
WWDS APIs: Application Program

for Efficient Manipulation of

Hanumant Redkar1, Sudha Bhingardive
Neha Prabhugaonkar

1Indian Institute of Technology Bombay, Mumbai, India

{ hanumantredkar, bhingardivesudha, kevin.svnit,

{ nehapgaonkar.1920,

Abstract
WordNets are useful resources for natural language
processing. Various WordNets for different languages have
been developed by different groups. Recently, World
WordNet Database Structure (WWDS) was
Redkar et. al (2015) as a common platform to store these
different WordNets. However, it is underutilized
of programming interface. In this paper, we present
APIs, which are designed to address this shortcoming. These
WWDS APIs, in conjunction with WWDS, act as a wrapper
that enables developers to utilize WordNets without
worrying about the underlying storage structure.
are developed in PHP, Java, and Python, as they are the
preferred programming languages of most developers and
researchers working in language technologies
can help in various applications like machine t
word sense disambiguation, multilingual information
retrieval, etc.

 Introduction

WordNet is a lexical resource primarily used in many
natural language processing applications. Over a period of
time, WordNets for many languages have been developed.
Some of these are individual language
Princeton WordNet (Miller, 1990), Hindi WordNet
GermaNet, Japanese WordNet, etc. and
WordNets viz., EuroWordNet (Vossen et al., 1997),
IndoWordNet (Bhattacharyya, 2010), etc
World WordNet Database Structure (Redkar et. al, 2015
has been introduced to store WordNet data
and efficient manner. However, this is not being used to its
full potential due to unavailability of
programming interfaces. Hence, we present
APIs1 to efficiently manipulate this WWDS data.
APIs will facilitate proper utilization of WWDS. For

1 http://www.cfilt.iitb.ac.in/wwds/

Application Programming Interfaces

Manipulation of World WordNet Database

, Sudha Bhingardive1, Kevin Patel1, Pushpak Bhattacharyya
eha Prabhugaonkar2, Apurva Nagvenkar2, Ramdas Karmali

Indian Institute of Technology Bombay, Mumbai, India
2Goa University, Goa, India

hanumantredkar, bhingardivesudha, kevin.svnit, pushpakbh}@gmail.com

nehapgaonkar.1920, apurv.nagvenkar, ramdas.karmali}@gmail.com

for natural language
Various WordNets for different languages have

been developed by different groups. Recently, World
was proposed by

tform to store these
s. However, it is underutilized due to lack

we present WWDS
to address this shortcoming. These

APIs, in conjunction with WWDS, act as a wrapper
developers to utilize WordNets without

worrying about the underlying storage structure. The APIs
are developed in PHP, Java, and Python, as they are the
preferred programming languages of most developers and

logies. These APIs
machine translation,

multilingual information

WordNet is a lexical resource primarily used in many
Over a period of

languages have been developed.
individual language WordNets viz.,

Hindi WordNet,
and multilingual

, EuroWordNet (Vossen et al., 1997),
etc. Recently, a

Redkar et. al, 2015)
et data in a systematic

However, this is not being used to its
unavailability of application

we present the WWDS
to efficiently manipulate this WWDS data. These

ilitate proper utilization of WWDS. For

example, developers can potentially extract information
from other WordNets through WWDS and its APIs that is
missing in their source WordNet. The WWDS
APIs are explained in the following section

World WordNet Database Structure

WWDS is an efficient storage mechanism which uses
multiple databases to accommodate different WordNets. Its
design is based on IndoWordNet database structure
(Prabhu et al., 2012). The language independent
information such as semantic relations, ontology details,
etc. is stored in a single master database named
wordnet_master. The language dependent
as synsets, words, lexical relations,
language specific databases named

WWDS Application Programming Interfaces

WWDS APIs are developed as an extension to
IndoWordNet APIs (Prabhugaonkar et al., 2012). The main
objective of these APIs is to facilitate storage, retrieval
manipulation of WordNet data of all languages available in
WWDS. These are developed for
Python. Each API has two layered architecture
Application Layer and Data Layer, as shown in figure 1.

Copyright © 2016, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

Figure 1. Block diagram of WWDS API

ming Interfaces

World WordNet Database Structure

Pushpak Bhattacharyya1
Ramdas Karmali2

evelopers can potentially extract information
from other WordNets through WWDS and its APIs that is

The WWDS and WWDS
following sections.

