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In this lecture, we complete the proof of a theorem stating that all points in the set Ax � b can be
expressed as a convex combination of its extreme points. We then prove that a linear function on such
a set is maximized at an extreme point. This leads us to certain algorithms for linear programming.
Theorem 1 Let p1; p2; p3; : : : ; pt be the extreme points of the convex set S = fx : Ax � bg Then every
point in S can be represented as

tX
i=1

�ipi, where
tX

i=1
�i = 1 and 0 � �i � 1

Proof: The proof is by induction on the dimension of the object fx : Ax � bg. The base step is when
the dimension is zero and is trivial.
For the inductive step consider an object fx : Ax � bg in n-dimensions. Consider p 2 S. For simplicity
of presentation, assume that every inequality is strict for p. That is Ap < b. Join p1 to p and extend
this line to meet a point q on the boundary of fx : Ax � bg. Note that the segment joining p1 and p
must lie inside the set by convexity. Also, such a point q must exist since the object is bounded. What
does it mean that q is a boundary point? As we said before, it means that if we draw a small sphere
with q as the center, then part of the sphere will be outside the set. Algebraically, this means that some
inequality must be tight (must become an equality) at q. Recall the examples. It is likely that more
than one inequality could become equalities. For simplicity, we will assume that exactly one, in fact the
�rst one, becomes an equality.
For the point q, we must then have,

A1q = b1 (1)
A00q < b00 (2)

A00 is the rest of A. The object above is the intersection of two sets: fx : A1x = b1g and fx : A00x < b00 .
What does it mean to use induction on dimension? The �rst object has dimension n�1. So intersection
with any other object will yield an object of smaller dimension and we can recurse. There are two issues
to be sorted out. One is that the inductive assertion only works for objects of dimension n � 1, of the
type fx : Ax � bg. Why is the intersection of the two sets mentioned above of this type?
The trick is to use the �rst equality and solve for one variable, and replace it throughout in A00 . Which
variable? Can we use any variable? Not exactly. We can remove a variable i if A1i is non-zero. We then
solve for this variable to get xi = 1A1i

(b1 � �nj=2A1jxj). We then substitute this in every inequality to
get a new set of inequalities with one less variable.
This is a new convex set S0 = fx : Cx � dg, in one less dimension. This convex set is the intersection
of two convex sets A1x = b1 and fx : Ax � bg. Why is this?
Exercise: Show that any point in one set must be contained in the other. Also show a bijection between
the two sets.
By the induction hypothesis, q can be written as a convex combination of extreme points in this object,
S0 . Hence,

p = �p1 + (1� �)q (3)

= �p1 + (1� �)
t0X
i=1


iqi (4)
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Strictly, q is a point in the old object. It has a mirror image in the new object. But we will talk of the
two as the same.
This convex combination is, however, in terms of the extreme points q1; q2; q3; : : : ; qt0 of S0 . We need to
show that the extreme points of S0 are also extreme points of S. Suppose they were not. Let p0 be an
extreme point of S0 but not of S. Then 9 p01; p02 2 S such that p0 = �p01 + (1� �)p02. Hence:

b1 = A1p0 (5)
= �A1p01 + (1� �)A1p02 (6)
� �b1 + (1� �)b1 = b1: (7)

The �rst equality is because p0 is in S0, and the inequality is because both p1 and p2 are in S. Which
means the inequality must be an equality. Therefore p01 and p02 must also be in S0 . Hence the point p0

cannot then be extreme in S0 , as it is the convex combination of two points in the same set.
This completes the proof. � The following theorem will put the last detail in place to enable
construction of an algorithm for solving LP problems.
Theorem 2 A linear function on S = fx : Ax � bg is maximized at an extreme point.
Proof: Notice that we have tackled something like this before. Taking a convex combination is like
taking a weighted average of points. The previous theorem essentially says that every point is the
weighted average of the extreme points. If we consider linear functions, the value at any point is the
weighted average of the values at extreme points. The result follows. Let us formalise this.
Let a linear function f attain its maximum at point p, where p =

tX
i=1

�ipi. Then f(p) =
tX

i=1
�if(pi). If

all of the f(pi)'s were smaller than f(p), their weighted average cannot sum to f(p). Therefore for at
least one i, f(pi) = f(p). �

Having proved this, we have a �nite algorithm at our disposal now. An extreme point is an intersection
of n linearly independent hyperplanes. We examine all combinations of n rows from A (�mn

� of them),
solve for x0 in A0x0 = b0 using Gaussian Elimination, verify that the solution indeed satis�es all other
inequalities, and then calculate cTx.
The veri�cation part is important, as the n hyperplanes we choose may end up de�ning an infeasible
point. An example is 2-D is shown in Figure 1.
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Figure 1: Why we need to verify


