Chapter 14: Query Optimization
Chapter 14: Query Optimization

- Introduction
- Transformation of Relational Expressions
- Catalog Information for Cost Estimation
- Statistical Information for Cost Estimation
- Cost-based optimization
- Dynamic Programming for Choosing Evaluation Plans
- Materialized views
Introduction

- Alternative ways of evaluating a given query
 - Equivalent expressions
 - Different algorithms for each operation

![Diagram](image-url)
An evaluation plan defines exactly what algorithm is used for each operation, and how the execution of the operations is coordinated.
Cost difference between evaluation plans for a query can be enormous
 • E.g. seconds vs. days in some cases

Steps in **cost-based query optimization**
1. Generate logically equivalent expressions using **equivalence rules**
2. Annotate resultant expressions to get alternative query plans
3. Choose the cheapest plan based on **estimated cost**

Estimation of plan cost based on:
• Statistical information about relations. Examples:
 ▪ number of tuples, number of distinct values for an attribute
• Statistics estimation for intermediate results
 ▪ to compute cost of complex expressions
• Cost formulae for algorithms, computed using statistics
Generating Equivalent Expressions
Transformation of Relational Expressions

- Two relational algebra expressions are said to be equivalent if the two expressions generate the same set of tuples on every legal database instance
 - Note: order of tuples is irrelevant
- In SQL, inputs and outputs are multisets of tuples
 - Two expressions in the multiset version of the relational algebra are said to be equivalent if the two expressions generate the same multiset of tuples on every legal database instance.
- An equivalence rule says that expressions of two forms are equivalent
 - Can replace expression of first form by second, or vice versa
Equivalence Rules

1. Conjunctive selection operations can be deconstructed into a sequence of individual selections.

\[\sigma_{\theta_1 \land \theta_2} (E) = \sigma_{\theta_1} (\sigma_{\theta_2} (E)) \]

2. Selection operations are commutative.

\[\sigma_{\theta_1} (\sigma_{\theta_2} (E)) = \sigma_{\theta_2} (\sigma_{\theta_1} (E)) \]

3. Only the last in a sequence of projection operations is needed, the others can be omitted.

\[\Pi_{L_1} (\Pi_{L_2} (\ldots (\Pi_{L_n} (E)) \ldots)) = \Pi_{L_1} (E) \]

4. Selections can be combined with Cartesian products and theta joins.

\(\alpha. \) \[\sigma_\theta (E_1 \times E_2) = E_1 \bowtie_\theta E_2 \]

\(\beta. \) \[\sigma_{\theta_1} (E_1 \bowtie_{\theta_2} E_2) = E_1 \bowtie_{\theta_1 \land \theta_2} E_2 \]
Equivalence Rules (Cont.)

5. Theta-join operations (and natural joins) are commutative.
\[E_1 \bowtie_\theta E_2 = E_2 \bowtie_\theta E_1 \]

6. (a) Natural join operations are associative:
\[(E_1 \bowtie E_2) \bowtie E_3 = E_1 \bowtie (E_2 \bowtie E_3)\]

(b) Theta joins are associative in the following manner:
\[(E_1 \bowtie_{\theta_1} E_2) \bowtie_{\theta_2 \land \theta_3} E_3 = E_1 \bowtie_{\theta_1 \land \theta_3} (E_2 \bowtie_{\theta_2} E_3)\]

where \(\theta_2\) involves attributes from only \(E_2\) and \(E_3\).
Pictorial Depiction of Equivalence Rules

Rule 5

E1 \(\land \) E2 \(\land \) E1 \(\land \) E2

Rule 6a

E1 \(\land \) E3 \(\land \) E1

Rule 7a

If \(\theta \) only has attributes from E1

E1 \(\land \) E2 \(\land \) E1 \(\land \) E2

\(\sigma_\theta \)
7. The selection operation distributes over the theta join operation under the following two conditions:
 (a) When all the attributes in θ_0 involve only the attributes of one of the expressions (E_1) being joined.

 $$\sigma_{\theta_0}(E_1 \bowtie_\theta E_2) = (\sigma_{\theta_0}(E_1)) \bowtie_\theta E_2$$

 (b) When θ_1 involves only the attributes of E_1 and θ_2 involves only the attributes of E_2.

 $$\sigma_{\theta_1 \wedge \theta_2}(E_1 \bowtie_\theta E_2) = (\sigma_{\theta_1}(E_1)) \bowtie_\theta (\sigma_{\theta_2}(E_2))$$
8. The projection operation distributes over the theta join operation as follows:

(a) if θ involves only attributes from $L_1 \cup L_2$:

$$
\prod_{L_1 \cup L_2} (E_1 \bowtie_{\theta} E_2) = (\prod_{L_1} (E_1)) \bowtie_{\theta} (\prod_{L_2} (E_2))
$$

(b) Consider a join $E_1 \bowtie_{\theta} E_2$.

