CHAPTER 9

Object-Based Databases

Solutions to Practice Exercises

9.1 For this problem, we use table inheritance. We assume that MyDate, Color and DriveTrainType are pre-defined types.

create type Vehicle
 (vehicle_id integer,
 license_number char(15),
 manufacturer char(30),
 model char(30),
 purchase_date MyDate,
 color Color)

create table vehicle of type Vehicle

create table truck
 (cargo_capacity integer)
 under vehicle

create table sportsCar
 (horsepower integer
 renter_age_requirement integer)
 under vehicle

create table van
 (num_passengers integer)
 under vehicle
create table offRoadVehicle
(ground_clearance real
 driveTrain DriveTrainType)

under vehicle

9.2 a. No Answer.
 i. Program:
 select ename
 from emp as e, e.ChildrenSet as c
 where ‘March’ in
 (select birthday.month
 from c
)
 ii. Program:
 select e.ename
 from emp as e, e.SkillSet as s, s.ExamSet as x
 where s.type = ‘typing’ and x.city = ‘Dayton’
 iii. Program:
 select distinct s.type
 from emp as e, e.SkillSet as s

9.3 a. The corresponding SQL:1999 schema definition is given below. Note that the
derived attribute age has been translated into a method.

create type Name
(first_name varchar(15),
 middle_initial char,
 last_name varchar(15))
create type Street
(street_name varchar(15),
 street_number varchar(4),
 apartment_number varchar(7))
create type Address
(street Street,
 city varchar(15),
 state varchar(15),
 zip_code char(6))
create table customer
(name Name,
 customer_id varchar(10),
 address Address,
 phones char(7) array[10],
 dob date)
b. create function Name (f varchar(15), m char, l varchar(15))
 returns Name
 begin
 set first_name = f;
 set middle_initial = m;
 set last_name = l;
 end
create function Street (sname varchar(15), sno varchar(4), ano varchar(7))
 returns Street
 begin
 set street_name = sname;
 set street_number = sno;
 set apartment_number = ano;
 end
create function Address (s Street, c varchar(15), sta varchar(15), zip varchar(6))
 returns Address
 begin
 set street = s;
 set city = c;
 set state = sta;
 set zip_code = zip;
 end

9.4 a. The schema definition is given below. Note that backward references can
be added but they are not so important as in OODBS because queries can be
written in SQL and joins can take care of integrity constraints.

create type Employee
 (person_name varchar(30),
 street varchar(15),
 city varchar(15))
create type Company
 (company_name varchar(15),
 (city varchar(15))
create table employee of Employee
create table company of Company
create type Works
 (person ref(Employee) scope employee,
 comp ref(Company) scope company,
 salary int)
create table works of Works
create type Manages
 (person ref(Employee) scope employee,
 (manager ref(Employee) scope employee)
create table manages of Manages

b. i. select comp -> name
 from works
 group by comp
 having count(person) ≥ all(select count(person)
 from works
 group by comp)

ii. select comp -> name
 from works
 group by comp
 having sum(salary) ≤ all(select sum(salary)
 from works
 group by comp)

iii. select comp -> name
 from works
 group by comp
 having avg(salary) > (select avg(salary)
 from works
 where comp -> company.name = "First Bank Corporation")

9.5 a. A computer-aided design system for a manufacturer of airplanes:
 An OODB system would be suitable for this. That is because CAD requires
 complex data types, and being computation oriented, CAD tools are typi-
 cally used in a programming language environment needing to access the
 database.

b. A system to track contributions made to candidates for public office:
 A relational system would be apt for this, as data types are expected to
 be simple, and a powerful querying mechanism is essential.

c. An information system to support the making of movies:
 Here there will be extensive use of multimedia and other complex data
 types. But queries are probably simple, and thus an object relational system
 is suitable.

9.6 An entity is simply a collection of variables or data items. An object is an encapsu-
lation of data as well as the methods (code) to operate on the data. The data
members of an object are directly visible only to its methods. The outside world
can gain access to the object’s data only by passing pre-defined messages to it,
and these messages are implemented by the methods.