, and thisfa
t is generated by bottom-up evaluation. Sin
e � does not a�e
t the variables in s,
 subsumes �.This
ompletes the indu
tion step, and the proof of the theorem. 2Theorem 3.4.2 Given any program P and query Q, the bottom-up evaluation of PMGU TQ is
omplete withrespe
t to Q, i.e., if the bottom-up evaluation of P generates a fa
t p that is an answer to Q, then p issubsumed by a fa
t
omputed in the bottom-up evaluation of PMGU TQ .Proof: Let Q =?q(t), and let its identi�er be id. Then rules QR1 and QR2 generate a fa
t query(q(t); id; ans-wer(id; q(t))). From Lemma A.2.4, the
orresponding answer fa
ts will be generated by the evaluation ofPMGU TQ . The required answers to the query will then be generated by rule QR3 using these fa
ts. 2

127

Appendix BProofs From Chapter 4We start by des
ribing some assumptions we make and some notation that we use. We assume that ea
hderivation step has a unique identi�er, and we label fa
ts derived by SN evaluation with the identi�er of thederivation step that generated the fa
t. We use the notation p() : k to denote a derivation of fa
t p() withlabel k. (This label is ignored for the purpose of subsumption-
he
king; if subsumption-
he
king is used anda fa
t is generated twi
e (with di�erent labels) only one
opy of the fa
t with one label is stored and usedin derivations.) In a similar fashion, we label a
tions (su
h as generation of a query or answer) performedby Prolog� in order to distinguish between multiple o

urren
es of the a
tion.We use the
on
ept of labeled derivation steps and labeled attempted derivation steps (Se
tion 4.2). Inthe rest of this se
tion, we
onsistently use the term derivations (resp. attempted derivations) to refer tolabeled derivation steps (resp. labeled attempted derivation steps).The evaluation of a program rewritten using MGU MTTR rewriting generates goal-identi�ers, givengoals. We denote by goal id�1 : goal-identi�ers ! goals as the inverse fun
tion of goal id. That is, givena goal-identi�er generated in an evaluation, it returns the original goal. Re
all that in
ase subsumption-
he
king is not performed, the goal id meta-predi
ate is de�ned to return a di�erent identi�er on ea
h
all,but goal id�1 is well-de�ned.We note that the mapping we spe
ify is modulo renaming. For example, when we say that M maps aderivation f1 = query(p(t); : : :) : k1 to the generation of a subgoal ?p(t) : k by Prolog�, we mean that thereis a renaming of f1 su
h that its �rst argument is equal to the Prolog� subgoal ?p(t) : k. (Note that if werename the Prolog� subgoal instead, we would have to perform a \global" renaming rather than just thegiven subgoal. Hen
e we rename the fa
ts derived in bottom-up evaluation.) We assume that the rules inthe original program are numbered R1; R2; : : :. Re
all that a predi
ate of the form supj;i is derived from ruleRj .We assume in the following lemma that the basi
 version of MGU MTTR rewriting is used, without anyof the optimizations des
ribed in Se
tion 3.4.1. For simpli
ity, the lemma assumes that the program uses nobase predi
ate, and hen
e there are no Type 6 rules. After proving the lemma, we show how the proof
anbe extended to allow base predi
ates, and to in
orporate some optimizations of MGU MTTR rewriting.Lemma B.0.5 Let P be any (positive) logi
 program, and Q a query on P . Assume that P uses no base128

predi
ates. Let PMGU T be the MGU-MTTR rewriting of P with query Q. Then there is a mapping Mof labeled attempted derivation steps in the Semi-Naive evaluation of P T (with or without subsumption-
he
king) to a
tions of the Prolog� evaluation of Q on P , with the following properties.1. Goal identi�ers:M maps ea
h goal identi�er id to the Prolog� a
tion ?goal id�1(id) : k1 (this a
tion is the generationof a subgoal).2. Type 0 rules - QR2, Type 4 and Type 5 rules:Consider an attempted derivation using a Type 4 or Type 5 rule, or a Type 0 rule QR2. Su
h attemptedderivations always su

eed, and generate a fa
tf1 = query(p(t); hid; answer(id; q(s))) : kThen M maps the derivation f1 to a Prolog� a
tion ?p(t) : k1. Further,(a) the return point of ?p(t) : k1 is a query that is equivalent to M(id), and,(b) q(s) is the instantiated return-point query, at the point that Prolog� generated the subgoal ?p(t) :k1.No two distin
t labeled derivations of this type are mapped to the same Prolog� a
tion.3. Type 3 rules:Consider an attempted derivation using a Type 3 rule. Su
h a derivation always su

eeds.M maps ea
h derivation answer(id; p(a)) : k to the generation of an answer p(a) to a Prolog� querythat is equivalent to M(id).No two distin
t labeled derivations of this type are mapped to the same Prolog� a
tion.4. Type 0 rules - QR1:Su
h a rule makes a derivationf1 = initial query(q(t); hid; answer(id; q(t))) : kM maps f1 to the Prolog� a
tion ?q(t) : k1.There is only one su
h labeled attempted derivation, and it always su

eeds.5. Type 0 rules - QR3:Consider an attempted derivation using rule QR3. If the derivation su

eeds, it derivesf1 = q(a) : kusing a labeled fa
t f2 = answer(id; q(a)) : k1. M maps f1 to M(f2).No two distin
t labeled derivations of this type are mapped to the same Prolog� a
tion.If the derivation fails, it must have used a labeled fa
t f1 for initial query. M maps the unsu

essfulderivation to M(f1). There is at most one su
h unsu

essful labeled derivation.129

6. Type 1 rules - 1:Consider an attempted derivation using a Type 1 rule that has a predi
ate query(: : :) in the body.Let the fa
t used in the body bequery(p(b); hid; answer(id; q(s))) : k1The derivation possibly derives a fa
t of one of the following forms:supj;0(hid; v; 0; answer(id; q(a))) : ksupj;0(hid; v; p(t); answer(id; q(a))) : kNow for the query fa
t, due to indu
tion hypothesis, it must be the
ase thatM(query(p(b); hid) : k1) =?p(b) : k2M maps the labeled attempted derivation to the Prolog� a
tion of unifying ?p(b) : k2 with the head ofRj .No two distin
t labeled (su

essful/unsu

essful) attempted derivations of this type are mapped to thesame Prolog� a
tion.Further(a) the return point of ?p(b) : k2 is equivalent to M(id), and,(b) q(a) is the instantiated return-point query, just after Prolog�
arries out the above uni�
ation.(
) the bindings stored in v are the bindings of the rule variables of Rj just after Prolog�
arries outthe above uni�
ation.7. Type 2 rules - 1:Consider an attempted derivation using a Type 2 rule, where the body of the rule uses a fa
t supj;i.A head fa
t of the following form may be derived:sup1j;i(hid; v; pi+1(s); answer(id; q(a))) : kIf the derivation su

eeds, M maps the labeled derivation to the Prolog� a
tion of returning an answerto ?pi(s) : k1, where(a) the query ?pi(s) is generated from the ith literal of rule Rj , and the literal is not the last in therule.(b) the bindings stored in v are the bindings of the rule variables of Rj at the point when the answerto ?pi(s) : k1 was returned.(
) q(a) is the instantiated version, at the point that the answer to the query is returned, of thereturn-point query of the
all to Rj . 130

No two distin
t labeled derivations of this type are mapped to the same Prolog� a
tion.If the derivation fails, there are two
ases. If the derivation fails be
ause there are no mat
hing answerfa
ts for a labeled supplementary fa
t s : k3, M maps the unsu

essful derivation to M(s : k3). Ifthe derivation fails be
ause there are no mat
hing fa
ts for a labeled answer fa
t a : k4, M maps theunsu

essful derivation to M(a : k4).At most a
onstant number of failed labeled derivations of the above form are mapped to the sameProlog� a
tion.8. Type 1 rules - 2 and Type 2 rules - 2:Consider an attempted labeled derivation using a Type 1 or Type 2 rule where the body of the rulehas a literal sup1j;i. Su
h a derivation always su

eeds, and derives a fa
t of the form:f = supj;i(hid; v; nid; answer(id; q(a))) : kusing a body fa
t of the formf1 = sup1j;i(hid; v; pi+1(s); answer(id; q(a))) : k1Then M(f) is de�ned to be M(f1), whi
h is the return of an answer to a query ?pi(s) : k1. Further,(a) the query ?pi(s) is generated from the ith literal of rule Rj , and the literal is not the last in therule.(b) the bindings stored in v are the bindings of the rule variables of Rj at the point when the answerto ?pi(s) : k1 was returned.(
) q(a) is the instantiated version, at the point that the answer to the query is returned, of thereturn-point query of the
all to Rj .(d) nid is the identi�er of a subgoal ?pi(s).No two distin
t labeled derivations of this type are mapped to the same Prolog� a
tion.Proof: The labeled derivations in the evaluation of P T are totally ordered, su
h that ea
h derivation usesonly fa
ts
omputed in earlier derivations. We use an indu
tion on this sequen
e to prove the lemma. Notethat at many points we say that a parti
ular a
tion will be performed by Prolog� evaluation. Su
h
laimsdepend on the assumption that Prolog� evaluation terminates. In
ase Prolog� evaluation does not terminate,bottom-up evaluation
an be no worse.The base
ase is for an empty derivation sequen
e, and the indu
tion hypothesis holds trivially. Nowassume that there is a mapping M for labeled derivations up to step n, that satis�es the
onditions of thelemma. We extend the mapping to step n+1. We split the derivation in step n+1 into several
ases basedon the type of the rule used.For ea
h rule type, we prove the
orresponding
laims. Goal-identi�ers are generated only by the Type0 rule QR1, Type 1 rules sub
ase 2 and Type 2 rules sub
ase 2. We prove the
laims about goal-identi�ersin the respe
tive
ases below. 131

