Chapter 18: Data Analysis and Mining
Chapter 18: Data Analysis and Mining

- Decision Support Systems
- Data Analysis and OLAP
- Data Warehousing
- Data Mining
Decision Support Systems

- Decision-support systems are used to make business decisions, often based on data collected by on-line transaction-processing systems.

- Examples of business decisions:
 - What items to stock?
 - What insurance premium to change?
 - To whom to send advertisements?

- Examples of data used for making decisions
 - Retail sales transaction details
 - Customer profiles (income, age, gender, etc.)
Decision-Support Systems: Overview

- **Data analysis** tasks are simplified by specialized tools and SQL extensions
 - Example tasks
 - For each product category and each region, what were the total sales in the last quarter and how do they compare with the same quarter last year
 - As above, for each product category and each customer category

- **Statistical analysis** packages (e.g., S++) can be interfaced with databases
 - Statistical analysis is a large field, but not covered here

- **Data mining** seeks to discover knowledge automatically in the form of statistical rules and patterns from large databases.

- A **data warehouse** archives information gathered from multiple sources, and stores it under a unified schema, at a single site.
 - Important for large businesses that generate data from multiple divisions, possibly at multiple sites
 - Data may also be purchased externally
Data Analysis and OLAP

- Online Analytical Processing (OLAP)
 - Interactive analysis of data, allowing data to be summarized and viewed in different ways in an online fashion (with negligible delay)
 - Data that can be modeled as dimension attributes and measure attributes are called **multidimensional data**.

- **Measure attributes**
 - measure some value
 - can be aggregated upon
 - e.g. the attribute *number* of the *sales* relation

- **Dimension attributes**
 - define the dimensions on which measure attributes (or aggregates thereof) are viewed
 - e.g. the attributes *item_name*, *color*, and *size* of the *sales* relation
Cross Tabulation of sales by item-name and color

<table>
<thead>
<tr>
<th>size: all</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>item-name</th>
<th>color</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>dark</td>
<td>pastel</td>
<td>white</td>
<td>Total</td>
</tr>
<tr>
<td>skirt</td>
<td>8</td>
<td>35</td>
<td>10</td>
<td>53</td>
</tr>
<tr>
<td>dress</td>
<td>20</td>
<td>10</td>
<td>5</td>
<td>35</td>
</tr>
<tr>
<td>shirt</td>
<td>14</td>
<td>7</td>
<td>28</td>
<td>49</td>
</tr>
<tr>
<td>pant</td>
<td>20</td>
<td>2</td>
<td>5</td>
<td>27</td>
</tr>
<tr>
<td>Total</td>
<td>62</td>
<td>54</td>
<td>48</td>
<td>164</td>
</tr>
</tbody>
</table>

The table above is an example of a **cross-tabulation** (**cross-tab**), also referred to as a **pivot-table**.

- Values for one of the dimension attributes form the row headers
- Values for another dimension attribute form the column headers
- Other dimension attributes are listed on top
- Values in individual cells are (aggregates of) the values of the dimension attributes that specify the cell.
- Cross-tabs can be represented as relations
 - We use the value `all` is used to represent aggregates
 - The SQL:1999 standard actually uses null values in place of `all` despite confusion with regular null values