- Let L_1 and L_2 be sets of attributes from E_1 and E_2, respectively.
- Let L_3 be attributes of E_1 that are involved in join condition θ, but are not in $L_1 \cup L_2$, and
- let L_4 be attributes of E_2 that are involved in join condition θ, but are not in $L_1 \cup L_2$.

$$
\prod_{L_1 \cup L_2} (E_1 \bowtie_{\theta} E_2) = \prod_{L_1 \cup L_2} ((\prod_{L_1 \cup L_3} (E_1)) \bowtie_{\theta} (\prod_{L_2 \cup L_4} (E_2)))
$$
Equivalence Rules (Cont.)

1. The set operations union and intersection are commutative
 \[E_1 \cup E_2 = E_2 \cup E_1 \]
 \[E_1 \cap E_2 = E_2 \cap E_1 \]
 (set difference is not commutative).

2. Set union and intersection are associative.
 \[(E_1 \cup E_2) \cup E_3 = E_1 \cup (E_2 \cup E_3) \]
 \[(E_1 \cap E_2) \cap E_3 = E_1 \cap (E_2 \cap E_3) \]

4. The selection operation distributes over \(\cup \), \(\cap \) and \(-\).
 \[\sigma_\theta (E_1 \setminus E_2) = \sigma_\theta (E_1) \setminus \sigma_\theta (E_2) \]
 and similarly for \(\cup \) and \(\cap \) in place of \(-\).

 Also:
 \[\sigma_\theta (E_1 \setminus E_2) = \sigma_\theta (E_1) \setminus E_2 \]
 and similarly for \(\cap \) in place of \(-\), but not for \(\cup \)

12. The projection operation distributes over union
 \[\Pi_L(E_1 \cup E_2) = (\Pi_L(E_1)) \cup (\Pi_L(E_2)) \]
Transformation Example: Pushing Selections

- Query: Find the names of all customers who have an account at some branch located in Brooklyn.
 \[\Pi_{\text{customer_name}}(\sigma_{\text{branch_city} = \text{"Brooklyn"}}(\text{branch} \bowtie (\text{account} \bowtie \text{depositor}))) \]

- Transformation using rule 7a.
 \[\Pi_{\text{customer_name}}(\sigma_{\text{branch_city} = \text{"Brooklyn"}}(\text{branch} \bowtie (\text{account} \bowtie \text{depositor}))) \]

- Performing the selection as early as possible reduces the size of the relation to be joined.
Example with Multiple Transformations

■ Query: Find the names of all customers with an account at a Brooklyn branch whose account balance is over $1000.

\[\Pi_{\text{customer_name}}(\sigma_{\text{branch_city} = \text{"Brooklyn"} \land \text{balance} > 1000} (\text{branch} \bowtie (\text{account} \bowtie \text{depositor}))) \]

■ Transformation using join associatively (Rule 6a):

\[\Pi_{\text{customer_name}}((\sigma_{\text{branch_city} = \text{"Brooklyn"} \land \text{balance} > 1000} (\text{branch} \bowtie \text{account})) \bowtie \text{depositor}) \]

■ Second form provides an opportunity to apply the “perform selections early” rule, resulting in the subexpression

\[\sigma_{\text{branch_city} = \text{"Brooklyn"}} (\text{branch}) \bowtie \sigma_{\text{balance} > 1000} (\text{account}) \]

■ Thus a sequence of transformations can be useful
Multiple Transformations (Cont.)

(a) Initial expression tree

(b) Tree after multiple transformations
Transformation Example: Pushing Projections

\[\Pi_{\text{customer_name}}((\sigma_{\text{branch_city} = \text{“Brooklyn”}} (\text{branch} \bowtie \text{account}) \bowtie \text{depositor})) \]

- When we compute

\[(\sigma_{\text{branch_city} = \text{“Brooklyn”}} (\text{branch} \bowtie \text{account})) \]

we obtain a relation whose schema is:

\((\text{branch_name}, \text{branch_city}, \text{assets}, \text{account_number}, \text{balance}) \)

- Push projections using equivalence rules 8a and 8b; eliminate unneeded attributes from intermediate results to get:

\[\Pi_{\text{customer_name}}((\Pi_{\text{account_number}}((\sigma_{\text{branch_city} = \text{“Brooklyn”}} (\text{branch} \bowtie \text{account}) \bowtie \text{depositor}))) \]

- Performing the projection as early as possible reduces the size of the relation to be joined.
Join Ordering Example

- For all relations \(r_1, r_2, \) and \(r_3, \)
 \[(r_1 \bowtie r_2) \bowtie r_3 = r_1 \bowtie (r_2 \bowtie r_3)\]
 (Join Associativity)

- If \(r_2 \bowtie r_3 \) is quite large and \(r_1 \bowtie r_2 \) is small, we choose
 \[(r_1 \bowtie r_2) \bowtie r_3 \]
 so that we compute and store a smaller temporary relation.
Join Ordering Example (Cont.)

