
CS 435 : Linear Optimization Fall 2008

Lecture 23: Bipartite Matching

Lecturer: Sundar Vishwanathan
Computer Science & Engineering Indian Institute of Technology, Bombay

A matching in a graph is a subset of the edges such that no two edges share an end-point. In this lecture
we will design an algorithm for the maximum matching problem in bipartite graphs.
Matching
Input: A graph.
Output: A matching of maximum size.
Bipartite Matching
Input: A bipartite graph < A,B;E >, where A and B are the two partitions.
Output: A matching of maximum size.

We begin with a candidate ILP. One variable per edge, xuv. If u, v is picked, xuv = 1 else xuv = 0.

The cost function is max
∑

u,vxuv The constraint is this. For each vertex v,
∑

u x{u,v} ≤ 1. This signifies
that the number of edges incident on v is at most 1. The integrality constraint is that the variables
should be either one or zero. We replace this with xuv ≥ 0, to get an LP.

Exercise. Give an example of a graph where the integral optimum is strictly less than the LP optimum
for the matching problem on general (non-bipartite) graphs.

We ignore the implication of the exercise and try and design an algorithm using the method we have
been following. Here we will work with the primal itself. Note that there are no weights, at least not
yet!

Initialize the first matching M0 to the emptyset. For the iterative step, we have a Matching Mi and
would like to increase its size. We note that the constraint is tight for all end-points of the edges in
Mi. We pick an edge e = {u1, u2} with at least one end-point outside Mi. If both end-points are not
matched, we may simply raise xe to 1. Assume that u1 is unmatched but u2 has a matched edge (edge
{u2, u3} from Mi) incident on it. We wish to raise xe by one. This implies we have to decrease xu2,u3

to
zero. Then we may raise xu3,u4 for some edge incident on u3 and so on. We see that we are exploring
a path u1, u2, u3, . . . such that ui, ui+1 where i is even is a matched edge. This process can end in two
ways. Either the last vertex is uk with k odd and there is no matched edge incident on uk or k is even
and all edges incident on uk are incident on some other vertex in the path. If it is the latter, we cannot
really go any further. However, with the former we are able to increase the size of the matching by one.
The edges in the odd places in the path enter the matching and the edges in the even places leave the
matching.

Definition. Given a graph and a matching, an alternating path is a path with alternate edges in the
matching.

Definition. Given a graph and a matching, an augmenting path is an alternating path such that the
end-points of the path are unmatched, that is there is no edge in the matching incident on these two
vertices.

The algorithm for matching, detailed above, is as follows. Start with the empty matching. For the
current matching, find an augmenting path and augment the matching by adding the odd edges to the
matching and removing the even edges from the matching. Continue this till such a path cannot be
found.

We take up the issue of correctness first. Why is the above algorithm correct? That is, when the
algorithm terminates why do we have a maximum matching? Here is a combinatorial argument. Let M
be the matching found by the algorithm. Let Mo be a matching of larger size; towards a contratiction.
Consider the edges in M ⊕Mo. These will be alternating paths of various lengths. At least one of these
paths will have more Mo edges than M edges. This is an augmenting path yielding a contradiction.

1



2

For efficiency we need to design the path finding carefully. We will only get polynomial time in this
lecture. We will also assume that you know how to implement breadth first search efficiently. Given a
matching, and a vertex v, we need to find an augmenting path if one exists. We can then check every
vertex to see if we can find an augmenting path. The key idea is modified breadth first search. We
note that even edges (edges at even distance from v) are matched and odd edges are unmatched. So
from v we look out to all neighbours. Say u1, . . . , uk. From ui we look at the matched neighbours. Say
w1, . . . , wk. So {uiwi} belongs to the matching. Now from each wi look out to all unexplored neighbours
and so on. In other words, construct a breadth first search tree so that at even levels we only look at
edges in the matching and at odd levels we only look at unmatched edges. One can prove by induction
that if the shortest alternating path from v to u is of length k from v then the vertex u will appear in
the modified bfs tree at the k + 1th level. As in the bfs case, we can find an augmenting path in O(m)
time. Why? Let me point out that if you have to do a bfs from every vertex then you will only have
O(mn). But this can be combined. How? This gives a O(mn) algorithm for bipartite matching. One
can do much better by being careful. But that is another story.