<table>
<thead>
<tr>
<th>item-name</th>
<th>color</th>
<th>number</th>
</tr>
</thead>
<tbody>
<tr>
<td>skirt</td>
<td>dark</td>
<td>8</td>
</tr>
<tr>
<td>skirt</td>
<td>pastel</td>
<td>35</td>
</tr>
<tr>
<td>skirt</td>
<td>white</td>
<td>10</td>
</tr>
<tr>
<td>skirt</td>
<td>all</td>
<td>53</td>
</tr>
<tr>
<td>dress</td>
<td>dark</td>
<td>20</td>
</tr>
<tr>
<td>dress</td>
<td>pastel</td>
<td>10</td>
</tr>
<tr>
<td>dress</td>
<td>white</td>
<td>5</td>
</tr>
<tr>
<td>dress</td>
<td>all</td>
<td>35</td>
</tr>
<tr>
<td>shirt</td>
<td>dark</td>
<td>14</td>
</tr>
<tr>
<td>shirt</td>
<td>pastel</td>
<td>7</td>
</tr>
<tr>
<td>shirt</td>
<td>white</td>
<td>28</td>
</tr>
<tr>
<td>shirt</td>
<td>all</td>
<td>49</td>
</tr>
<tr>
<td>pant</td>
<td>dark</td>
<td>20</td>
</tr>
<tr>
<td>pant</td>
<td>pastel</td>
<td>2</td>
</tr>
<tr>
<td>pant</td>
<td>white</td>
<td>5</td>
</tr>
<tr>
<td>pant</td>
<td>all</td>
<td>27</td>
</tr>
<tr>
<td>all</td>
<td>dark</td>
<td>62</td>
</tr>
<tr>
<td>all</td>
<td>pastel</td>
<td>54</td>
</tr>
<tr>
<td>all</td>
<td>white</td>
<td>48</td>
</tr>
<tr>
<td>all</td>
<td>all</td>
<td>164</td>
</tr>
</tbody>
</table>
A **data cube** is a multidimensional generalization of a cross-tab.

- Can have n dimensions; we show 3 below.
- Cross-tabs can be used as views on a data cube.
Online Analytical Processing

- **Pivoting**: changing the dimensions used in a cross-tab is called

- **Slicing**: creating a cross-tab for fixed values only
 - Sometimes called **dicing**, particularly when values for multiple dimensions are fixed.

- **Rollup**: moving from finer-granularity data to a coarser granularity

- **Drill down**: The opposite operation - that of moving from coarser-granularity data to finer-granularity data
Hierarchies on Dimensions

- **Hierarchy** on dimension attributes: lets dimensions to be viewed at different levels of detail

 - E.g. the dimension DateTime can be used to aggregate by hour of day, date, day of week, month, quarter or year

```
  DateTime
   ^     
  /      
Date
   ^     
  /      
Day of week
   ^     
  /      
Hour of day

  Year
    v
  Quarter
    v
Month
  v
Day of week
  v
Hour of day

  Region
    v
  Country
    v
State
  v
City

a) Time Hierarchy  b) Location Hierarchy
```
Cross Tabulation With Hierarchy

- Cross-tabs can be easily extended to deal with hierarchies
 - Can drill down or roll up on a hierarchy

<table>
<thead>
<tr>
<th>category</th>
<th>item-name</th>
<th>dark</th>
<th>pastel</th>
<th>white</th>
<th>total</th>
</tr>
</thead>
<tbody>
<tr>
<td>womenswear</td>
<td>skirt</td>
<td>8</td>
<td>8</td>
<td>10</td>
<td>53</td>
</tr>
<tr>
<td></td>
<td>dress</td>
<td>20</td>
<td>20</td>
<td>5</td>
<td>35</td>
</tr>
<tr>
<td></td>
<td>subtotal</td>
<td>28</td>
<td>28</td>
<td>15</td>
<td>88</td>
</tr>
<tr>
<td>menswear</td>
<td>pants</td>
<td>14</td>
<td>14</td>
<td>28</td>
<td>49</td>
</tr>
<tr>
<td></td>
<td>shirt</td>
<td>20</td>
<td>20</td>
<td>5</td>
<td>27</td>
</tr>
<tr>
<td></td>
<td>subtotal</td>
<td>34</td>
<td>34</td>
<td>33</td>
<td>76</td>
</tr>
<tr>
<td>total</td>
<td></td>
<td>62</td>
<td>62</td>
<td>48</td>
<td>164</td>
</tr>
</tbody>
</table>
OLAP Implementation

■ The earliest OLAP systems used multidimensional arrays in memory to store data cubes, and are referred to as *multidimensional OLAP (MOLAP)* systems.

■ OLAP implementations using only relational database features are called *relational OLAP (ROLAP)* systems.

■ Hybrid systems, which store some summaries in memory and store the base data and other summaries in a relational database, are called *hybrid OLAP (HOLAP)* systems.
OLAP Implementation (Cont.)