- Consider the expression
 \[\Pi_{customer_name} \left((\sigma_{branch_city = \text{"Brooklyn"}} (branch)) \bowtie (account \bowtie depositor) \right) \]

- Could compute \[account \bowtie depositor \] first, and join result with \[\sigma_{branch_city = \text{"Brooklyn"}} (branch) \]
 but \[account \bowtie depositor \] is likely to be a large relation.

- Only a small fraction of the bank’s customers are likely to have accounts in branches located in Brooklyn
 - it is better to compute
 \[\sigma_{branch_city = \text{"Brooklyn"}} (branch) \bowtie account \]
 first.
Query optimizers use equivalence rules to systematically generate expressions equivalent to the given expression.

Can generate all equivalent expressions as follows:

1. **Repeat**
 - apply all applicable equivalence rules on every equivalent expression found so far
 - add newly generated expressions to the set of equivalent expressions

Until no new equivalent expressions are generated above.

The above approach is very expensive in space and time.

2. **Two approaches**
 - Optimized plan generation based on transformation rules
 - Special case approach for queries with only selections, projections and joins
Implementing Transformation Based Optimization

- Space requirements reduced by sharing common sub-expressions:
 - when \(E_1 \) is generated from \(E_2 \) by an equivalence rule, usually only the top level of the two are different, subtrees below are the same and can be shared using pointers
 - E.g. when applying join commutativity

- Time requirements are reduced by not generating all expressions
 - Dynamic programming
 - We will study only the special case of dynamic programming for join order optimization
Cost Estimation

■ Cost of each operator computer as described in Chapter 13
 ● Need statistics of input relations
 ‣ E.g. number of tuples, sizes of tuples

■ Inputs can be results of sub-expressions
 ● Need to estimate statistics of expression results
 ● To do so, we require additional statistics
 ‣ E.g. number of distinct values for an attribute

■ More on cost estimation later
Choice of Evaluation Plans

Must consider the interaction of evaluation techniques when choosing evaluation plans

- choosing the cheapest algorithm for each operation independently may not yield best overall algorithm. E.g.
 - merge-join may be costlier than hash-join, but may provide a sorted output which reduces the cost for an outer level aggregation.
 - nested-loop join may provide opportunity for pipelining

Practical query optimizers incorporate elements of the following two broad approaches:

1. Search all the plans and choose the best plan in a cost-based fashion.
2. Uses heuristics to choose a plan.
Cost-Based Optimization

- Consider finding the best join-order for $r_1 \Join r_2 \Join \ldots \Join r_n$.

- There are $2(n-1)!/(n-1)!$ different join orders for above expression. With $n = 7$, the number is 665280, with $n = 10$, the number is greater than 176 billion!

- No need to generate all the join orders. Using dynamic programming, the least-cost join order for any subset of \{r_1, r_2, \ldots r_n\} is computed only once and stored for future use.
Dynamic Programming in Optimization

To find best join tree for a set of n relations:

- To find best plan for a set S of n relations, consider all possible plans of the form: $S_i \times (S - S_i)$ where S_i is any non-empty subset of S.

- Recursively compute costs for joining subsets of S to find the cost of each plan. Choose the cheapest of the $2^n - 1$ alternatives.

- Base case for recursion: single relation access plan
 - Apply all selections on R_i using best choice of indices on R_i

- When plan for any subset is computed, store it and reuse it when it is required again, instead of recomputing it
 - Dynamic programming
Join Order Optimization Algorithm

procedure findbestplan(S)
 if (bestplan[S].cost ≠ ∞)
 return bestplan[S]
 // else bestplan[S] has not been computed earlier, compute it now
 if (S contains only 1 relation)
 set bestplan[S].plan and bestplan[S].cost based on the best way
 of accessing S /* Using selections on S and indices on S */
 else for each non-empty subset S1 of S such that S1 ≠ S
 P1= findbestplan(S1)
 P2= findbestplan(S - S1)
 A = best algorithm for joining results of P1 and P2
 cost = P1.cost + P2.cost + cost of A
 if cost < bestplan[S].cost
 bestplan[S].cost = cost
 bestplan[S].plan = “execute P1.plan; execute P2.plan;
 join results of P1 and P2 using A”
 return bestplan[S]
In **left-deep join trees**, the right-hand-side input for each join is a relation, not the result of an intermediate join.

(a) Left-deep join tree
(b) Non-left-deep join tree
Cost of Optimization

■ With dynamic programming time complexity of optimization with bushy trees is $O(3^n)$.
 ● With $n = 10$, this number is 59000 instead of 176 billion!