Type 0 Rules - QR1 and QR3 : Consider a rule QR1. Su
h a rule generates a fa
tinitial query(q(t); id; answer(id; q(t))) : kfrom the initial query. Let M map this derivation to the Prolog� a
tion ?q(t) : k0
orresponding tothe generation of the initial query. Further, we let M map id to the same Prolog� subgoal generationa
tion.Next,
onsider QR3, and suppose that the answer fa
t used in the body is answer(id; q(a)) : k. Thederivation is mapped to M(answer(id; q(a)) : k). Ea
h fa
t answer(id; q(a)) : k is used in at most onesu
h derivation. By indu
tion hypothesis, no other derivation of any fa
t q(b) is mapped to this a
tion.Type 1 Rules - 1 :This
ase
overs labeled attempted derivations using Type 1 rules with a query literal in the body.The attempted derivation must have used a rule of one of the forms below:RQ : sup1j;0(: : :): �query(q(s); ID;A):RQ : supj;0(: : :): �query(q(s); ID;A):and a fa
t f1 = query(q(a); id1; answer(id2; r(b))) : k1.By indu
tion hypothesis, f1 is mapped to a subgoal ?q(a) : k3. Now Prolog� evaluation will attemptto unify the subgoal ?q(a) : k3 with the head of rule Rj ,1 whi
h is q(s). We label this uni�
ation a
tionas k4, and the attempted derivation is mapped to this uni�
ation a
tion.No other attempted derivation of this kind is mapped to this uni�
ation, sin
e this is the only use off1 with this rule, and no other derivation of a query fa
t is mapped to ?q(a) : k3.If the uni�
ation is su

essful, a fa
t is
reated in bottom-up evaluation, and Prolog� evaluation eitherreturns an answer (if the rule is empty) or sets up a subgoal on the �rst body literal. The fa
t
reatedby derivation in the two
ases are respe
tively:supj;0(hid; v0; 0; answer(id2; r(b0))) : kand sup1j;0(hid; v0; p1(s); answer(id2; r(b0))) : kThe indu
tion hypothesis shows that the return point of ?q(a) : k3 is equivalent to M(id2). Byindu
tion hypothesis, r(b) is the instantiated return-point subgoal when the subgoal ?q(a) : k3 is setup. The Prolog� uni�
ation of the query with the rule head q(s) produ
es the same bindings for a andb as the uni�
ation of f1 with the body literal of RQ. Hen
e r(b0) is equivalent to the instantiatedreturn-point query after the uni�
ation of ?q(a) : k3 with the head of Rj . It is easy to show fromthe stru
ture of RQ that the bindings stored in v0 are the bindings of the rule variables after Prolog�
arries out the uni�
ation.1Rule Rj is the rule in the original program from whi
h RQ is derived.132

Type 2 Rules - 1 :Consider an attempted derivation using a Type 2 rule, where the body of the rule uses the predi
atesupj;i�1.First
onsider the
ase that the derivation su

eeds. It must have used labeled fa
ts of the followingform: f1 = supj;i�1(hid; v0; nid; answer(id; q(s))) : k1f2 = answer(nid; pi(a)) : k2and a rule:RQ : sup1j;i(HId; Vi; pi+1(ti+1); A) : � supj;i�1(HId; Vi�1; ID1; A);answer(ID1; pi(ti)):to derive a fa
tf = sup1j;i(hid; ai; pi+1(si+1); answer(id; q(s))) : k0Sin
e this rule de�nes a sup1j;i predi
ate, the original rule say Rj from whi
h the sup1j;i predi
atewas derived must have as ith body literal pi(ti). Also we
an show that supplementary fa
t f1 musthave derived a query fa
tf3 = query(pi(si); nid; answer(nid; pi(si))) : k3where the goal-id of ?pi(si) is nid. (If there is more than one derivation of this fa
t, all but one ofthem are eliminated by subsumption-
he
king.)Now, by indu
tion hypothesis, f1 is mapped to the either the su

essful uni�
ation of a query withthe head of rule Rj , or to the return of an answer to pi�1(ti�1), whi
h is the i � 1th literal in ruleRj . It is easy to show (from the indu
tion hypothesis
laim about variable bindings) that at this pointin the evaluation, Prolog� would have generated a query ?pi(si) : k4 from this literal. The query isnot tail-re
ursive, and hen
e the return point of the query is the same as the point where the query isgenerated. Note that the goal-id of ?pi(si) : k4 is nid, but M(nid) may not be ?pi(si) : k4, (althoughit is equivalent), if subsumption-
he
king is used.By indu
tion hypothesis on f2, the generation of answer f2 is mapped to the generation of an answerpi(a) : k6 to a query f3 that is equivalent M(nid). But sin
e the queries M(nid) and ?pi(si) : k4are equivalent, so are f3 and ?pi(si) : k4. Sin
e f3 and ?pi(si) : k4 are equivalent and both are nottail-re
ursive, ea
h answer pi(a) : k6 generated for f3
an be mapped one-to-one to the generation ofan answer pi(a) : k7 to ?pi(si) : k4. Hen
e let this mapping map M(f2) to the generation of an answerpi(a) : k8 for the query ?pi(si) : k4.We then de�ne M(f) to be the return of answer pi(a) : k8 to the query ?pi(si) : k4.133

No two su
h distin
t derivations are mapped to the same Prolog� a
tion sin
e by indu
tion hypothesis,(1) only f1 is mapped to the point in Prolog� evaluation just before the generation of ?pi(si) : k4,and (2) no two derivations of answer(nid; pi(a)) are mapped to the same return of answer pi(a) to?pi(si) : k4 by Prolog� evaluation.We show that the required bindings are stored in the generated answer fa
t as follows. By indu
tionhypothesis, the bindings in f1 are the same as the rule bindings in Prolog� evaluation before ?pi(si) : k4is generated. Sin
e the same answers are used in both
ases, with the same literals, it is straightforwardto show that the generated bindings are the same in f as when answer pi(a) : k8 is returned in Prolog�evaluation. Similar arguments also show that answer(id; q(s)) is the instantiated return-point queryat the point when the answer is returned.This
ompletes the
ase where the attempted derivation is su

essful. If the derivation fails, themapping de�ned is straightforward. Sin
e ea
h fa
t is used in at most one unsu

essful derivationwith ea
h rule, it follows that at most a
onstant number of failed derivations are mapped to the sameProlog� a
tion.Type 1 and Type 2 Rules - 2 :The derivation must have used a ruleRQ : supj;i(: : :): �sup1j;i(: : :); goal id(: : :):with a fa
tf1 = sup1j;i(hid; v0; p(s); answer(: : :)) : k0to derive a fa
t f = supj;i(hid; v0; nid; answer(: : :)) : k5.We let M map f to M(f1). This is the only use of sup1j;0(v0; : : :) : k0. Along with the indu
tionhypothesis, this shows that no two distin
t derivations of this kind are mapped to the same Prolog�a
tion.RQ passes all arguments of f1 un
hanged to f ex
ept that it repla
es p(s) by its goal-identi�er nid.The other
laims about the return point query and the query ?pi(s) are shown dire
tly by applyingthe indu
tion hypothesis to f1, sin
e these arguments are the same in f as in f1.By indu
tion hypothesis, f1 is mapped to a point in Prolog� evaluation where either a subgoal hasbeen uni�ed with a rule, or an answer has been returned to a literal in the rule. In either
ase, p(s) isthe instantiated literal that is next in the rule, and a subgoal ?p(s) : k3 will be generated. We de�neM(nid) to be ?p(s) : k3.Type 3 Rules: A Type 3 rule is of the formA: �supj;0(HId; V ; ; A):Suppose a fa
t f = answer(id; q(b)) : k0 is derived using su
h a rule along with a fa
tf1 = supj;0(HId; a; 0; answer(id; q(s)) : k1134

Now supj;0(a; answer(id; p(s))) : k1 is mapped to a Prolog� a
tion that uni�es a goal ?p(t) : k2 withthe head of rule Rj . Let this a
tion be labeled k2. This uni�
ation a
tion must su

eed, sin
e the fa
tsupj;0(a; answer(id; q(s)) was derived. Further, the body of the original rule must be empty (Type 3rules are generated only from su
h rules). Hen
e Prolog� evaluation generates an answer at this stage.By indu
tion hypothesis on the supj;0 fa
t, (1) the return point of the query ?p(t) : k2 is equivalent toM(id), and (2) q(b) is the instantiated return-point query after the uni�
ation of ?p(t) : k2 with thehead of rule Rj is performed. Hen
e Prolog� evaluation generates an answer q(b) : k4 for a return-pointquery that is equivalent to M(id).This is the only answer generated from f1, and by indu
tion hypothesis, no two distin
t labeled supj;0fa
ts are mapped to the same uni�
ation a
tion. Hen
e no two distin
t derivations of this kind aremapped to the same Prolog� a
tion.Type 0 Rules - QR2, Type 4 and Type 5 Rules :We split this into three sub-
ases, based on the rule type. We �rst
onsider the Type 0 rule QR2. Thisgenerates a query fa
tquery(p(t); id; answer(id; p(t))) : kfrom the initial query. We let M map the derivation to the generation of the initial query ?p(t) : k0by Prolog� evaluation.The return point of this query is ?p(t) : k0, and this is equivalent toM(id), sin
e id is the goal-identi�erfor p(t). This is the only derivation of this type that is mapped to this a
tion of Prolog� evaluation.The remaining part of the
laim for this
ase follows trivially sin
e ?p(t) : k0 is the return-point query.Next we
onsider Type 4 rules. These
orrespond to non-tail-re
ursive literals. Su
h a rule is of onform query(pi(ti); ID; answer(ID; pi(ti))): �supj;i�1(HId; V ; ID;A):Let the generated fa
t bef = query(pi(si); nid; answer(nid; pi(si))) : kand let the fa
t used in the rule body bef1 = supj;i�1(hid; v; nid; answer(id; q(s))) : k1Now, by indu
tion hypothesis, M(f1) is mapped to a step where a query has been uni�ed with a rule,or an answer has been returned for a literal, and the next literal in the rule is pi(ti). The indu
tionhypothesis also tells us that the variable bindings stored in v above are the same as the rule variablebindings. Hen
e Prolog� evaluation generates a query ?pi(si) : k3. We let M map f to ?pi(si) : k3.Ea
h supplementary fa
t is used in exa
tly one rule of this kind, and by indu
tion hypothesis, no othersupplementary fa
t is mapped to the same Prolog� a
tion. Hen
e no other derivation of this type is135

