
CS 435 : Linear Optimization Fall 2008

Lecture 11: The Simplex Algorithm

Lecturer: Sundar Vishwanathan
Computer Science & Engineering Indian Institute of Technology, Bombay

We saw last time that to solve the Linear Programming problem, it was enough to find an extreme point
where the cost is maximised amongst all extreme points. The so called Simplex Algorithm considers
extreme points in a certain order. It visits extreme points one by one. It may not visit all extreme points
of the polytope but when it terminates, it will find the optimum. This, we will prove.

The algorithm consists of the following two steps.

1. Start at an extreme point.

2. Move to a neighbouring extreme point of greater cost if one exists and repeat this step. If no such
neighbour exists then exit with this point as the optimum point.

We begin with some questions.

1. How do we identify the first extreme point?

2. What do we mean by neighbouring extreme points? How do we find them?

3. Is the algorithm correct? That is, when it terminates do we have an optimum?

4. How many iterations does this algorithm perform before stopping, in the worst case?

Answering these questions will be our next task. We will leave the first as an exercise (this is not easy).
We begin with the second.

1 The notion of directions

Let us consider an example in two dimensions.

Example 1 Consider two half-planes in 2D given by

3x+ 4y ≤ 12

7x+ 3y ≤ 6

x ≤ 0

−y ≤ 0

One of the extreme points is (0, 0). Another is (0, 2). Consider the third extreme point which is the
intersection of the two lines defining the border of the first two half-planes. We would like to say that
(0, 2) is a neighbour of this point. The coordinates of the third point, say (x, y), is the solution to:[

7 3
3 4

] [
x
y

]
=

[
6
12

]
We will refer to this 2× 2 matrix as A below.

The directions of potential neighbouring extreme points are the vectors

[
4
−3

]
and

[
−3
−7

]
, respectively.

Why? How did we compute these? One way to define a direction is as a difference between two vectors.
Can you think of other ways?

1



2

If we write v1 and v2 as columns of a matrix B,

[
−3 −7
4 −3

]
then we observe that AB is a diagonal matrix

with negative entries on the diagonal.

Consider a corner p of the unit cube in three dimensions. We see that its neighbours are the three corners
you get by walking along the three edges which meet at p. Note that each edge is the intersection of
two of the three planes intersecting at p. Let the bottom face of the cube be labelled 1, 2, 3, 4 in the
clockwise direction and the top face 5, 6, 7, 8 with 5 on top of 1. Then the neighbours of 7 are 6, 8 and 3.

We generalize this notion to n dimensions. Consider the usual linear optimization problem with con-
straints Ax ≤ b and cost function cᵀx. Consider an extreme points x0. The point x0 satisfies

A′x0 = b′A
′′
x0 < b

′′
. (1)

As before A′ is the matrix formed by some n linearly independent rows of the matrix A and b′ the
corresponding entries from b. These rows are satisfied by x0 with equality. The other rows constitute
A

′′
. In a sense, the first set of equalities define the extreme point. These equalities are said to be the

support of the extreme point.

How do we determine the neighbours of x0?

By the previous example, it looks like the neighbours share n − 1 hyperplanes in their support. Then,
to find one neighbour, it makes sense to remove one of the hyperplanes from A′, add one from A

′′
and

check if the resultant point is feasible. The points we get thus, which are feasible, are the neighbours.

Exercise: Prove that for each hyperplane in A′, our assumptions imply that there will be exactly one
such hyperplane in A

′′
, for which the resultant point will be feasible.

A procedure to find the neighbours is obvious from the above description. The time taken is O(mn)
gaussian eliminations.

We wish to make this process faster. The idea is simple when one is told of it. There are n rays emanating
from x0 which connect it to its neighbours. The idea is to determine the vectors corresponding to these
directions. As we shall see this can be determined rapidly, and once we have the directions, we can also
determine the neighbours efficiently. I recommend you try the latter problem before we give a solution.
We proceed with the former.

Consider a point xi on a line li passing through x0 which connects it to some neighbour. This line is
determined by the intersection of some n − 1 rows out of the n linearly independent rows of A′. That
is, any point in this line satisfies n− 1 of these inequalities with equality and one with strict inequality.
Assume that the ith one is the strict inequality. In other words (of a mathematician),

A′
jxj = b′

j 1 ≤ j ≤ n, j 6= i (2)

A′
ixi < b′

i. (3)

The direction of the vector along the line li from the point x0 towards xi is xi − x0.