■ Space complexity is $O(2^n)$

■ To find best left-deep join tree for a set of n relations:
 ● Consider n alternatives with one relation as right-hand side input and the other relations as left-hand side input.
 ● Modify optimization algorithm:
 ▶ Replace “for each non-empty subset S_1 of S such that $S_1 \neq S$”
 ▶ By: for each relation r in S
 let $S_1 = S - r$.

■ If only left-deep trees are considered, time complexity of finding best join order is $O(n 2^n)$
 ● Space complexity remains at $O(2^n)$

■ Cost-based optimization is expensive, but worthwhile for queries on large datasets (typical queries have small n, generally < 10)
Interesting Sort Orders

- Consider the expression \((r_1 \bowtie r_2) \bowtie r_3\) (with A as common attribute)

- An interesting sort order is a particular sort order of tuples that could be useful for a later operation
 - Using merge-join to compute \(r_1 \bowtie r_2\) may be costlier than hash join but generates result sorted on A
 - Which in turn may make merge-join with \(r_3\) cheaper, which may reduce cost of join with \(r_3\) and minimizing overall cost
 - Sort order may also be useful for order by and for grouping

- Not sufficient to find the best join order for each subset of the set of \(n\) given relations
 - must find the best join order for each subset, for each interesting sort order

- Simple extension of earlier dynamic programming algorithms

- Usually, number of interesting orders is quite small and doesn’t affect time/space complexity significantly
Heuristic Optimization

- Cost-based optimization is expensive, even with dynamic programming.
- Systems may use heuristics to reduce the number of choices that must be made in a cost-based fashion.
- Heuristic optimization transforms the query-tree by using a set of rules that typically (but not in all cases) improve execution performance:
 - Perform selection early (reduces the number of tuples)
 - Perform projection early (reduces the number of attributes)
 - Perform most restrictive selection and join operations (i.e. with smallest result size) before other similar operations.
 - Some systems use only heuristics, others combine heuristics with partial cost-based optimization.
Structure of Query Optimizers

- Many optimizers consider only left-deep join orders.
 - Plus heuristics to push selections and projections down the query tree
 - Reduces optimization complexity and generates plans amenable to pipelined evaluation.

- Heuristic optimization used in some versions of Oracle:
 - Repeatedly pick “best” relation to join next
 - Starting from each of n starting points. Pick best among these

- Intricacies of SQL complicate query optimization
 - E.g. nested subqueries
Some query optimizers integrate heuristic selection and the generation of alternative access plans.

- Frequently used approach
 - heuristic rewriting of nested block structure and aggregation
 - followed by cost-based join-order optimization for each block
- Some optimizers (e.g. SQL Server) apply transformations to entire query and do not depend on block structure

Even with the use of heuristics, cost-based query optimization imposes a substantial overhead.

- But is worth it for expensive queries
- Optimizers often use simple heuristics for very cheap queries, and perform exhaustive enumeration for more expensive queries
Statistics for Cost Estimation
Statistical Information for Cost Estimation

- n_r: number of tuples in a relation r.
- b_r: number of blocks containing tuples of r.
- l_r: size of a tuple of r.
- f_r: blocking factor of r — i.e., the number of tuples of r that fit into one block.
- $V(A, r)$: number of distinct values that appear in r for attribute A; same as the size of $\Pi_A(r)$.
- If tuples of r are stored together physically in a file, then:

$$b_r = \left\lceil \frac{n_r}{f_r} \right\rceil$$
Histograms

- Histogram on attribute \textit{age} of relation \textit{person}

\begin{itemize}
 \item Equi-width histograms
 \item Equi-depth histograms
\end{itemize}

![Histogram Example](image-url)
Selection Size Estimation

- $\sigma_{A=\nu}(r)$
 - $n_r / V(A,r)$: number of records that will satisfy the selection
 - Equality condition on a key attribute: size estimate = 1

- $\sigma_{A\leq\nu}(r)$ (case of $\sigma_{A\geq\nu}(r)$ is symmetric)
 - Let c denote the estimated number of tuples satisfying the condition.
 - If min(A, r) and max(A, r) are available in catalog
 - $c = 0$ if $\nu < \min(A,r)$
 - $c = \frac{n_r \cdot (\nu - \min(A,r))}{\max(A,r) - \min(A,r)}$

- If histograms available, can refine above estimate
- In absence of statistical information c is assumed to be $n_r / 2$.
Size Estimation of Complex Selections

- The **selectivity** of a condition θ_i is the probability that a tuple in the relation r satisfies θ_i.
 - If s_i is the number of satisfying tuples in r, the selectivity of θ_i is given by s_i/n_r.