mapped to the same a
tion as Prolog� evaluation. The return point of this query is the query itself,sin
e the literal is not tail-re
ursive, and the indu
tion hypothesis on f1 shows that nid is the goal-idof ?pi(si). Hen
e the
laims about the return point and the instantiated return-point query follow ina straightforward manner.Finally we
onsider Type 5 rules. Su
h a rule is of the formquery(pi(ti); ID;A): �supi�1(HId; V ; ID;A):Let the derived fa
t bef = query(pi(si); nid; answer(id; q(s))) : kand let the fa
t used in the body bef1 = supj;i�1(hid; v; nid; answer(id; q(s))) : k1The same arguments as for Type 4 rules show that there is a query ?pi(si) : k3 generated by Prolog�,and we let M map f to ?pi(si) : k3. The same argument as for Type 4 rules shows that no otherderivation of this type is mapped to the same a
tion of Prolog� evaluation. To show the
laims aboutthe return point we note the following. The literal for whi
h the query is generated by a Type 5 ruleis tail-re
ursive. Hen
e its return point is the same as that of the head of the rule. By indu
tionhypothesis, this is equivalent to M(id). Again, the indu
tion hypothesis on f1 tells us that q(s) is theinstantiated return-point query at the point when Prolog� generates the subgoal ?pi(si) : k3.This
ompletes the indu
tion step, and the proof of the lemma. 2The above lemma was for the
ase that the program uses no base predi
ates. We
an extend the lemmafor the
ase of base predi
ates as follows. We use the optimizations des
ribed in Se
tion 3.4.1 to treat all baseliterals as non-tail-re
ursive, and to not generate query or answer fa
ts for these predi
ates. In parti
ular,we
an ensure that base literals that o

ur as the last literal in a rule are treated as non-tail-re
ursive byadding an extra true() literal at the end of the rule body in the original program. Su
h a transformationdoes not a�e
t number of a
tions performed by Prolog� evaluation signi�
antly, and does not a�e
t the time
omplexity of Prolog� evaluation.As a result of the optimization, query rules and answer generation rules for base predi
ates are deleted.These deletions do not a�e
t the mapping we des
ribed above. The only other
hange is that some Type 2rules are simpli�ed, and are now of one of the the following forms:sup1j;i(HId; V ; pi+1(ti+1); A) : � supj;i�1(HId; V ; ID1; A); pi(ti):supj;i(HId; V ; 0; A) : � supj;i�1(HId; V ; ID1; A); pi(ti):supj;i(HId; V ; 0; A) : � supj;i�1(HId; V ; ID1; A);answer(ID1; pi(ti))We
lassify all su
h rules under the
ase \Type 2 rules - 1". All the
laims made for su

essful derivationsin this
ase still hold, and the proof for this
ase works with minor modi�
ations. We note that any fa
tsthat are used for the literal pi(ti) in the above rules during bottom-up evaluation are also used in the136

orresponding stage in Prolog� evaluation. We now
onsider the
ase of failed derivations. Sin
e Semi-Naiveevaluation is used, and pi is base or evaluable, any attempted derivation using su
h a rule uses a fa
t forsupj;i�1, and sets up a query on pi(ti). Prolog� evaluation would set up the same query. The derivation failsif there is no fa
t for pi that uni�es with the query. But in this
ase, Prolog� evaluation also fails on thesame query. Hen
e the attempted derivation is mapped to the failed query attempt by Prolog� evaluation.The above optimization and the extension of the mapping des
ribed above is important, in parti
ular,when we
onsider the
ost of evaluation in Chapter 5 | we introdu
e equality literals into rule bodies, andtreat them as base predi
ates.Thus we have the following theorem.Theorem 4.3.1 Let P be a de�nite
lause program, and Q be a query on the program. There are
onstants
1 and
2 (that may depend on the size of P) su
h that the following is satis�ed.Let PMGU T be the MGU MTTR rewriting of hP;Qi. Given any database, let the number of labeledattempted derivation steps performed by a Semi-Naive evaluation (with or without subsumption
he
king)of PMGU T be n, and let the number of a
tions performed by Prolog� evaluation of query Q with the samedatabase be m. Then n <
1 �m+
2.Proof: Lemma B.0.5 showed us that no two distin
t labeled derivation steps using any rule type are mappedto the same a
tion of Prolog� evaluation. Sin
e there are only a �nite number of rule types, at most a
onstantnumber of su

essful derivation steps are mapped to the same a
tion of Prolog� evaluation. Lemma B.0.5also showed that at most a
onstant number of unsu

essful labeled attempted derivation steps are mappedto any a
tion of Prolog� evaluation.To
omplete the proof of the theorem, we use the non-repetition property of Semi-Naive evaluation with-out subsumption-
he
king: no labeled derivation step is repeated in the evaluation (Theorem 4.2.1). (Semi-naive evaluation with subsumption-
he
king has a stronger non-repetition property, namely, no derivationstep is repeated in the evaluation.) 2

137

Appendix CProofs From Chapter 5
C.1 Proofs from Se
tion 5.5Lemma C.1.1 Suppose that a MGU MTTR rewritten program is evaluated using Apply Rule. Then1. Given a supplementary/initial query fa
t s and a query fa
t q, if s:
ont id = q:par id, then q:bindenvis a version des
endant of s:bindenv.2. Given a supplementary fa
t s and an answer fa
t a, if s:
ont id = a:par id, then a:bindenv is a versiondes
endant of s:bindenv.3. Given supplementary fa
ts s1 and s2, if s1:
ont id = s2:par id, then s2:bindenv is a version des
endantof s1:bindenv.Proof: The proof is by indu
tion on the length of sequen
es of derivations used to derive a fa
t. The basis
ase is the derivation sequen
e of length 0, i.e. base fa
ts, for whi
h the lemma is satis�ed trivially.We make some observations before
onsidering the indu
tion
ase. For rules with one base/derived bodyliteral (Types 1,3,4,5), it is easy to show that the bindenv of the head fa
t is a version
hild of the bindenvof the derived fa
t used in the body. For rules with two base/derived body literals (Types 4 and 6), whereReturn Unify fails, we
an see from pro
edures Rename and Unify that the bindenv of the head fa
t is a
hild of the bindenv of the supplementary/query fa
t used in the rule body. If Return Unify is
alled andsu

eeds, the bindenv of the head fa
t is a version
hild of the bindenv of the answer fa
t..For the indu
tion step,
onsider a derivation sequen
e of length n+1, and assume that the
laims are truefor all fa
ts with derivation sequen
es of length n or less. Consider the last step in the derivation sequen
e.If the head fa
t derived is a supplementary fa
t or an initial query fa
t, it is given a new
ont id, thatis not present in other existing fa
t. Thus, parts 1 and 2 of the lemma are trivially satis�ed. For part 3,the par id of the derived supplementary fa
t s3 is set to the par id of the query/supplementary fa
t s2 thatderived it. If Return Unify does not su

eed, s3:bindenv is a version
hild of s2:bindenv (as observed earlier).Part 3 then follows from Part 3 of the indu
tion hypothesis. If Return Unify does su

eed, s3:bindenv is aversion
hild of the bindenv of the answer fa
t. Further, the par id of the answer fa
t is the same as the
ont id of the supplementary fa
t. Part 3 then follows from Part 1 of the indu
tion hypothesis.138

If the head fa
t derived is a query fa
t, the rule body has only one derived literal (whi
h is a supplementaryor initial query literal). The rule must be a Type 1, Type 4 or a Type 5 rule. Parts 2 and 3 are triviallysatis�ed in all the above
ases. We
onsider Part 1 of the lemma. In the
ase of Type 1 and Type 4 rules,the par id of the query fa
t is set to the
ont id of the supplementary / initial query fa
t. Sin
e the fa
tused in the derivation is the only supplementary / initial query fa
t with this
ont id, Part 1 of the lemmais satis�ed. In the
ase of Type 5 rules, the par id of the query fa
t is set to the par id of the supplementaryfa
t. The bindenv of the query fa
t is a
hild version of the bindenv of the supplementary fa
t. Part 1 thenfollows from Part 3 of the indu
tion hypothesis.If the head fa
t derived is an answer fa
t, Parts 1 and 3 follow trivially. For Part 2, the answer fa
t isgenerated from a supplementary fa
t using a Type 3 rule, or from a query fa
t using a Type 6 rule. Thepar id of the answer fa
t is then set to the par id of the query/supplementary fa
t, and the bindenv of theanswer fa
t is a version
hild of that of the query/supplementary fa
t. Part 2 of the indu
tion hypothesisthen follows.This
overs all the
ases, and
ompletes the proof. 2Lemma C.1.2 Let s and a be supplementary and answer fa
ts su
h that s:
ont id = a:par id. Then thereis a query fa
t q generated by a Type 4 rule (i.e. the query is on a non-tail-re
ursive literal) using s, su
hthat:1. a:bindenv is a version des
endant of q:bindenv, and2. for all variables in q:bindenv other than those a