WordNet Database Structure

WWDS is an efficient storage mechanism which uses
modate different WordNets. Its

based on IndoWordNet database structure
(Prabhu et al., 2012). The language independent

mantic relations, ontology details,
is stored in a single master database named

dependent information such
as synsets, words, lexical relations, etc. is stored in

databases named wordnet_<language>.

Application Programming Interfaces

are developed as an extension to
IndoWordNet APIs (Prabhugaonkar et al., 2012). The main

facilitate storage, retrieval and
all languages available in

for PHP, Java as well as
two layered architecture viz.,

Application Layer and Data Layer, as shown in figure 1.

, Association for the Advancement of Artificial

Intelligence (www.aaai.org). All rights reserved.

Block diagram of WWDS API

 Developers can call only the methods of application
layer in their source code. These methods are equipped to
access and manipulate WWDS information such as
synsets, words, semantic and lexical relations, etc.
However, the application layer cannot access the stored
data directly, and has to rely on the data layer. The data
layer provides underlying storage aware mechanisms that
can directly access and manipulate the stored data. In
object oriented terminology, the application layer abstracts
the data layer. This segregation enables administrators to
change the data layer according to changes in storage
mechanisms, while keeping the application layer uniform.
 Table 1 lists some of the major classes of WWDS APIs.
For more details of these classes and the corresponding
methods, please refer to the documentation2. Figure 2
shows sample usage snippets in all three languages.

Application Layer

Classes Description

WWDSAPI initializes the WWDS API library

WWDSLanguage selects the language WordNets

WWDSSynset represents a single synset

WWDSSynsetCollection represents a collection of synsets

WWDSWord represents a word

WWDSWordCollection represents a collection of words in a synset

WWDSExampleCollection represents a collection of examples in a

synset

WWDSOntology represents an ontology node

WWDSOntologyCollection represents a collection of ontology nodes

WWDSException encapsulates exceptions

Data Layer

WWDSDb represents a database

WWDSCon represents a connection to a database

WWDSStatement represents data manipulation statements

required by the application layer

WWDSResult represents returned results

Table 1. Major classes of WWDS API

Advantages
• A single interface to access multiple WordNets, each of

which could potentially be in different formats.
• Availability in popular programming languages viz.,

PHP, Java and Python ensures greater coverage of
developer and researcher base.
• Data layer is adaptable to different storage mechanisms.

Limitations
• Actual usage depends on the availability (and licensing)

of WordNets that developers want to use.
• Lack of authentication techniques for data modifications.

2 http://www.cfilt.iitb.ac.in/wwds/wwdsapi/documentation/

Conclusion and Future Work

Multiple WordNets use various data organization and
storage methods. WWDS was developed to provide a
common platform to work with multiple WordNets.
However, lack of programming interface prevented its
proper utilization. WWDS APIs were developed to address
this shortcoming. Modular design and availability across
preferred languages such as PHP, Java and Python, are
some of the salient features of these APIs. However, their
support of WordNet manipulation is unchecked. In the
future, we would like to implement a crowd-sourcing
module that can score manipulations done by the APIs,
thereby resolving this limitation.

References
Bhattacharyya, P. 2010. IndoWordNet. Proc. of LREC-10, Malta.

Miller, George A., R., Fellbaum, C., Gross, D., & Miller, K. J.
1990. Introduction to wordnet: An on-line lexical database.
International journal of lexicography, OUP. (pp. 3.4: 235-244).

Prabhu, V., Desai, S., Redkar, H., Prabhugaonkar, N., Nagvenkar,
A., & Karmali, R. 2012. An Efficient Database Design for
IndoWordNet Development Using Hybrid Approach. COLING
2012, Mumbai, India. (pp. 229).

Prabhugaonkar, N., Nagvenkar, A., & Karmali, Ramdas N. 2012.
IndoWordNet Application Programming Interfaces. COLING
2012, Mumbai, India. (pp. 237 - 244).

Vossen, P. 1997. EuroWordNet: A multilingual database for
information retrieval. DELOS, Zurich. (pp. 5-7).

Redkar, H., Bhingardive, S., Kanojia, D., & Bhattacharyya, P.
2015. World WordNet Database Structure: An Efficient Schema
for Storing Information of WordNets of the World. AAAI 2015,
Austin, Texas, USA. (pp. 4290-4291).

Figure 2. WWDS API usage snippets in PHP, Java and Python