- **Conjunction:** $\sigma_{\theta_1 \land \theta_2 \land \ldots \land \theta_n}(r)$. Assuming independence, estimate of tuples in the result is:
 $$n_r \times \frac{s_1}{n_r} \times \frac{s_2}{n_r} \times \ldots \times \frac{s_n}{n_r}$$

- **Disjunction:** $\sigma_{\theta_1 \lor \theta_2 \lor \ldots \lor \theta_n}(r)$. Estimated number of tuples:
 $$\left(1 - \frac{1}{n_r}\right) \times \left(1 - \frac{s_1}{n_r}\right) \times \left(1 - \frac{s_2}{n_r}\right) \times \ldots \times \left(1 - \frac{s_n}{n_r}\right)$$

- **Negation:** $\sigma_{\neg \theta}(r)$. Estimated number of tuples:
 $$n_r - \text{size}(\sigma_{\theta}(r))$$
Join Operation: Running Example

Running example:
\(\text{depositor} \Join \text{customer}\)

Catalog information for join examples:

- \(n_{\text{customer}} = 10,000\).
- \(f_{\text{customer}} = 25\), which implies that \(b_{\text{customer}} = 10000/25 = 400\).
- \(n_{\text{depositor}} = 5000\).
- \(f_{\text{depositor}} = 50\), which implies that \(b_{\text{depositor}} = 5000/50 = 100\).

- \(V(\text{customer_name, depositor}) = 2500\), which implies that, on average, each customer has two accounts.
 - Also assume that \(\text{customer_name}\) in \(\text{depositor}\) is a foreign key on \(\text{customer}\).
 - \(V(\text{customer_name, customer}) = 10000\) (primary key!)
Estimation of the Size of Joins

- The Cartesian product $r \times s$ contains $n_r \cdot n_s$ tuples; each tuple occupies $s_r + s_s$ bytes.

- If $R \cap S = \emptyset$, then $r \bowtie s$ is the same as $r \times s$.

- If $R \cap S$ is a key for R, then a tuple of s will join with at most one tuple from r
 - therefore, the number of tuples in $r \bowtie s$ is no greater than the number of tuples in s.

- If $R \cap S$ in S is a foreign key in S referencing R, then the number of tuples in $r \bowtie s$ is exactly the same as the number of tuples in s.
 - The case for $R \cap S$ being a foreign key referencing S is symmetric.

- In the example query $\text{depositor} \bowtie \text{customer}$, $\text{customer}_\text{name}$ in depositor is a foreign key of customer
 - hence, the result has exactly $n_{\text{depositor}}$ tuples, which is 5000
Estimation of the Size of Joins (Cont.)

- If $R \cap S = \{A\}$ is not a key for R or S. If we assume that every tuple t in R produces tuples in $R \bowtie S$, the number of tuples in $R \bowtie S$ is estimated to be:

$$\frac{n_r \times n_s}{V(A,s)}$$

If the reverse is true, the estimate obtained will be:

$$\frac{n_r \times n_s}{V(A,r)}$$

The lower of these two estimates is probably the more accurate one.

- Can improve on above if histograms are available
 - Use formula similar to above, for each cell of histograms on the two relations
Estimation of the Size of Joins (Cont.)

- Compute the size estimates for \(\text{depositor} \bowtie \text{customer}\) without using information about foreign keys:
 - \(V(\text{customer_name}, \text{depositor}) = 2500, \text{ and } V(\text{customer_name}, \text{customer}) = 10000\)
 - The two estimates are \(5000 \times 10000/2500 = 20,000\) and \(5000 \times 10000/10000 = 5000\)
 - We choose the lower estimate, which in this case, is the same as our earlier computation using foreign keys.
Size Estimation for Other Operations

- **Projection**: estimated size of $\Pi_A(r) = V(A, r)$
- **Aggregation**: estimated size of $A^g_F(r) = V(A, r)$
- **Set operations**
 - For unions/intersections of selections on the same relation: rewrite and use size estimate for selections
 - E.g. $\sigma_{\theta_1}(r) \cup \sigma_{\theta_2}(r)$ can be rewritten as $\sigma_{\theta_1} \sigma_{\theta_2}(r)$
 - For operations on different relations:
 - estimated size of $r \cup s = \text{size of } r + \text{size of } s$.
 - estimated size of $r \cap s = \text{minimum size of } r \text{ and size of } s$.
 - estimated size of $r - s = r$.
 - All the three estimates may be quite inaccurate, but provide upper bounds on the sizes.
Size Estimation (Cont.)

- Outer join:
 - Estimated size of $r \times s = \text{size of } r \times s + \text{size of } r$
 - Case of right outer join is symmetric
 - Estimated size of $r \times s = \text{size of } r \times s + \text{size of } r + \text{size of } s$
Estimation of Number of Distinct Values

Selections: \(\sigma_{\theta} (r) \)

- If \(\theta \) forces \(A \) to take a specified value: \(V(A, \sigma_{\theta} (r)) = 1 \).
 - e.g., \(A = 3 \)

- If \(\theta \) forces \(A \) to take on one of a specified set of values:
 \[V(A, \sigma_{\theta} (r)) = \text{number of specified values.} \]
 - (e.g., \((A = 1 \lor A = 3 \lor A = 4) \)),

- If the selection condition \(\theta \) is of the form \(A \ op \ r \)
 estimated \(V(A, \sigma_{\theta} (r)) = V(A.r) \ast s \)
 - where \(s \) is the selectivity of the selection.