essible from q, the bindings in a:bindenv are the sameas the bindings in s:bindenv.Proof: From Lemma C.1.1, a:bindenv is a version des
endant of s:bindenv. Ea
h supplementary fa
tgenerates a query fa
t or an answer fa
t. In the
ase of Type 3 and Type 5 rules, the par id of the generatedfa
t is di�erent from the
ont id of the supplementary fa
t. No two supplementary/initial query fa
ts havethe same
ont id. Also, the
ont id of the supplementary fa
t is not passed on to any other fa
t but thissole query fa
t. If we assume that no query fa
t q is generated from s using a Type 4 rule, it is easy to showthat a:par id
annot be the same as s:
ont id. Hen
e there is su
h a query fa
t q generated.Next we now show that for any fa
t f and any q as above, su
h that f:par id = s:
ont id,1. f:bindenv is a version des
endant of q:bindenv, and2. Any variable in q:bindenv that is not a

essible in q has the same bindings in f:bindenv as in q:bindenv,and is not a

essible in hf:stru
ture; f:bindenvi.We �rst note the following. Suppose we unify fa
ts f1 = hs1; env1i and f2 = hs2; env1i. Then the onlyvariables that are modi�ed by the uni�
ation are those that are a

essible from either s1 or s2.The proof is by indu
tion on lengths of derivation sequen
es used to derive f . We note again that no twosupplementary/initial query fa
ts have the same
ont id. For the basis
ase, a fa
t with derivation sequen
eof length 1 that has the same par id value s q must be derived using q. In all
ases of rules that use q, thebindenv of the head fa
t is a version des
endant of the bindenv of the body fa
t. Further, any variable thatis not a

essible from q:stru
ture is also not a

essible from f:stru
ture, and is not modi�ed by uni�
ationduring the derivation. 139

For the indu
tion step, we note that in all
ases ex
ept for Type 2 rules, the bindenv of the head fa
tis a version des
endant of the bindenv of the sole derived body fa
t. If the par id of the generated fa
tis q:par id, then the par id of the derived body fa
t must also be q:par id. Part (1) then follows fromindu
tion hypothesis. Also, the sole derived body fa
t is not renamed, and any new variables that are
reated by renaming other fa
ts do not
on
i
t with variables in q:bindenv. Hen
e Part (2) follows.For Type 2 rules, if the par id of the generated fa
t is q:par id, then the par id of the supplementaryfa
t in the body must also be q:par id. If Return Unify fails, the bindenv of the head fa
t is a version
hildof the bindenv of the supplementary fa
t in the body, and Part (1) follows. That Part (2) follows
an beshown by arguments similar to those used in the earlier
ase.If Return Unify su

eeds, f:bindenv is a version
hild of a1:bindenv where a1 is the answer fa
t used inthe rule body. But sin
e Return Unify su

eeds, a1:par id = s1:
ont id, where s1 is the supplementary fa
tused in the rule body. But by indu
tion hypothesis, a1:bindenv is a des
endant of s1:bindenv. It follows byindu
tion hypothesis that f:bindenv is a version des
endant of q:bindenv; this establishes Part (1).We now
onsider Part (2). By indu
tion hypothesis, s1 generates a query fa
t q1 using a Type 4 rule,and for any variable in q1:bindenv that is not a

essible from q1 the bindings in q1:bindenv and a1:bindenvare the same; also any su
h variable is not a

essible from a1. But it is easy to show that any variable ins1:bindenv that is not a

essible from s1 is also not a

essible from q1. Hen
e for any variable in s1:bindenvthat is not a

essible from s1, the bindings are the same in a1:bindenv as in s1:bindenv; also, any su
hvariable is not a

essible from a1. But s1:par id = q:par id. Hen
e, by indu
tion hypothesis, any variablein q:bindenv is not a

essible from s1:bindenv. Hen
e the bindings for any su
h variables are the same inf1:bindenv as in q:bindenv, and further any su
h variables are not a

essible from f1:stru
ture.This
ompletes the indu
tion step and the proof of this part of the lemma. This also
on
ludes the proofof this lemma. 2Lemma 5.5.1 Suppose that there is a query fa
tq = query(pi(ai); id1; answer(id1; pi(ai)))generated by a Type 4 rule (i.e., from a non-tail-re
ursive literal), and an answer fa
t a = answer(id1; pi(bi)).Suppose also that q:par id = a:par id. Let q str2 denote the last argument of q:stru
ture. Thenhq str2; a:bindenvi � ha:stru
ture; a:bindenviProof: Sin
e a Type 4 rule is used to derive q, q must have been generated from a supplementary fa
t s qsu
h that q:par id = s q:
ont id.We show that any query fa
t q1 s.t. q1:par id = q:par id has q str2 as the last argument of its stru
ture,and any supplementary s1 su
h that s1:par id = q1:par id has q str2 as its last argument of its stru
ture.The proof is by indu
tion on lengths of derivation sequen
es.We note that no two supplementary fa
ts or initial query fa
ts have the same value for
ont id, sin
e anew identi�er is generated for ea
h su
h fa
t.For the basis
ase, any fa
t generated by a derivation sequen
e of length 1 and that has the same par id�eld is a fa
t s for some predi
ate sup1j;0 (generated using a Type 1 rule). The query fa
t is not renamed,and variables in the rule head are dereferen
ed, hen
e the last argument of s:stru
ture is q str2.140

For the indu
tion
ase, assume that the indu
tion hypothesis is true for all derivation sequen
es of lengthless than some k, and
onsider the last step in a derivation sequen
e of length k. We have a
ase analysisbased on the type of the rule.For Type 0 rules, the par id of the generated fa
t must be the
ont id of an initial query fa
t, whi
hmust be distin
t from s q:
ont id. For Type 1 rules, the last argument of the stru
ture of the generatedsupplementary fa
t is the same as the last argument of the stru
ture of the body fa
t after dereferen
ing (aswas argued for the basis
ase). The par id �elds of the head fa
t is the same as that of the body fa
t. Theresult then follows from the indu
tion hypothesis.For Type 2 rules, we note that the last argument of the head literal appears only in the supplementaryliteral. Whether Return Unify su

eeds or not, the supplementary fa
t is not renamed. Arguments similarto the earlier arguments then show that the last argument of the stru
ture of the head fa
t is the same as thelast argument of the stru
ture of the body supplementary fa
t. The par id �eld of the head fa
t is the sameas the par id �eld of the body supplementary fa
t. The result then follows from the indu
tion hypothesis.Type 3 rules generate answer fa
ts. Consider any answer fa
t a1 that is generated. The stru
ture of Type3 rules shows us that the head fa
t is a dereferen
ed version of q str2, interpreted in bindenv a:bindenv.Hen
e the lemma holds for the answer fa
t a1.Type 4 and Type 5 rules generate query fa
ts. In the
ase of Type 4 rules, the par id of the queryfa
t is generated from the
ont id of some supplementary fa
t (di�erent from s q). Hen
e the par id of thefa
t
annot be the same as q:par id. In the
ase of Type 5 rules, the last argument is the same as the lastargument of the body supplementary fa
t (sin
e it is not renamed). The par id of the head fa
t is the sameas that of the body fa
t, and the result follows from indu
tion hypothesis.Type 6 rules generate answers from queries on base predi
ates. The query fa
t is not renamed, and ananswer fa
t is generated. This
ase is similar to Type 3 rules, and the lemma holds for any answer fa
tsgenerated.This
ompletes the
ase analysis and the proof of the lemma. 2Lemma 5.5.2 Suppose that Return Unify su

eeds on rule R with fa
ts s and a. Then hR0; r env0i is anmgu of R0 with (a renamed variant of)s and a.Proof: Sin
e Return Unify su

eeds, s:
ont id = a:par id. By Lemma C.1.1, the answer fa
t bindenvis a des
endant of the supplementary fa
t bindenv, and hen
e
an only be more re�ned. Thus bindenvrepla
ement instantiates the supplementary fa
t further. We unify this fa
t with the rule by binding somevariables to arguments of the fa
t (this is possible sin
e the supplementary literal has as arguments onlydistin
t variables). Let ra be the stru
ture of the answer literal in the rule body. Let q str2 denote the lastargument of the stru
ture of q. Then there is a query fa
t q generated using a Type 4 rule
orresponding tothe answer literal, su
h that hq str2; q:bindenvi is equivalent to hra:stru
ture; q:bindenvi. Now, q:bindenvis an an
estor of r env0. Hen
e hra:stru
ture; r env0i and hq str2; r env0i are equivalent.(The above argument assumes that all variable bindings are stored in the supplementary literal. If this isnot true, we have to treat any variables that are not stored in the supplementary literal separately, and showthat the above equivalen
e holds for the
orresponding arguments of ra after the bindings of rule variables
reated by Return Unify.)Lemma 5.5.1 shows that hq str2; r env0i and the answer fa
t are equivalent. Hen
e hra; r env0i and the141

answer fa
t are equivalent. Hen
e bindenv repla
ement results in a
orre
t uni�
ation.We then need only to show that the uni�er is most general. Any uni�er for the rule would make theanswer literal and the answer fa
t equivalent. Sin
e the uni�er does not instantiate the answer fa
t, it is asgeneral as possible for variables in the answer fa
t and for variables in the instantiated answer literal. Butthe variables in the instantiated answer literal are exa
tly the variables a

essible from the query. Variablesin the supplementary fa
t that are not a

essible from the query are left un
hanged by the uni�er; hen
e theuni�er is as general as possible for these variables too. For variables in the rule body, any uni�er would bindthem to
orresponding stru
tures in the supplementary and answer fa
t. Variables in the rule head but notin the body are left un
hanged by the uni�er. Hen
e the uni�er is as general as possible for these variablestoo. Hen
e the result follows. 2C.2 Proofs from Se
tion 5.6Lemma 5.6.2 Suppose that an MGU MTTR rewritten program is evaluated using Opt-NG-SN evaluationwithout subsumption
he
king. Then every
all to Return Unify su