- Early OLAP systems precomputed *all* possible aggregates in order to provide online response
 - Space and time requirements for doing so can be very high
 - 2^n combinations of group by
 - It suffices to precompute some aggregates, and compute others on demand from one of the precomputed aggregates
 - Can compute aggregate on $(item-name, color)$ from an aggregate on $(item-name, color, size)$
 - For all but a few “non-decomposable” aggregates such as median
 - is cheaper than computing it from scratch

- Several optimizations available for computing multiple aggregates
 - Can compute aggregate on $(item-name, color)$ from an aggregate on $(item-name, color, size)$
 - Can compute aggregates on $(item-name, color, size)$, $(item-name, color)$ and $(item-name)$ using a single sorting of the base data
Extended Aggregation in SQL:1999

- The **cube** operation computes union of **group by**’s on every subset of the specified attributes.

- E.g. consider the query

```sql
select item-name, color, size, sum(number)
from sales
group by cube(item-name, color, size)
```

This computes the union of eight different groupings of the *sales* relation:

- `{ (item-name, color, size), (item-name, color),
 (item-name, size), (color, size),
 (item-name), (color),
 (size), () }`

 where () denotes an empty **group by** list.

- For each grouping, the result contains the null value for attributes not present in the grouping.
Extended Aggregation (Cont.)

- Relational representation of cross-tab that we saw earlier, but with null in place of all, can be computed by

  ```sql
  select item-name, color, sum(number)
  from sales
  group by cube(item-name, color)
  ```

- The function `grouping()` can be applied on an attribute
 - Returns 1 if the value is a null value representing all, and returns 0 in all other cases.

  ```sql
  select item-name, color, size, sum(number),
  grouping(item-name) as item-name-flag,
  grouping(color) as color-flag,
  grouping(size) as size-flag,
  from sales
  group by cube(item-name, color, size)
  ```

- Can use the function `decode()` in the `select` clause to replace such nulls by a value such as all
 - E.g. replace `item-name` in first query by

  ```sql
  decode( grouping(item-name), 1, 'all', item-name)
  ```
Extended Aggregation (Cont.)

- The **rollup** construct generates union on every prefix of specified list of attributes.

 - E.g.

    ```sql
    select item-name, color, size, sum(number)
    from sales
    group by rollup(item-name, color, size)
    ```

 Generates union of four groupings:

    ```
    { (item-name, color, size), (item-name, color), (item-name), ( ) } 
    ```

- Rollup can be used to generate aggregates at multiple levels of a hierarchy.

- E.g., suppose table **itemcategory**(*item-name, category*) gives the category of each item. Then

  ```sql
  select category, item-name, sum(number)
  from sales, itemcategory
  where sales.item-name = itemcategory.item-name
  group by rollup(category, item-name)
  ```

 would give a hierarchical summary by *item-name* and by *category*.
Extended Aggregation (Cont.)

- Multiple rollups and cubes can be used in a single group by clause
 - Each generates set of group by lists, cross product of sets gives overall set of group by lists

- E.g.,
  ```sql
  select item-name, color, size, sum(number)
  from sales
  group by rollup(item-name), rollup(color, size)
  ```
 generates the groupings
  ```
  \{item-name, ()\} \times \{(color, size), (color), ()\}
  = \{(item-name, color, size), (item-name, color), (item-name),
         (color, size), (color), () \} 
  ```
Ranking

- Ranking is done in conjunction with an order by specification.
- Given a relation student-marks(student-id, marks) find the rank of each student.

```sql
select student-id, rank( ) over (order by marks desc) as s-rank
from student-marks
```

- An extra `order by` clause is needed to get them in sorted order

```sql
select student-id, rank( ) over (order by marks desc) as s-rank
from student-marks
order by s-rank
```

- Ranking may leave gaps: e.g. if 2 students have the same top mark, both have rank 1, and the next rank is 3
 - `dense_rank` does not leave gaps, so next dense rank would be 2
Ranking can be done within partition of the data.