What can we say about A′(xi − x0)? For all rows of A′ except the ith row, the dot product of this row
with xi and x0 is the same (look at the assumptions above.) Also, A′xi < b′

i and A′x0 = b′
i. Hence

A′(xi−x0) is a vector with zeroes everywhere except in the ith position which contains a strictly negative
value. The constant at the ith position depends on where on the line we picked xi. The farther it is
from x0, the greater the magnitude. Let us pick it so that A′(xi − x0) = −ei, the vector with zeroes
everywhere and −1 in the ith position. This offers a further clue which we expand and expound on
below.

Consider a matrix Z, having as columns, vectors (xi − x0), for i = 1, 2, ..n.

Z =
[
x1 − x0, x2 − x0, . . . , xn − x0

]
What can you say about A′Z?

A′Z =
[
A′x1 −A′x0, A′x2 −A′x0, . . . , A′xn −A′x0

]
(4)



3

The above properties of xi imply that:

(A′xi)j = (A′x0)j ; j 6= i, (5)

(A′xi)i − (A′x0)i = −1. (6)

In other words, for each i, the ith column of the matrix A′Z has a −1 in the ith position and zeroes in
all other positions. Putting it in the language of matrices:

A′Z = −I. (7)

Now, what can we say about the direction vectors of the lines from x0 in terms of A′?

Theorem 1 The direction vectors are the columns of the negative of the inverse of matrix A′.

How much time does it take to find the direction vectors?

2 Finding neighbouring points with greater cost

The iterative step in the simplex algorithm says “move to a neighbour with greater cost”. Once we know
the direction of each neighbour, we first determine which of the neighbours has greater cost. Note that
if one of the neighbours xi has greater cost then every point on the line segment joining xi and x0 has
cost more than that of x0. To slow down the exposition, we provide a proof. But you should try this
yourself before you read it. Proof: Let x′ be any arbitrary point on the line segment joining x0 and
xi such that x′ 6= x0. Recall that any point on the line segment joining x0 and xi can be written as a
convex combination of these two. So,

x′ = λxi + (1− λ)x0, (8)

where λ > 0. Now we employ an old trick. The value of a linear function at a convex combination of
two points is a suitable weighted average of the two.

cᵀx′ = λcᵀxi + (1− λ)cᵀx0 (9)

or,
cᵀx′ = λ(cᵀxi − cᵀx0) + cᵀx0 (10)

And since cᵀxi > cᵀx0, cᵀx′ > cᵀx0. �

So we first check if xi has greater cost than x0. Or equivalently check if cT (xi − x0) > 0. After having
ascertained that moving in a particular direction increases cost, we need to actually find the neighbouring
point in that direction. Given the direction vector vi from x0, any point x′ on the line joining these two
can be written as

x′ = x0 + tvi t ≥ 0. (11)

When t = 0, this gives x0 and as t increases this point moves further from x0. For small values of t, this
point will be feasible and as we increase t there will come a time when it will no longer be feasible.

We hence seek the maximum value of t such that x0 + tvi is feasible. How do we determine this?

We need the maximum t such that
A(x0 + tvi) ≤ b (12)

Notice that the point x′ = x0 + tvi satisfies

A′
jx

′ = b′j , ∀j 6= i, 1 ≤ j ≤ n//A′
ix

′ < b′i (13)

Hence we need to only focus on the inequalities in A
′′
.



4

We increase the value of t gradually until one of the other inequalities, say the kth, becomes an equality.
That is,

A
′′

kx
′ = bk (14)

This x′ will be the required neighbour.
Argue that under the assumptions we have made, exactly one of the other inequalities will become an
equality, so that the resultant point is feasible. How do we find this k? Algorithmically, we determine
the intersection of the line with each of the hyperplanes in A′′ and choose the point closest to x0. The
others will be infeasible (why?). In other words, consider each row in A′′ in turn and see which yields
the smallest value of t.

Thus,

tk = mins
bs −Asx0
Asvi

, (15)

where s ranges over all those rows of A which do not belong to A′ such that Asvi > 0.

Question: What happens when Asvi < 0 ? Check that algebraically we can ignore these rows. Geomet-
rically, what can you say about the point of intersection of such a hyperplane with the line? Explain
with a figure.

How much time does it take to find a neighbouring point of greater cost if one exists?