eeds.Proof: If subsumption
he
king is not performed, ea
h
all to goal id returns a new value. Now, the value isstored in the ID �eld of the supplementary fa
t. No other supplementary fa
t has this value in its ID �eld.Examining pro
edure Update Context Ids, we see that the supplementary fa
t is also given a new value forits
ont id �eld. For ea
h goal-id value g, let C(g) be the value of the
ont id �eld.We
laim that (1) for ea
h query and answer fa
t a, if gid is the goal-id for a, then a:par id = C(gid),and (2) for supplementary fa
ts s, if the value stored in the HId �eld is gid, then s:par id = C(gid). Theproof is by indu
tion on lengths of derivation sequen
es. For ea
h type of rule we
ompare the propagationof the goal-id values by the rules, and the propagation of the par id value by Update Context Ids, and �ndthat these values are propagated in the same manner. This
ompletes the indu
tion step of the proof of the
laim.An examination of Type 2 rules shows that if a supplementary fa
t and an answer fa
t unify with therule, the goal-id �eld of the answer fa
t and the ID �eld of the supplementary fa
t must be the same. Butthe above
laim then shows that the par id �eld of the answer fa
t is equal to the
ont id �eld of thesupplementary fa
t. Hen
e Return Unify always su

eeds. 2C.3 Proofs from Se
tion 5.7Theorem 5.7.1 Let P be a program, and Q a query. Given any database, let the
ost of Prolog� evaluationof Q be t units of time. Opt-NGBU evaluation without subsumption-
he
king evaluates the query on thegiven database in time O(t � V). (The size of the program is not taken into a

ount in this time
omplexitymeasure.)Proof: The proof is based on the mapping of attempted derivations in bottom-up evaluation to a
tions ofProlog� evaluation presented in Lemma B.0.5. We show that for ea
h attempted derivation of
ost
 � V ,there is an a
tion of Prolog� evaluation that
osts at least
 Sin
e not more than a
onstant number ofderivations are mapped to the same a
tion, the theorem follows. We use the following
ase analysis to prove142

the theorem. The
ase analysis parallels the
ase analysis used in Lemma B.0.5.Type 0: Rules QR1 and QR2 make one derivation ea
h. Ea
h derivation is mapped to a Prolog a
tion thattakes at least unit time. It is straightforward to show that derivations using these rules take O(V)time.Rule QR3 generates answers to the query, and ea
h derivation using this rule is mapped to a Prolog� a
-tion that generates answers to the query. Due to the optimization used in Pro
edure Rename and Uni-fy Fa
ts, no renaming of fa
ts is done for this rule. The uni�
ation step is straightforward sin
e thearguments of the answer literal are distin
t free variables, and no o

ur
he
k is required. Hen
e thisstep takes O(V) time per answer to the initial query, while the
orresponding Prolog� a
tion takes atleast O(1) time.Type 1 Rules - 1 :These are Type 1 rules whose body uses a predi
ate query. Derivations using this kind of rules involvethe uni�
ation of a query fa
t query(h(a); hid; ans) with a query literal query(h(t); HId;A). Thisderivation is mapped to the uni�
ation of ?h(a) with h(t) by Prolog�.Sin
e A and HId appear nowhere else, they
an be uni�ed with the
orresponding arguments in O(V)time. Due to our assumption that the time taken for uni�
ation is independent of the exa
t stru
ture ofthe terms, the uni�
ation of h(t) with h(a)
osts the same, ignoring versioning
osts, as the uni�
ationdone by Prolog�. Fa
toring in the versioning overheads, we get an overhead of a fa
tor of O(V).Type 2 Rules - 1 : These are Type 2 rules whose body uses a predi
ate supj;i. There are three sub
lassesof rules of this type.The �rst sub
lass is of rules that use an answer literal in the body. Lemma 5.6.2 shows that Re-turn Unify su

eeds whenever it is
alled for su
h rules. The time taken for su

essful derivationsusing su
h rules is O(V). Any unsu

essful derivation using su
h a rule must use a supplementaryfa
t for whi
h there is no answer fa
t; any answer fa
t will have a supplementary fa
t with the sameidenti�er value, and the derivation would be su

essful. The supplementary literal has as argumentsdistin
t variables, and uni�
ation is straightforward. Hen
e the time taken for unsu

essful derivationsusing su
h rules is O(V).The se
ond sub
lass is of rules have an equality literal in the body. Any attempted derivation usingsu
h a rule �rst uni�es a supj;i fa
t with the rule body (the uni�
ation always su

eeds), and attemptsto perform the uni�
ation needed to evaluate the equality literal. This attempted derivation is mappedto an equivalent uni�
ation a
tion by Prolog� evaluation. Whether the derivation su

eeds or not, ittakes time at most O(V) times that taken by Prolog� evaluation.The third sub
lass is of rules that have a base literal in the body. An attempted derivation uses a fa
tfor supj;i, performs an indexing operation on the base literal, and derives a head fa
t for ea
h fet
hedbase fa
t. For su
h rules, ea
h attempted derivation is mapped to an a
tion of Prolog� evaluation thatindexes the base relation with the same bindings. We assume the same indexing te
hnique is used ineither
ase. We
ount the
ost of fet
hing fa
ts, and renaming and unifying the fa
ts with the query onthe base relation as part of the indexing
ost. Bottom-up evaluation and Prolog� evaluation perform143

the same indexing operations, and hen
e the
ost of the indexing operation is the essentially the same(modulo the O(V) fa
tor for a

essing and binding variables, and
reating bindenv versions for ea
hfet
hed fa
t).If no fa
ts are fet
hed by the indexing operation in bottom-up evaluation, the
ost of rule appli
ation(apart from the indexing
ost) is O(V), and we map this
ost to the
ost of the indexing operation. Sin
ethat
ost is at least O(V), and only one attempted derivation is mapped to ea
h indexing operation,there is no
hange in the time
omplexity of the indexing operation, and we ignore the
ost.If fa
ts are su

essfully fet
hed by the indexing operation, for ea
h fa
t fet
hed, a su

essful derivationis made by bottom-up evaluation. The derivation is mapped to the return of an answer to the query onthe base literal by Prolog� evaluation. The
ost of the derivation is O(V), sin
e the
ost of renamingand unifying the base fa
t has been
ounted with the
ost of the indexing operation. The
orrespondingProlog� a
tion takes at least unit time, and hen
e the
ost of the derivation is at most O(V) times the
ost of the Prolog� a
tion.Type 1 and Type 2 Rules - 2 :Su
h rules derive a fa
t supj;i using a fa
t sup1j;i, and generate goal-id values through a
all to goal id.The uni�
ations of the supplementary literal and supplementary fa
t
an be done in O(V) time sin
ethere are no repeated variables. The evaluation of goal id takes
onstant time without subsumption
he
king. Overall, a su

essful derivation using a rule of this type takes O(V) time. All attemptedderivations using rules of this type are su

essful.Type 3, Type 4 and Type 5 Rules :Su
h rules have only one body literal, whi
h has as arguments distin
t variables. Hen
e a su

essfulderivation using a rule of this type takes time O(V). All attempted derivations using su
h rules aresu

essful.This
ompletes the
ase analysis of all the rule types. 2

144

Appendix DProofs From Chapter 6Theorem 6.4.1 The aggregate sele
tions generated by Te
hniques C1, BS1, BS2, BS3, and LS1 are soundaggregate sele
tions.Proof: The soundness of Te
hniques C1 and BS2 is very straightforward. For Te
hnique BS1 we note thefollowing. Sin
e p(t1) : s is a sound aggregate
onstraint on p, every fa
t in p must satisfy the
onstraint.Sin
e all free variables in s are present in t1, � is also a renaming of free variables in s (the bound variablesdo not matter sin
e they are quanti�ed within the atomi
 aggregate sele
tions in s). Sin
e p(t) = p(t1)[�℄,p(t) : s[�℄ is equivalent to p(t1) : s. Hen
e for every su

essful rule instantiations, the variables must satisfythe
onstraint s[�℄. It follows (trivially) that every relevant rule instantiation satis�es the sele
tion s[�℄.Now
onsider Te
hnique BS3. Every relevant fa
t for p satis�es p(t) : s. Unifying this with the head ofR, every relevant instantiation of R satis�es s[�℄[�℄, sin
e p(t)[�℄[�℄ is equivalent to p(t1). Sin
e � does nota�e
t variables in s[�℄, s[�℄ = s[�℄[�℄. Hen
e, every relevant instantiation of rule R satis�es the sele
tions[�℄.The proof of
orre
tness of LS1 is straightforward| a restri
tion of a sele
tion is weaker than the originalsele
tion, and every relevant rule instantiation satis�es the restri
tion. Sin
e all free variables in the spe
i�edrestri
tion o

ur in the literal, the restri
ted sele
tion
an be tested for the literal. If a fa
t is found irrelevantby the sele
tion,
learly any rule instantiation using the fa
t in this literal will also be irrelevant, sin
e itprovides the same bindings for the free variables of the sele
tion. 2Theorem 6.4.2 Te
hnique PS1 is sound.Proof: Consider any instantiation of the variables in X. There are now several instantiations of the variablesin the rule, that satisfy the rule body, and this de�nes a multiset SY of values for Y . Now further partitionSY based on values of variables other than X [fY;W1;W2; : : : ;Wng. Consider any partition S0Y (in otherwords,
onsider the multiset of instantiations of Y , with all variables in the rule other than f Y, W1, W2,. . . , Wn g �xed). Sin
e agg f is an In
Sel fun
tion, for any value y, if y 2 unne
essaryagg f (S0Y) theny 2 unne
essaryagg f (SY).Now ea
h partition S0Y de�nes a value for the variables in ti. Consider ea
h literal pi(ti;W i) Given avalue for the variables in ti, the set of fa
ts for pi de�nes a set SWi of values for Wi. Also, ea
h partitionde�nes a set SW of instantiations of the tuple (W1;W2; : : : ;Wn). No two Wis appear in any literal otherthan Y = fn(W1; : : : ;Wn). Given any tuple of values from SW1 � : : : � SWn, there is a value for Y su
h145