“Find the rank of students within each section.”

```
select student-id, section, 
    rank () over (partition by section order by marks desc) 
    as sec-rank 
from student-marks, student-section 
where student-marks.student-id = student-section.student-id 
order by section, sec-rank
```

Multiple **rank** clauses can occur in a single **select** clause

Ranking is done **after** applying **group by** clause/aggregation
Other ranking functions:

- **percent_rank** (within partition, if partitioning is done)
- **cume_dist** (cumulative distribution)
 - fraction of tuples with preceding values
- **row_number** (non-deterministic in presence of duplicates)

SQL:1999 permits the user to specify **nulls first** or **nulls last**

```sql
select student-id,
       rank () over (order by marks desc nulls last) as s-rank
from student-marks
```
For a given constant n, the ranking the function $ntile(n)$ takes the tuples in each partition in the specified order, and divides them into n buckets with equal numbers of tuples.

E.g.:

```sql
select threetile, sum(salary) 
from ( 
    select salary, ntile(3) over (order by salary) as threetile 
    from employee) as s 
group by threetile
```
Windowing

- Used to smooth out random variations.
- E.g.: moving average: “Given sales values for each date, calculate for each date the average of the sales on that day, the previous day, and the next day”

Window specification in SQL:

- Given relation `sales(date, value)`

```
select date, sum(value) over
    (order by date between rows 1 preceding and 1 following)
from sales
```

Examples of other window specifications:

- **between rows unbounded preceding and current**
- **rows unbounded preceding**
- **range between 10 preceding and current row**
 - All rows with values between current row value –10 to current value
- **range interval 10 day preceding**
 - Not including current row
Windowing (Cont.)

- Can do windowing within partitions
- E.g. Given a relation `transaction (account-number, date-time, value)`, where value is positive for a deposit and negative for a withdrawal
 - “Find total balance of each account after each transaction on the account”

```sql
select account-number, date-time,
    sum (value) over
    (partition by account-number
     order by date-time
     rows unbounded preceding)
    as balance
from transaction
order by account-number, date-time
```

©Silberschatz, Korth and Sudarshan
Data Warehousing

- Data sources often store only current data, not historical data
- Corporate decision making requires a unified view of all organizational data, including historical data
- A **data warehouse** is a repository (archive) of information gathered from multiple sources, stored under a unified schema, at a single site
 - Greatly simplifies querying, permits study of historical trends
 - Shifts decision support query load away from transaction processing systems
Data Warehousing
Design Issues

■ When and how to gather data
 ● Source driven architecture: data sources transmit new information to warehouse, either continuously or periodically (e.g. at night)
 ● Destination driven architecture: warehouse periodically requests new information from data sources
 ● Keeping warehouse exactly synchronized with data sources (e.g. using two-phase commit) is too expensive
 ▶ Usually OK to have slightly out-of-date data at warehouse
 ▶ Data/updates are periodically downloaded from online transaction processing (OLTP) systems.

■ What schema to use
 ● Schema integration
More Warehouse Design Issues

- **Data cleansing**
 - E.g. correct mistakes in addresses (misspellings, zip code errors)
 - **Merge** address lists from different sources and **purge** duplicates

- **How to propagate updates**
 - Warehouse schema may be a (materialized) view of schema from data sources

- **What data to summarize**
 - Raw data may be too large to store on-line
 - Aggregate values (totals/subtotals) often suffice
 - Queries on raw data can often be transformed by query optimizer to use aggregate values
Warehouse Schemas

- Dimension values are usually encoded using small integers and mapped to full values via dimension tables.
- Resultant schema is called a **star schema**
 - More complicated schema structures
 - **Snowflake schema**: multiple levels of dimension tables
 - **Constellation**: multiple fact tables
Data Mining

- Data mining is the process of semi-automatically analyzing large databases to find useful patterns

- **Prediction** based on past history
 - Predict if a credit card applicant poses a good credit risk, based on some attributes (income, job type, age, ..) and past history
 - Predict if a pattern of phone calling card usage is likely to be fraudulent

- Some examples of prediction mechanisms:
 - **Classification**
 - Given a new item whose class is unknown, predict to which class it belongs
 - **Regression** formulae
 - Given a set of mappings for an unknown function, predict the function result for a new parameter value
Descriptive Patterns

- **Associations**
 - Find books that are often bought by “similar” customers. If a new such customer buys one such book, suggest the others too.
 - Associations may be used as a first step in detecting causation
 - E.g. association between exposure to chemical X and cancer,

- **Clusters**
 - E.g. typhoid cases were clustered in an area surrounding a contaminated well
 - Detection of clusters remains important in detecting epidemics
Classification Rules

- Classification rules help assign new objects to classes.
 - E.g., given a new automobile insurance applicant, should he or she be classified as low risk, medium risk or high risk?