- In all the other cases: use approximate estimate of
 \[\min(V(A,r), n_{\sigma\theta}(r)) \]

 ● More accurate estimate can be got using probability theory, but this one works fine generally
Joins: \(r \bowtie s \)

- If all attributes in \(A \) are from \(r \), estimated \(V(A, r \bowtie s) = \min (V(A, r), n_r \bowtie s) \)

- If \(A \) contains attributes \(A_1 \) from \(r \) and \(A_2 \) from \(s \), then estimated \(V(A, r \bowtie s) = \)

 \[
 \min(V(A_1, r)*V(A_2 - A_1, s), V(A_1 - A_2, r)*V(A_2, s), n_r \bowtie s)
 \]

 More accurate estimate can be got using probability theory, but this one works fine generally
Estimation of Distinct Values (Cont.)

- Estimation of distinct values are straightforward for projections.
 - They are the same in $\Pi_A(r)$ as in r.
- The same holds for grouping attributes of aggregation.
- For aggregated values
 - For $\min(A)$ and $\max(A)$, the number of distinct values can be estimated as $\min(V(A, r), V(G, r))$ where G denotes grouping attributes
 - For other aggregates, assume all values are distinct, and use $V(G, r)$
Additional Optimization Techniques

- Nested Subqueries
- Materialized Views
Optimizing Nested Subqueries**

- Nested query example:
  ```sql
  select customer_name
  from borrower
  where exists (select *
  from depositor
  where depositor.customer_name = borrower.customer_name)
  ```

- SQL conceptually treats nested subqueries in the where clause as functions that take parameters and return a single value or set of values
 - Parameters are variables from outer level query that are used in the nested subquery; such variables are called correlation variables

- Conceptually, nested subquery is executed once for each tuple in the cross-product generated by the outer level `from` clause
 - Such evaluation is called correlated evaluation
 - Note: other conditions in where clause may be used to compute a join (instead of a cross-product) before executing the nested subquery
Optimizing Nested Subqueries (Cont.)

- Correlated evaluation may be quite inefficient since
 - a large number of calls may be made to the nested query
 - there may be unnecessary random I/O as a result

- SQL optimizers attempt to transform nested subqueries to joins where possible, enabling use of efficient join techniques

- E.g.: earlier nested query can be rewritten as

  ```sql
  select customer_name
  from borrower, depositor
  where depositor.customer_name = borrower.customer_name
  ```

 - Note: the two queries generate different numbers of duplicates (why?)
 - Borrower can have duplicate customer-names
 - Can be modified to handle duplicates correctly as we will see

- In general, it is not possible/straightforward to move the entire nested subquery from clause into the outer level query from clause
 - A temporary relation is created instead, and used in body of outer level query
Optimizing Nested Subqueries (Cont.)

In general, SQL queries of the form below can be rewritten as shown:

- **Rewrite:**

  ```sql
  select ... 
  from L_1 
  where P_1 and exists (select * 
                      from L_2 
                      where P_2)
  ```

- **To:**

  ```sql
  create table t_1 as 
  select distinct V 
  from L_2 
  where P_2
  ```

  ```sql
  select ... 
  from L_1, t_1 
  where P_1 and P_2
  ```

 - P_2 contains predicates in P_2 that do not involve any correlation variables
 - P_2 reintroduces predicates involving correlation variables, with relations renamed appropriately
 - V contains all attributes used in predicates with correlation variables
Optimizing Nested Subqueries (Cont.)

- In our example, the original nested query would be transformed to:

  ```sql
  create table t_1 as
  select distinct customer_name
  from depositor
  ```

  ```sql
  select customer_name
  from borrower, t_1
  where t_1.customer_name = borrower.customer_name
  ```

- The process of replacing a nested query by a query with a join (possibly with a temporary relation) is called **decorrelation**.

- Decorrelation is more complicated when:

 - the nested subquery uses aggregation, or
 - when the result of the nested subquery is used to test for equality, or
 - when the condition linking the nested subquery to the other query is **not exists**, or
 - and so on.
A **materialized view** is a view whose contents are computed and stored.

Consider the view

```sql
create view branch_total_loan(branch_name, total_loan) as
select branch_name, sum(amount)
from loan
group by branch_name
```

Materializing the above view would be very useful if the total loan amount is required frequently

- Saves the effort of finding multiple tuples and adding up their amounts
Materialized View Maintenance

- The task of keeping a materialized view up-to-date with the underlying data is known as **materialized view maintenance**.

- Materialized views can be maintained by recomputation on every update.

- A better option is to use **incremental view maintenance**.
 - Changes to database relations are used to compute changes to the materialized view, which is then updated.