Y = fn(W1; : : : ;Wn) is satis�ed.If the other literals in the rule are satis�ed, within ea
h partition SW is equal to the
ross produ
t of thesets SWi. Otherwise SW is empty, and no fa
t is generated using this instantiation for the variables otherthan f Y, W1, W2, . . . , Wn g.S0Y is the set of Y values obtained by applying fn to the tuples in SW . Sin
e unne
essaryagg fdistributes over fn, if a value wi 2 unne
essaryagg f (SWi), any Y value derived from it must be inunne
essaryagg f (S0Y) (this is trivially true if SW is empty, sin
e no Y value is derived). Hen
e it mustalso be in unne
essaryagg f (S). Sin
e we
hose any instantiation of the variables in X, this must be truefor all instantiations of X. Hen
e su
h a Wi value
annot not generate any relevant head fa
t. Thereforethe aggregate sele
tion generated for the literal is sound. 2Theorem 6.4.3 Te
hnique PS2 is sound.Proof: The proof essentially follows the proof of Theorem 6.4.2, with the set of partitioning variablesdi�erent. Suppose we are given a binding for the variables X [V , where V is a
ross-partitioning set ofvariables. With this binding, for ea
h literal pi(ti;W i), the set of fa
ts for pi de�ne a set SWi of values forWi.Also, this binding de�nes a set SW of instantiations of the tuple (W1;W2; : : : ;Wn) produ
ed by su

essfulinstantiations of the rule. By the de�nition of
ross-partitioning variables, either the
ross produ
ts of theSWi's is equal to SW , or SW is empty.The partitioning arguments of a literal pi(ti;W i) form a superset of the arguments that use variablesX [V . Given a binding for X [V , we
an extend the binding to get values for all variables in partitioningarguments of pi(ti;W i). Let the multiset of instantiations of Wi de�ned by the given instantiation of thepartitioning variables be MWi. Now, MWi � SWi, sin
e (a) the arguments of pi(ti;W i) that have
ross-partitioning variables are de�ned to be partitioning arguments, and (b) the
onditions of PS2 ensure thatnon-partitioning arguments of pi(ti;W i) are distin
t variables and will not
onstrain the set of su

essfulinstantiations of pi(ti;W i).Sin
e agg f is an In
Sel fun
tion, unne
essaryagg f is monotone, and any value found unne
essary forMWi will also be unne
essary for SWi, and any instantiation of (W1;W2; : : : ;Wn) using su
h a value forWi will result in an unne
essary value being generated for Y . Hen
e the aggregate sele
tion generated issound. 2Proposition 6.4.4 Consider a rule R and an aggregate sele
tion s as in Te
hnique PS1. Let V denotethe set of all variables in the rule. Let N denote the set of non-
onstrained variables in the rule. ThenC = V �N � fW1;W2; : : : ;Wn; Y g is a
ross-partitioning set for rule R.Proof: Consider any instantiation of the variables in X [C. For ea
h pi, let Ni denote the set of variablesin N that appear in pi(ti;W i). LetMi = Ni [fWig. Let SMi (resp. SWi) denote the set of instantiationsof variables in Mi (resp. Wi) generated by literal pi(ti;W i), (with the given instantiation of X [C). LetSM (resp. S) denote the set of instantiations of N [fW1; : : : ;Wng (resp. fW1; : : : ;Wng) generated bysu

essful instantiations of the rule (with the given instantiation of X [C).With the given instantiation of X [C, the body of the rule is either not satis�able (in whi
h
ase S isempty), or the literals other than the pi(ti;W i) literals and Y = fn(W1; : : : ;Wn) are satis�ed (none of thevariables in N [fW1;W2; : : : ;Wn; Y g appear in these literals). The
ase where S is empty is trivial. We
onsider the other
ase. 146

Ea
h element in the
ross produ
t of the SMi's de�nes an instantiation of the rule variables. But ea
hsu
h variable instantiation de�nes a su

essful instantiation of the rule: this is be
ause the variables in Niappear nowhere else in the rule body, and Wi appears only in Y = fn(W1; : : : ;Wn), whi
h has a su

essfulinstantiation for every value of W1; : : : ;Wn. Hen
e SM is equal to SM1 � : : :� SMn.Now, for ea
h value in SWi there is an element in SMi with the same value for Wi. Hen
e for ea
h valuein the
ross produ
t of the SWis, there is an element in SM with the same values for (W1; : : : ;Wn).But S is equal to the proje
tion of SM on to (W1;W2; : : : ;Wn); similarly SWi is equal to the proje
tionof SMi on to Wi. Hen
e S = SW1 � SW2 � : : :� SWn. 2Proposition 6.4.6 The
onditions in Compare Aggregate Sele
tions(s; t) are suÆ
ient
onditions for s tobe stronger than t.Proof: For
ase 1a, with more variables in the se
ond argument of the groupby the multiset of valuesobtained for ea
h group is smaller, and sin
e unne
essaryagg f is monotoni
, the set of values dete
ted to beunne
essary is smaller. Hen
e the set of fa
ts dete
ted to be unne
essary is also smaller for a weaker atomi
aggregate sele
tion. For
ase 1b, every value that uni�es with
2(: : :) also uni�es with
1(: : :), Hen
e anyfa
t that is
lassi�ed as irrelevant by t, also uni�es with
1(: : :), and the multiset of values in its group in sis at least as large as the multiset for its group in t. Hen
e the result follows. It is easy to see that the testin
ase 2 is
orre
t. 2Theorem 6.5.1 (Corre
tness of Rewriting) Let P be any program, and P as the aggregate rewrittenversion of the program.1. P as and P are equivalent in the set of answers they generate for the query predi
ate.2. The aggregate sele
tion on ea
h predi
ate in P as is a sound aggregate sele
tion on the predi
ate.Proof: We �rst
onsider Part 1 of this theorem. Note that rules are not modi�ed in the rewriting ex
ept torepla
e predi
ates by new versions of the predi
ate.We �rst show that the answer set of P as is
overed by the answer set of P . We
laim that for ea
hfa
t p s(a) derived in P as, evaluation of P generates p(a). Suppose not. Consider the shortest sequen
eof derivations in P as that derives a fa
t for whi
h this is not true, and
onsider the last derivation in thissequen
e. For ea
h fa
t pi si(a)) used in this sequen
e, pi(a) (the version with the suÆx si dropped) isgenerated in P . If we drop the suÆxes from the literals in the rule, we get a rule in P . Hen
e it follows thatthe
orresponding head fa
t is generated in P , whi
h
ontradi
ts the assumption.The proof in the reverse dire
tion is similar. We
laim that for ea
h fa
t p(a) derived in P if p is rea
hablefrom the query predi
ate, then for ea
h version p s of p in P as, a fa
t p s(a) is generated in P as. All rulesrea
hable from the query are pro
essed by the algorithm, sin
e the rewriting algorithm performs a DFS ofthe rea
hability graph for the program (i.e., the graph with predi
ates as nodes, and an edge from a to b if ais used to de�ne b). Hen
e there are rules in P as for all predi
ates rea
hable from the query predi
ate. Therest of the argument then parallels the argument above, and is omitted for brevity.Now
onsider Part 2 of the theorem. Consider a predi
ate p with an aggregate sele
tion s on it. Theaggregate sele
tions dedu
ed on the literals of rules de�ning q are sound, sin
e the te
hniques for generatingaggregate sele
tions on literals are sound (Theorems 6.4.1,6.4.2, 6.4.3). Step 13 of the rewriting algorithmtakes a literal q(: : :) with an aggregate sele
tion s1 on it, and repla
es the predi
ate q by q s1 with aggregate147

sele
tion s1 on q s1. Hen
e all uses of q s1 have the aggregate sele
tion on them. Hen
e s1 is a soundaggregate sele
tion on q s1.Prepro
essing 1 repla
es a predi
ate in a literal by another with a weaker aggregate sele
tion. Thiswill not result in any loss of derivations sin
e every fa
t is relevant to the literal satis�es the strongeraggregate sele
tion, and hen
e the weaker aggregate sele
tion too. The rea
hability analysis and droppingof unrea
hable predi
ates does not a�e
t the set of answers to the query.Now
onsider Postpro
essing 2. A version of p with an aggregate sele
tion on it may have a subset of thefa
ts in p if we dis
ard fa
ts that fail the sele
tion. Due to monotoni
ity of the fun
tions unne
essaryagg f ,any value that is found unne
essary w.r.t. the subset would also be unne
essary w.r.t. the full set. Hen
ewhile the new sele
tion may not be as strong as the original one, the renaming is guaranteed to be sound. 2Theorem 6.5.2 (Termination) Algorithm Push Sele
tions terminates on all �nite input programs, pro-du
ing a �nite rewritten program.Proof: The number of non-equivalent atomi
 aggregate sele
tions that
an be generated by the dedu
tionrules we use is �nite, for the following reason. Te
hniques C1 and BS2 generate only one aggregate
on-straint/sele
tion per rule. Te
hniques PS1 and PS2
an generate only a �nite number of atomi
 sele
tionsper literal, sin
e they essentially
hoose a subset of arguments to group by, and an argument to apply theaggregate sele
tion to. Te
hniques BS1 generates aggregate sele
tions from aggregate
onstraints. Sin
e thenumber of aggregate
onstraints is �xed, it generates only a �nite number of atomi
 aggregate sele
tions.This leaves te
hniques BS3 and LS1. These generate no new groupby lists, ex
ept by renaming existinggroupby lists. They generate atomi
 aggregate sele
tions by applying these groupby lists to rule bodies andliterals. Sin
e the number of rule bodies and literals is �xed, these te
hniques generate only a �nite numberof atomi
 aggregate sele
tions.Given a �nite number of atomi
 aggregate sele
tions, the number of non-equivalent aggregate sele
tions(formed by
onjun
tions of atomi
 aggregate sele
tions) is also �nite.Hen
e after some point, the dedu
tion rules
an generate no new aggregate sele
tion, the sta
k of predi
ateversions be
omes empty, and the rewriting algorithm terminates. 2Theorem 6.6.1 (Soundness, Completeness, Non-Repetition) Aggregate Retaining evaluation of P asgives the same set of answers for query pred as Semi-Naive evaluation of P , and does not repeat any infer-en
es. Further, the Aggregate Retaining evaluation of P as terminates whenever the Semi-Naive evaluationof P terminates.Proof: An aggregate sele
tion on a predi
ate
an be fully tested only at the end of the evaluation (after allfa
ts have been
omputed). However the in
remental nature of aggregate sele
tions allows us dedu
e thatsome fa
ts are irrelevant even during the
ourse of the
omputation. If a fa
t for a predi
ate does not satisfya sound aggregate sele
tion on the predi
ate, it is guaranteed to be irrelevant to the query predi
ate | anyderivation that
an be made using it is guaranteed to be irrelevant. Hen
e the answers to the query are nota�e
ted if the fa
t is not used.The only real
on
ern is termination. Agg-retaining evaluation dis
ards fa
ts only when its dis
arding willnot a�e
t the unne
essary set for any atomi
 aggregate sele
tion. Hen
e, if a fa
t is found to be irrelevant,it will
ontinue to be found irrelevant for the rest of the evaluation. If su
h a fa
t is generated again, it willnot be re-used. It follows from well-known soundness,
ompleteness and non-repetition results on semi-naive148