- Classification rules for above example could use a variety of data, such as educational level, salary, age, etc.
 - \(\forall \text{person } P, \ P.\text{degree} = \text{masters} \text{ and } P.\text{income} > 75,000 \Rightarrow P.\text{credit} = \text{excellent} \)
 - \(\forall \text{person } P, \ P.\text{degree} = \text{bachelors} \text{ and } (P.\text{income} \geq 25,000 \text{ and } P.\text{income} \leq 75,000) \Rightarrow P.\text{credit} = \text{good} \)

- Rules are not necessarily exact: there may be some misclassifications

- Classification rules can be shown compactly as a decision tree.
Decision Tree

- **degree**
 - none
 - bachelors
 - masters
 - doctorate

- **income**
 - <50K
 - 50 to 100K
 - >100K

 - <50K
 - >=50K
 - 25 to 75K
 - >75K

- **bad**, **average**, **good**, **excellent**

©Silberschatz, Korth and Sudarshan
Construction of Decision Trees

- **Training set**: a data sample in which the classification is already known.

- **Greedy**: top down generation of decision trees.
 - Each internal node of the tree partitions the data into groups based on a **partitioning attribute**, and a **partitioning condition** for the node.
 - **Leaf** node:
 - all (or most) of the items at the node belong to the same class, or
 - all attributes have been considered, and no further partitioning is possible.
Best Splits

- Pick best attributes and conditions on which to partition
- The purity of a set S of training instances can be measured quantitatively in several ways.
 - Notation: number of classes $= k$, number of instances $= |S|$, fraction of instances in class $i = p_i$.
- The **Gini** measure of purity is defined as

$$Gini(S) = 1 - \sum_{i=1}^{k} p_i^2$$

- When all instances are in a single class, the Gini value is 0
- It reaches its maximum (of $1 - 1/k$) if each class the same number of instances.
Another measure of purity is the entropy measure, which is defined as

$$\text{entropy} (S) = - \sum_{i=1}^{k} p_i \log_2 p_i$$

When a set S is split into multiple sets S_i, $i=1, 2, \ldots, r$, we can measure the purity of the resultant set of sets as:

$$\text{purity}(S_1, S_2, \ldots, S_r) = \sum_{i=1}^{r} \frac{|S_i|}{|S|} \text{purity} (S_i)$$

The information gain due to particular split of S into S_i, $i = 1, 2, \ldots, r$

$$\text{Information-gain} (S, \{S_1, S_2, \ldots, S_r\}) = \text{purity}(S) - \text{purity} (S_1, S_2, \ldots S_r)$$
Best Splits (Cont.)

- Measure of “cost” of a split:
 \[
 \text{Information-content} \left(S, \{S_1, S_2, \ldots, S_r\} \right) = - \sum_{i=1}^{r} \frac{|S_i|}{|S|} \log_2 \frac{|S_i|}{|S|}
 \]

- Information-gain ratio = \[
 \frac{\text{Information-gain} \left(S, \{S_1, S_2, \ldots, S_r\} \right)}{\text{Information-content} \left(S, \{S_1, S_2, \ldots, S_r\} \right)}
 \]

- The best split is the one that gives the maximum information gain ratio
Finding Best Splits

- Categorical attributes (with no meaningful order):
 - Multi-way split, one child for each value
 - Binary split: try all possible breakup of values into two sets, and pick the best