- View maintenance can be done by:
 - Manually defining triggers on insert, delete, and update of each relation in the view definition.
 - Manually written code to update the view whenever database relations are updated.
 - Periodic recomputation (e.g. nightly).
 - Above methods are directly supported by many database systems.
 - Avoids manual effort/correctness issues.
Incremental View Maintenance

- The changes (inserts and deletes) to a relation or expressions are referred to as its **differential**
 - Set of tuples inserted to and deleted from \(r \) are denoted \(i_r \) and \(d_r \)
- To simplify our description, we only consider inserts and deletes
 - We replace updates to a tuple by deletion of the tuple followed by insertion of the update tuple
- We describe how to compute the change to the result of each relational operation, given changes to its inputs
- We then outline how to handle relational algebra expressions
Join Operation

- Consider the materialized view $v = r \bowtie s$ and an update to r.
- Let r^{old} and r^{new} denote the old and new states of relation r.
- Consider the case of an insert to r:
 - We can write $r^{new} \bowtie s$ as $(r^{old} \cup i_r) \bowtie s$.
 - And rewrite the above to $(r^{old} \bowtie s) \cup (i_r \bowtie s)$.
 - But $(r^{old} \bowtie s)$ is simply the old value of the materialized view, so the incremental change to the view is just $i_r \bowtie s$.
- Thus, for inserts $v^{new} = v^{old} \cup (i_r \bowtie s)$.
- Similarly for deletes $v^{new} = v^{old} - (d_r \bowtie s)$.

$$\begin{array}{ccc}
\text{A, 1} & \bowtie & \text{1, p} \\
\text{B, 2} & \bowtie & \text{2, r} \\
\text{C, 2} & \bowtie & \text{2, s}
\end{array}$$

$$\begin{array}{ccc}
\text{A, 1, p} & \bowtie & \text{B, 2, r} \\
\text{B, 2, s} & \bowtie & \text{C, 2, r} \\
\text{C, 2, s}
\end{array}$$
Selection and Projection Operations

- Selection: Consider a view \(v = \sigma_\theta (r) \).
 - \(v^{new} = v^{old} \cup \sigma_\theta (i_r) \)
 - \(v^{new} = v^{old} - \sigma_\theta (d_r) \)

- Projection is a more difficult operation
 - \(R = (A,B) \), and \(r(R) = \{ (a,2), (a,3) \} \)
 - \(\Pi_A (r) \) has a single tuple \((a) \).
 - If we delete the tuple \((a,2) \) from \(r \), we should not delete the tuple \((a) \) from \(\Pi_A (r) \), but if we then delete \((a,3) \) as well, we should delete the tuple.

- For each tuple in a projection \(\Pi_A (r) \), we will keep a count of how many times it was derived
 - On insert of a tuple to \(r \), if the resultant tuple is already in \(\Pi_A (r) \) we increment its count, else we add a new tuple with count = 1
 - On delete of a tuple from \(r \), we decrement the count of the corresponding tuple in \(\Pi_A (r) \)
 - if the count becomes 0, we delete the tuple from \(\Pi_A (r) \)
Aggregation Operations

- **count**: \(v = A g_{\text{count}(B)}^{(r)} \).
 - When a set of tuples \(i_r \) is inserted
 - For each tuple \(r \) in \(i_r \), if the corresponding group is already present in \(v \), we increment its count, else we add a new tuple with count = 1
 - When a set of tuples \(d_r \) is deleted
 - for each tuple \(t \) in \(i_r \), we look for the group \(t.A \) in \(v \), and subtract 1 from the count for the group.
 - If the count becomes 0, we delete from \(v \) the tuple for the group \(t.A \)

- **sum**: \(v = A g_{\text{sum}(B)}^{(r)} \)
 - We maintain the sum in a manner similar to count, except we add/subtract the B value instead of adding/subtracting 1 for the count
 - Additionally we maintain the count in order to detect groups with no tuples. Such groups are deleted from \(v \)
 - Cannot simply test for sum = 0 (why?)

- To handle the case of **avg**, we maintain the **sum** and **count** aggregate values separately, and divide at the end
Aggregate Operations (Cont.)

- **min, max**: \(v = A_{\text{min}}(B)(r) \).
 - Handling insertions on \(r \) is straightforward.
 - Maintaining the aggregate values **min** and **max** on deletions may be more expensive. We have to look at the other tuples of \(r \) that are in the same group to find the new minimum.
Other Operations

- Set intersection: $v = r \cap s$
 - when a tuple is inserted in r we check if it is present in s, and if so we add it to v.
 - If the tuple is deleted from r, we delete it from the intersection if it is present.
 - Updates to s are symmetric
 - The other set operations, union and set difference are handled in a similar fashion.

- Outer joins are handled in much the same way as joins but with some extra work
 - we leave details to you.
Handling Expressions

To handle an entire expression, we derive expressions for computing the incremental change to the result of each sub-expressions, starting from the smallest sub-expressions.