evaluation (see eg. [MR89, RSS90℄), that Agg-retaining evaluation does not repeat any inferen
es.Now we
onsider the last part of the theorem. Agg-retaining evaluation of P as makes no more inferen
esthan semi-naive evaluation of P as, and sin
e it does not repeat inferen
es, it terminates whenever the semi-naive evaluation of P as does. But semi-naive evaluation of P as terminates whenever semi-naive evaluationof P does, and the last part of the theorem follows. 2

149

Bibliography[ABW88℄ K. R. Apt, H. Blair, and A. Walker. Towards a theory of de
larative knowledge. In J. Minker,editor, Foundations of Dedu
tive Databases and Logi
 Programming, pages 89{148. Morgan-Kaufmann, San Mateo, Calif., 1988.[ADJ88℄ R. Agrawal, S. Dar, and H. V. Jagadish. On transitive
losure problems involving path
ompu-tations. Te
hni
al Memorandum, 1988.[AHU74℄ Alfred V. Aho, John E. Hop
roft, and Je�rey D. Ullman. The Design and Analysis of ComputerAlgorithms. Addison-Wesley, 1974.[Ban85℄ Fran
ois Ban
ilhon. Naive evaluation of re
ursively de�ned relations. In Brodie and Mylopoulos,editors, On Knowledge Base Management Systems | Integrating Database and AI Systems.Springer-Verlag, 1985.[Bay85℄ R. Bayer. Query evaluation and re
ursion in dedu
tive database systems. Unpublished Memo-randum, 1985.[BMSU86℄ Fran
ois Ban
ilhon, David Maier, Yehoshua Sagiv, and Je�rey D. Ullman. Magi
 sets and otherstrange ways to implement logi
 programs. In Pro
eedings of the ACM Symposium on Prin
iplesof Database Systems, pages 1{15, Cambridge, Massa
husetts, Mar
h 1986.[BNR+87℄ Catriel Beeri, Shamim Naqvi, Raghu Ramakrishnan, Oded Shmueli, and Shalom Tsur. Sets andnegation in a logi
 database language. In Pro
eedings of the ACM Symposium on Prin
iples ofDatabase Systems, pages 21{37, San Diego, California, Mar
h 1987.[BNST91℄ Catriel Beeri, Shamim Naqvi, Oded Shmueli, and Shalom Tsur. Set
onstru
tors in a logi
database language. The Journal of Logi
 Programming, pages 181{232, 1991.[BR86℄ Fran
ois Ban
ilhon and Raghu Ramakrishnan. An amateur's introdu
tion to re
ursive querypro
essing strategies. In Pro
eedings of the ACM SIGMOD International Conferen
e on Man-agement of Data, pages 16{52, Washington, D.C., May 1986.[BR87a℄ I. Balbin and K. Ramamohanarao. A generalization of the di�erential approa
h to re
ursivequery evaluation. Journal of Logi
 Programming, 4(3), September 1987.[BR87b℄ Catriel Beeri and Raghu Ramakrishnan. On the power of Magi
. In Pro
eedings of the ACMSymposium on Prin
iples of Database Systems, pages 269{283, San Diego, California, Mar
h1987.[BRSS92℄ C. Beeri, R. Ramakrishnan, D. Srivastava, and S. Sudarshan. The valid model semanti
s forlogi
 programs. In Pro
eedings of the ACM Symposium on Prin
iples of Database Systems,pages 91{104, June 1992.[BRSS89℄ C. Beeri, R. Ramakrishnan, D. Srivastava, and S. Sudarshan. Magi
 implementation of strati�edprograms. Manus
ript, September 89. 150

[Bry90℄ Fran
ois Bry. Query evaluation in re
ursive databases: Bottom-up and top-down re
on
iled.IEEE Transa
tions on Knowledge and Data Engineering, 5:289{312, 1990.[CD85℄ J.H. Chang and A. M. Despain. Semi-intelligent ba
ktra
king of Prolog based on stati
 data-dependen
y analysis. In Pro
. Symposium on Logi
 Programming, pages 10{21, 1985.[CDY90℄ Mi
hael Codish, Dennis Dams, and Eyal Yardeni. Bottom-up abstra
t interpretation of logi
programs. Te
hni
al Report CS90-24, Department of Computer S
ien
e and Applied Math-emati
s, Weizmann Institute of S
ien
e, Israel, 1990. A preliminary version appeared in thepre-ICLP90 Workshop on Abstra
t Interpretation, Eilat, June 1990.[CGK89℄ D. Chimenti, R. Gamboa, and R. Krishnamurthy. Abstra
t ma
hine for LDL. Te
hni
al ReportACT-ST-268-89, MCC, Austin, TX, 1989.[CH85℄ Ashok K. Chandra and David Harel. Horn
lause queries and generalizations. J. Logi
 Pro-gramming, 2(1):1{15, April 1985.[CKW89℄ Weidong Chen, Mi
hael Kifer, and Davis S. Warren. Hilog: A �rst-order semanti
s for higher-order logi
 programming
onstru
ts. In Pro
eedings of the North Ameri
an Conferen
e on Logi
Programming, pages 1090{1114, 1989.[CN89℄ I. F. Cruz and T. S. Norvell. Aggregative
losure: An extension of transitive
losure. In Pro
.IEEE 5th Int'l Conf. Data Engineering, pages 384{389, 1989.[Die87℄ Suzanne W. Dietri
h. Extension tables: Memo relations in logi
 programming. In Pro
eedingsof the Symposium on Logi
 Programming, pages 264{272, 1987.[Die89℄ Paul F. Dietz. Fully persistent arrays. In Workshop on Algorithms and Data Stru
tures, pages67{74, 1989. (Appeared as LNCS 382).[DSST86℄ James R. Dris
oll, Neil Sarnak, Daniel Sleator, and Robert E. Tarjan. Making data stru
turespersistent. In Eighteenth Annual ACM Symposium on Theory of Computing, 1986.[DST90℄ James R. Dris
oll, Daniel Sleator, and Robert E. Tarjan. Fully persistent lists with
atenation.In Symposium on Data Stru
tures And Algorithms, 1990.[Ede90℄ Johann Eder. Extending SQL with general transitive
losure and extreme value sele
tions. IEEETrans. on Knowledge and Data Engineering, 2(4):381{390, 1990.[GGZ91℄ Sumit Ganguly, Sergio Gre
o, and Carlo Zaniolo. Minimum and maximum predi
ates in logi
programming. In Pro
eedings of the ACM Symposium on Prin
iples of Database Systems, 1991.[GJ90℄ Gopal Gupta and Bharat Jayaraman. On
riteria for Or-Parallel exe
ution models of logi
programs. In Pro
eedings of the North Ameri
an Conferen
e on Logi
 Programming, pages737{756, 1990.[Got74℄ E. Goto. Mono
opy and asso
iative algorithms in an extended lisp. Te
hni
al Report 74-03,Information S
ien
e Laboratory, Univ. of Tokyo, Tokyo, Japan, May 1974.[GPSZ91℄ Fos
a Giannotti, Dino Pedres
hi, Domeni
o Sa

a, and Carlo Zaniolo. Non-determinism indedu
tive databases. In C. Delobel, M. Kifer, and Y. Masunaga, editors, Pro
eedings of the Se
-ond International Conferen
e on Dedu
tive and Obje
t-Oriented Databases DOOD'91, Muni
h,Germany, 1991. Springer-Verlag.[GS91℄ P.A. Gardner and J.C. Shepherdson. Unfold/Fold transformations of logi
 programs. In Jean-Louis Lassez and Gordon Plotkin, editors, Computational Logi
. The MIT Press, 1991.[Knu77℄ Donald E. Knuth. A generalization of Dijkstra's algorithm. Information Pro
essing Letters,6(1):1{5, February 1977. 151