- Continuous-valued attributes (can be sorted in a meaningful order)
 - Binary split:
 - Sort values, try each as a split point
 - E.g. if values are 1, 10, 15, 25, split at ≤ 1, ≤ 10, ≤ 15
 - Pick the value that gives best split
 - Multi-way split:
 - A series of binary splits on the same attribute has roughly equivalent effect
Decision-Tree Construction Algorithm

Procedure GrowTree (S)
 Partition (S);

Procedure Partition (S)
 if (purity (S) > δ_p or |S| < δ_s) then
 return;
 for each attribute A
 evaluate splits on attribute A;
 Use best split found (across all attributes) to partition S into S_1, S_2,, S_r,
 for i = 1, 2,, r
 Partition (S_i);
Other Types of Classifiers

- Neural net classifiers are studied in artificial intelligence and are not covered here.

- Bayesian classifiers use **Bayes theorem**, which says
 \[
p (c_j \mid d) = p (d \mid c_j) p (c_j)
 \]
 \[
p (d)
 \]
 where
 \[
p (c_j \mid d) = \text{probability of instance } d \text{ being in class } c_j,
 \]
 \[
p (d \mid c_j) = \text{probability of generating instance } d \text{ given class } c_j,
 \]
 \[
p (c_j) = \text{probability of occurrence of class } c_j, \text{ and}
 \]
 \[
p (d) = \text{probability of instance } d \text{ occurring}
 \]
Naïve Bayesian Classifiers

- Bayesian classifiers require
 - computation of $p(d \mid c_j)$
 - precomputation of $p(c_j)$
 - $p(d)$ can be ignored since it is the same for all classes

- To simplify the task, naïve Bayesian classifiers assume attributes have independent distributions, and thereby estimate

$$p(d \mid c_j) = p(d_1 \mid c_j) \times p(d_2 \mid c_j) \times \ldots \times p(d_n \mid c_j)$$

- Each of the $p(d_i \mid c_j)$ can be estimated from a histogram on d_i values for each class c_j
 - the histogram is computed from the training instances
- Histograms on multiple attributes are more expensive to compute and store
Regression

Regression deals with the prediction of a value, rather than a class.

- Given values for a set of variables, X_1, X_2, \ldots, X_n, we wish to predict the value of a variable Y.

One way is to infer coefficients $a_0, a_1, a_2, \ldots, a_n$ such that
\[Y = a_0 + a_1 \cdot X_1 + a_2 \cdot X_2 + \ldots + a_n \cdot X_n \]

Finding such a linear polynomial is called linear regression.

- In general, the process of finding a curve that fits the data is also called curve fitting.

The fit may only be approximate

- because of noise in the data, or
- because the relationship is not exactly a polynomial

Regression aims to find coefficients that give the best possible fit.
Retail shops are often interested in associations between different items that people buy.

- Someone who buys bread is quite likely also to buy milk
- A person who bought the book *Database System Concepts* is quite likely also to buy the book *Operating System Concepts*.

Associations information can be used in several ways.

- E.g. when a customer buys a particular book, an online shop may suggest associated books.

Association rules:

```
bread ⇒ milk          DB-Concepts, OS-Concepts ⇒ Networks
```

- Left hand side: antecedent, right hand side: consequent
- An association rule must have an associated population; the population consists of a set of instances
 - E.g. each transaction (sale) at a shop is an instance, and the set of all transactions is the population
Association Rules (Cont.)

- Rules have an associated support, as well as an associated confidence.

- **Support** is a measure of what fraction of the population satisfies both the antecedent and the consequent of the rule.
 - E.g. suppose only 0.001 percent of all purchases include milk and screwdrivers. The support for the rule is \(\text{milk} \Rightarrow \text{screwdrivers} \) is low.