E.g. consider \(E_1 \bowtie E_2 \) where each of \(E_1 \) and \(E_2 \) may be a complex expression.

- Suppose the set of tuples to be inserted into \(E_1 \) is given by \(D_1 \)
 - Computed earlier, since smaller sub-expressions are handled first
- Then, the set of tuples to be inserted into \(E_1 \bowtie E_2 \) is given by \(D_1 \bowtie E_2 \)
 - This is just the usual way of maintaining joins
Rewriting queries to use materialized views:
- A materialized view \(v = r \times s \) is available
- A user submits a query \(r \times s \times t \)
- We can rewrite the query as \(v \times t \)
 - Whether to do so depends on cost estimates for the two alternative

Replacing a use of a materialized view by the view definition:
- A materialized view \(v = r \times s \) is available, but without any index on it
- User submits a query \(\sigma_{A=10}(v) \).
- Suppose also that \(s \) has an index on the common attribute \(B \), and \(r \) has an index on attribute \(A \).
- The best plan for this query may be to replace \(v \) by \(r \times s \), which can lead to the query plan \(\sigma_{A=10}(r) \times s \)

Query optimizer should be extended to consider all above alternatives and choose the best overall plan
Materialized View Selection

- **Materialized view selection**: “What is the best set of views to materialize?”
- **Index selection**: “what is the best set of indices to create”
 - closely related, to materialized view selection
 - but simpler
- Materialized view selection and index selection based on typical system **workload** (queries and updates)
 - Typical goal: minimize time to execute workload, subject to constraints on space and time taken for some critical queries/updates
 - One of the steps in database tuning
 - more on tuning in later chapters
- Commercial database systems provide tools (called “tuning assistants” or “wizards”) to help the database administrator choose what indices and materialized views to create
Extra Slides: Additional Optimization Techniques

(see bibliographic notes)
Top-K Queries

- Top-K queries

  ```sql
  select *
  from r, s
  where r.B = s.B
  order by r.A ascending
  limit 10
  ```

 - Alternative 1: Indexed nested loops join with r as outer
 - Alternative 2: estimate highest r.A value in result and add selection
 (and r.A <= H) to where clause
 - If < 10 results, retry with larger H
Optimization of Updates

- **Halloween problem**

 update R set A = 5 * A
 where A > 10

 - If index on A is used to find tuples satisfying A > 10, and tuples updated immediately, same tuple may be found (and updated) multiple times

 - **Solution 1:** *Always defer updates*
 - collect the updates (old and new values of tuples) and update relation and indices in second pass
 - Drawback: extra overhead even if e.g. update is only on R.B, not on attributes in selection condition

 - **Solution 2:** *Defer only if required*
 - Perform immediate update if update does not affect attributes in where clause, and deferred updates otherwise.
Parametric Query Optimization

- Example
  ```sql
  select *
  from r natural join s
  where r.a < $1
  ```
 - value of parameter $1 not known at compile time
 - known only at run time
 - different plans may be optimal for different values of $1

- Solution 1: optimize at run time, each time query is submitted
 - can be expensive

- Solution 2: Parametric Query Optimization:
 - optimizer generates a set of plans, optimal for different values of $1
 - Set of optimal plans usually small for 1 to 3 parameters
 - Key issue: how to do find set of optimal plans efficiently
 - best one from this set is chosen at run time when $1 is known

- Solution 3: Query Plan Caching
 - If optimizer decides that same plan is likely to be optimal for all parameter values, it caches plan and reuses it, else reoptimize each time
 - Implemented in many database systems
Join Minimization

- Join minimization

  ```sql
  select r.A, r.B
  from r, s
  where r.B = s.B
  ```

- Check if join with s is redundant, drop it
 - E.g. join condition is on foreign key from r to s, no selection on s
 - Other sufficient conditions possible
    ```sql
    select r.A, s1.B
    from r, s as s1, s as s2
    ```
 - Join with s2 is redundant and can be dropped (along with selection on s2)
 - Lots of research in this area since 70s/80s!
Multiquery Optimization

Example

Q1: select * from (r natural join t) natural join s
Q2: select * from (r natural join u) natural join s

- Both queries share common subexpression (r natural join s)
- May be useful to compute (r natural join s) once and use it in both queries
 - But this may be more expensive in some situations
 - e.g. (r natural join s) may be expensive, plans as shown in queries may be cheaper

Multiquery optimization: find best overall plan for a set of queries, exploiting sharing of common subexpressions between queries where it is useful

Simple heuristic used in some database systems:

- optimize each query separately
- detect and exploiting common subexpressions in the individual optimal query plans
 - May not always give best plan, but is cheap to implement

Set of materialized views may share common subexpressions

- As a result, view maintenance plans may share subexpressions
- Multiquery optimization can be useful in such situations