[KS91℄ David Kemp and Peter Stu
key. Semanti
s of logi
 programs with aggregates. In Pro
eedingsof the International Logi
 Programming Symposium, pages 387{401, San Diego, CA, U.S.A.,O
tober 1991.[KSS91℄ David Kemp, Divesh Srivastava, and Peter Stu
key. Magi
 sets and bottom-up evaluation ofwell-founded models. In Pro
eedings of the International Logi
 Programming Symposium, pages337{351, San Diego, CA, U.S.A., O
tober 1991.[Llo87℄ J. W. Lloyd. Foundations of Logi
 Programming. Springer-Verlag, se
ond edition, 1987.[MFPR90a℄ I. S. Mumi
k, S. Finkelstein, H. Pirahesh, and R. Ramakrishnan. Magi
 is relevant. In Pro
eed-ings of the ACM SIGMOD International Conferen
e on Management of Data, Atlanti
 City,New Jersey, May 1990.[MFPR90b℄ Inderpal Singh Mumi
k, Sheldon J. Finkelstein, Hamid Pirahesh, and Raghu Ramakrishnan.Magi

onditions. In Pro
eedings of the Ninth ACM Symposium on Prin
iples of DatabaseSystems, pages 314{330, Nashville, Tennessee, April 1990.[MPR90℄ Inderpal S. Mumi
k, Hamid Pirahesh, and Raghu Ramakrishnan. Dupli
ates and aggregates indedu
tive databases. In Pro
eedings of the Sixteenth International Conferen
e on Very LargeDatabases, August 1990.[MR89℄ Mi
hael J. Maher and Raghu Ramakrishnan. D�ej�a vu in �xpoints of logi
 programs. In Pro-
eedings of the Symposium on Logi
 Programming, Cleveland, Ohio, 1989.[MW88℄ David Maier and David S. Warren. Computing With Logi
. The Benjamin Cummings PublishingCompany In
., 1988.[NR91℄ Je�rey F. Naughton and Raghu Ramakrishnan. Bottom-up evaluation of logi
 programs. InJ-L. Lassez, editor, Computational Logi
: Essays in Honor of Alan Robinson. The MIT Press,1991.[NRSU89℄ Je�rey F. Naughton, Raghu Ramakrishnan, Yehoshua Sagiv, and Je�rey D. Ullman. Argumentredu
tion through fa
toring. In Pro
eedings of the Fifteenth International Conferen
e on VeryLarge Databases, pages 173{182, Amsterdam, The Netherlands, August 1989.[NT89℄ Shamim Naqvi and Shalom Tsur. A Logi
al Language for Data and Knowledge Bases. Prin
iplesof Computer S
ien
e. Computer S
ien
e Press, New York, 1989.[O'K90℄ Ri
hard A. O'Keefe. The Craft of Prolog. The MIT Press, 1990.[Per85℄ Fernando Pereira. A stru
ture-sharing representation for uni�
ation-based grammar formalisms.In Pro
eedings of the 23rd Annual Meeting of the Asso
iation for Computational Linguisti
s,pages 137{143, 1985.[PW83℄ F.C.N. Pereira and D.H.D. Warren. Parsing as dedu
tion. In Pro
eedings of the twenty-�rstAnnual Meeting of the Asso
iation for Computational Linguisti
s, 1983.[Ram88℄ Raghu Ramakrishnan. Magi
 Templates: A spellbinding approa
h to logi
 programs. In Pro-
eedings of the International Conferen
e on Logi
 Programming, pages 140{159, Seattle, Wash-ington, August 1988.[Ram90℄ Raghu Ramakrishnan. Parallelism in logi
 programs. In Pro
eedings of the ACM Symposiumon Prin
iples of Programming Languages, San Fran
is
o, California, 1990.[RHDM86℄ A. Rosenthal, S. Heiler, U. Dayal, and F. Manola. Traversal re
ursion: A pra
ti
al approa
h tosupporting re
ursive appli
ations. In Pro
eedings of the ACM SIGMOD Conf. on Managementof Data, pages 166{176, 1986. 152

[RLK86℄ J. Rohmer, R. Les
oeur, and J. M. Kerisit. The Alexander method | a te
hnique for thepro
essing of re
ursive axioms in dedu
tive database queries. New Generation Computing,4:522{528, 1986.[Ros90℄ Kenneth Ross. Modular Strati�
ation and Magi
 Sets for DATALOG programs with negation.In Pro
eedings of the ACM Symposium on Prin
iples of Database Systems, pages 161{171, 1990.[Ros91℄ Kenneth Ross. Modular a
y
li
ity and tail re
ursion in logi
 programs. In Pro
eedings of theACM Symposium on Prin
iples of Database Systems, 1991.[RS91℄ Raghu Ramakrishnan and S. Sudarshan. Top-Down vs. Bottom-Up Revisited. In Pro
eedingsof the International Logi
 Programming Symposium, 1991.[RS92℄ Kenneth Ross and Yehoshua Sagiv. Monotoni
 aggregation in dedu
tive databases. In Pro
eed-ings of the ACM Symposium on Prin
iples of Database Systems, pages 114{126, 1992.[RSS90℄ Raghu Ramakrishnan, Divesh Srivastava, and S. Sudarshan. Rule ordering in bottom-up �xpointevaluation of logi
 programs. In Pro
eedings of the Sixteenth International Conferen
e on VeryLarge Databases, August 1990.[RSS91℄ Raghu Ramakrishnan, Divesh Srivastava, and S. Sudarshan. Rule ordering in bottom-up �xpointevaluation of logi
 programs. Te
hni
al Report TR 1059, Computer S
ien
es Department,University of Wis
onsin, Madison WI 53706, U.S.A., De
ember 1991.[RSS92a℄ Raghu Ramakrishnan, Divesh Srivastava, and S. Sudarshan. Controlling the sear
h in bottom-up evaluation. In Joint Int'l Conf. and Symp. on Logi
 Programming 1992 (to appear), 1992.[RSS92b℄ Raghu Ramakrishnan, Divesh Srivastava, and S. Sudarshan. CORAL: Control, Relations andLogi
. In Pro
eedings of the International Conferen
e on Very Large Databases, 1992.[RSS92
℄ Raghu Ramakrishnan, Divesh Srivastava, and S. Sudarshan. EÆ
ient bottom-up evaluationof logi
 programs. In J. Vandewalle, editor, The State of the Art in Computer Systems andSoftware Engineering. Kluwer A
ademi
 Publishers, 1992.[Sek89℄ H. Seki. On the power of Alexander templates. In Pro
. of the ACM Symposium on Prin
iplesof Database Systems, pages 150{159, 1989.[SG76℄ M. Sassa and E. Goto. A hashing method for fast set operations. Information Pro
essingLetters, 5(4):31{34, June 1976.[SKGB87℄ H. S
hmidt, W. Kiessling, U. G�untzer, and R. Bayer. Compiling exploratory and goal-dire
teddedu
tion into sloppy delta iteration. In IEEE International Symposium on Logi
 Programming,pages 234{243, 1987.[SR91℄ S. Sudarshan and Raghu Ramakrishnan. Aggregation and relevan
e in dedu
tive databases. InPro
eedings of the Seventeenth International Conferen
e on Very Large Databases, September1991.[SR92a℄ S. Sudarshan and Raghu Ramakrishnan. Aggregation and relevan
e in dedu
tive databases. Inpreparation (full version of [SR91℄), 1992.[SR92b℄ S. Sudarshan and Raghu Ramakrishnan. Top-Down vs. Bottom-Up Revisited. Manus
ript inpreparation (full version of [RS91℄), 1992.[SS82℄ J. Sebelik and P. Stepanek. Horn
lause programs for re
ursive fun
tions. In K. Clark and S.-A.Tarnlund, editors, Logi
 Programming. A
ademi
 Press, 1982.[SS88℄ Seppo Sippu and Eljas Soisalon-Soinen. An optimization strategy for re
ursive queries in logi
databases. In Pro
eedings of the Fourth International Conferen
e on Data Engineering, LosAngeles, California, 1988. 153

[TS84℄ Hisao Tamaki and Taisuke Sato. Unfold/fold transformations of logi
 programs. In Pro
eedingsof the Se
ond International Conferen
e on Logi
 Programming, pages 127{138, Uppsala, Sweden,July 1984.[Ull88℄ Je�rey D. Ullman. Prin
iples of Database and Knowledge-Base Systems, volume 1. ComputerS
ien
e Press, 1988.[Ull89a℄ Je�rey D. Ullman. Bottom-up beats top-down for Datalog. In Pro
eedings of the EighthACM Symposium on Prin
iples of Database Systems, pages 140{149, Philadelphia, Pennsyl-vania, Mar
h 1989.[Ull89b℄ Je�rey D. Ullman. Prin
iples of Database and Knowledge-Base Systems, volume 2. ComputerS
ien
e Press, 1989.[Van92℄ A. Van Gelder. The well-founded semanti
s of aggregation. In Pro
eedings of the ACM Sympo-sium on Prin
iples of Database Systems, pages 127{138, 1992.[vEK76℄ M. H. van Emden and R. A. Kowalski. The semanti
s of predi
ate logi
 as a programminglanguage. Journal of the ACM, 23(4):733{742, O
tober 1976.[Vie86℄ Laurent Vieille. Re
ursive axioms in dedu
tive databases: The query-subquery approa
h. InPro
eedings of the First International Conferen
e on Expert Database Systems, pages 179{193,Charleston, South Carolina, 1986.[Vie87℄ Laurent Vieille. Database
omplete proof pro
edures based on SLD-resolution. In Pro
eedingsof the Fourth International Conferen
e on Logi
 Programming, pages 74{103, 1987.[Vie88℄ Laurent Vieille. From QSQ towards QoSaQ: Global optimizations of re
ursive queries. In Pro
.2nd International Conferen
e on Expert Database Systems, April 1988.[War83℄ David H. D. Warren. Logarithmi
 a

ess arrays for prolog. Unpublished program, 1983.[War89℄ David S. Warren. The XWAM: A ma
hine that integrates Prolog and dedu
tive database queryevaluation. Te
hni
al Report Te
. Rep. 89/25, Department of Computer S
ien
e, SUNY atStony Brook, O
tober 1989.[War92℄ David S. Warren. Memoing for logi
 programs. Communi
ations of the ACM, 35(3), Mar
h1992.

154