- **Confidence** is a measure of how often the consequent is true when the antecedent is true.
 - E.g. the rule \(\text{bread} \Rightarrow \text{milk} \) has a confidence of 80 percent if 80 percent of the purchases that include bread also include milk.
Finding Association Rules

- We are generally only interested in association rules with reasonably high support (e.g. support of 2% or greater)

- Naïve algorithm
 1. Consider all possible sets of relevant items.
 2. For each set find its support (i.e. count how many transactions purchase all items in the set).
 ★ **Large itemsets**: sets with sufficiently high support
 3. Use large itemsets to generate association rules.
 1. From itemset A generate the rule $A - \{b\} \Rightarrow b$ for each $b \in A$.
 ✔ Support of rule = support (A).
 ✔ Confidence of rule = support $(A) / \text{support (} A - \{b\} \text{)}$
Finding Support

- Determine support of itemsets via a single pass on set of transactions
 - Large itemsets: sets with a high count at the end of the pass
- If memory not enough to hold all counts for all itemsets use multiple passes, considering only some itemsets in each pass.
- Optimization: Once an itemset is eliminated because its count (support) is too small none of its supersets needs to be considered.

The a priori technique to find large itemsets:
- Pass 1: count support of all sets with just 1 item. Eliminate those items with low support
- Pass i: candidates: every set of i items such that all its $i-1$ item subsets are large
 - Count support of all candidates
 - Stop if there are no candidates
Other Types of Associations

- Basic association rules have several limitations
- Deviations from the expected probability are more interesting
 - E.g. if many people purchase bread, and many people purchase cereal, quite a few would be expected to purchase both
 - We are interested in positive as well as negative correlations between sets of items
 - Positive correlation: co-occurrence is higher than predicted
 - Negative correlation: co-occurrence is lower than predicted
- Sequence associations / correlations
 - E.g. whenever bonds go up, stock prices go down in 2 days
- Deviations from temporal patterns
 - E.g. deviation from a steady growth
 - E.g. sales of winter wear go down in summer
 - Not surprising, part of a known pattern.
 - Look for deviation from value predicted using past patterns
Clustering

- Clustering: Intuitively, finding clusters of points in the given data such that similar points lie in the same cluster.

- Can be formalized using distance metrics in several ways:
 - Group points into k sets (for a given k) such that the average distance of points from the centroid of their assigned group is minimized.
 - Centroid: point defined by taking average of coordinates in each dimension.
 - Another metric: minimize average distance between every pair of points in a cluster.

- Has been studied extensively in statistics, but on small data sets:
 - Data mining systems aim at clustering techniques that can handle very large data sets.
 - E.g. the Birch clustering algorithm (more shortly).
Hierarchical Clustering

- Example from biological classification
 - (the word classification here does not mean a prediction mechanism)

 chordata

 - mammalia
 - leopards
 - humans
 - reptilia
 - snakes
 - crocodiles

- Other examples: Internet directory systems (e.g. Yahoo, more on this later)

- Agglomerative clustering algorithms
 - Build small clusters, then cluster small clusters into bigger clusters, and so on

- Divisive clustering algorithms
 - Start with all items in a single cluster, repeatedly refine (break) clusters into smaller ones
Clustering Algorithms

- Clustering algorithms have been designed to handle very large datasets
- E.g. the Birch algorithm
 - Main idea: use an in-memory R-tree to store points that are being clustered
 - Insert points one at a time into the R-tree, merging a new point with an existing cluster if it is less than some δ distance away
 - If there are more leaf nodes than fit in memory, merge existing clusters that are close to each other
 - At the end of first pass we get a large number of clusters at the leaves of the R-tree
 - Merge clusters to reduce the number of clusters
Collaborative Filtering

- **Goal:** predict what movies/books/… a person may be interested in, on the basis of
 - Past preferences of the person
 - Other people with similar past preferences
 - The preferences of such people for a new movie/book/…

- One approach based on repeated clustering
 - Cluster people on the basis of preferences for movies
 - Then cluster movies on the basis of being liked by the same clusters of people
 - Again cluster people based on their preferences for (the newly created clusters of) movies
 - Repeat above till equilibrium

- Above problem is an instance of **collaborative filtering**, where users collaborate in the task of filtering information to find information of interest
Other Types of Mining

- **Text mining**: application of data mining to textual documents
 - cluster Web pages to find related pages
 - cluster pages a user has visited to organize their visit history
 - classify Web pages automatically into a Web directory

- **Data visualization** systems help users examine large volumes of data and detect patterns visually
 - Can visually encode large amounts of information on a single screen
 - Humans are very good at detecting visual patterns