
CS 435 : Linear Optimization Fall 2008

Lecture 20: Primal-dual algorithm for MST: The Algorithm

Lecturer: Sundar Vishwanathan
Computer Science & Engineering Indian Institute of Technology, Bombay

We continue with the job of designing a primal dual algorithm for MSTs.

Here is the LP formulation.

min
∑
e

cexe

s.t.
∑

e crosses Π

xe ≥ |Π| − 1 ∀Π

xe ≥ 0 ∀e ∈ E

Here is the dual.

max
∑
Π

yΠ(|Π| − 1)

s.t.
∑

e crosses Π

yΠ ≤ ce ∀e ∈ E

yΠ ≥ 0 ∀Π

We will work with the dual. Note that the cost function occurs on the rhs. In the algorithm, we will
maintain and update the dual variables, yΠs. Initially they are all zeroes. At any stage we need to
improve the cost function. In general we can do that by increasing some of the ys and decreasing some.
To keep things as simple as possible, we will try and do this by only increasing one of the ys at a time.

Let us assume that all ces are strictly positive, so initially, none of the constraints are tight. We wish
to increase the cost function. To do so we have to increase some yΠ. Which one? It seems that we gain
the most by increasing the one where each vertex is in a separate partition. So, suppose we start to
increase this. How much can we increase it by? We see that we can increase this upto the weight of the
minimum weight edge. At this point the inequalities corresponding to all edges of minimum weight will
be tight.

Let us consider the generic step. So suppose that at some stage we have some y. As per our receipe we
need to consider only the inequalities which are equalties. So, let F denote the set of edges which are
currently tight (the corresponding inequalities are tight.) We need to increase some yΠ such that for
each of these edges the sum of the increases in the ys that the edge crosses is at most zero. This means
we can increase a yΠ such that none of the edges of F cross Π. How do we find such a Π? The most
natural is to find the current connected components and put each component in one part, to derive our
partition.

Here then is the algorithm for MSTs:

1. Initialization: We think of all yΠs to be zero. Note that we cannot explicitly set them.

2. Iterative Step: Let E′ denote the set of edges which are tight. Find the connected components of
the graph G′ = (V,E′). Increase yΠ till some edge becomes tight, where the parts of Π are the
connected components of G′.

3. The previous step terminates when we get one connected component.

1



2

First convince yourself that each step can be done in polynomial time. I suggest you take an example
graph and see what happens.

Exercise: What can you say about the number of iterations in the worst case? What can you say about
the number of non-zero ys at termination? Notice that in each iteration, at least one edge crossing the
current partition becomes tight so the number of connected components goes down by at least one.

Exercise: If the edge lengths are unique prove that you get a spanning tree.

Exercise: Prove that the weights of the edges picked are non-decreasing.

What does this algorithm remind you of?

To recap we start with any feasible solution for the dual LP and maintain feasibility in the dual LP. In
each iteration, we try to improve the dual solution. For this, we raise the value of the dual variables one
by one. If a constraint becomes tight for an edge we do not raise the dual variables of partitions which
these edges cross. After each iteration, we take the edges for which the constraints are equalities. If this
set of edges yield a connected graph, we are done. A suitable spanning tree will yield a primal feasible
solution. We essentially start with zero partition (i.e. an empty tree initially) and add edges as we go
along until dual constraint corresponding to some edge e becomes tight. Then the partition is updated
by merging the parts containing the end-points of e.

There is one more point: If all edges are of weight one, then we will, in our first step itself, pick all
the edges. But you notice that then we can pick any spanning tree here. Hence we need to prune the
solution we get. This we do in the reverse order in which we added edges.

The Reverse Delete Step: Consider the partitions which have non-zero weight in reverse order of
their appearence. Among the edges remaining which cross the partition pick a spanning set and throw
away the rest. The number of edges remaining which cross the partition will be Π− 1.

Exercise: Prove, by induction on the number of reverse delete steps executed that the final solution will
be a spanning tree.

1 Proof of optimality

We can prove that the above algorithm gives an optimum solution by exhibiting a primal and dual
solution of the same cost.
Cost of primal is given by:∑

e

ce where e is chosen by the algorithm

=
∑
e

∑
Π

e crosses Π

yΠ

=
∑
Π

∑
e

e crosses Π

yΠ

=
∑
Π

yΠ

∑
e crosses Π

1

=
∑
Π

yΠ ( number of edges chosen which crosses Π)

=
∑
Π

yΠ(|Π| − 1) Why?

This is exactly the cost of the dual. So we have proved that the cost of primal is same as the cost of the
dual proving optimality.



3

2 Some comments and observations

• Optimality can be proved by using complimentary slackness. Try it.

• This LP has an integral solution which is optimal. Why?

• Note that the algorithm is combinatorial. It has nothing to do with LPs except maintaining the
ys.

• Indeed once you recognise what the algorithm does you need not maintain the ys explictly and
you get Kruskal’s algorithm.

• Can you get Prim’s by choosing the partitions differently?

3 Exercises

• Design an algorithm with an LP where we consider only those partitions with |Π| restricted to 2.
How will you manipulate the dual variables so that you end up with Kruskal’s algorithm? Try the
analysis. Does it work?

• For every positive integer n, find an example where optimum of the LP with Π restricted to two,
is less than the weight of the minimum spanning tree.

• Prove that if we add a new constraint ∑
xe = n− 1,

there exist an integral solution to this new LP.


