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Last time we saw how to solve a system of linear equations. To understand what the set of all solutions
look like, we need some vocabulary. This comes from Linear Algebra. We need to wade through a few
definitions first. Most abstract algebraic objects have sets and operations defined on them. Our object
of interest is a vector space, which comes with two sets (both infinite) with operations. To most of you
mention of a vector space would conjure a set with objects which look like (3, 4.55, .76, 0, . . . , 4)T . We
do not wish to disturb this. Indeed, we will get to this picture very soon. We wish to point out that
the subject of linear algebra can be developed without explicit co-ordinates and we will tread this path
initially.

1 Vector Space

A vector space is defined as a set of vectors V and the real numbers R (called scalars) with the following
operations defined:

• Vector Addition: V×V→ V, represented as u + v, where u,v ∈ V.

• Scalar Multiplication: R×V→ V, represented as a.u, where a ∈ R and u ∈ V.

The operations follow the following laws. First we deal with the operation on vectors, addition.

• Abelian Group laws:

1. Associativity: u + (v + w) = (u + v) + w

2. Identity: ∃ a zero vector 0 which is the group identity element, i.e. 0 + u = u

3. Inverse: ∀u ∈ V, there exists the additive inverse −u s.t. u + (−u) = 0

4. Commutativity: u + v = v + u

Now we connect the other set, the reals, with the set of vectors.

• Scalar multiplication laws:

1. Multiplication by 0: 0.u = 0

2. Multiplication by -1: (−1).u = −u

3. Identity multiplication: 1.u = u

4. Distributivity of vector sum: a.(u + v) = a.u + a.v, where a ∈ R and u,v ∈ V

5. Distributivity of scalar sum: (a+ b).u = a.u + b.u

6. Associativity of scalar multiplication: a.(b.u) = (ab).u

Check that the vectors we are familiar with obey these laws.
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2 Subspace

The next important definition is that of a subspace. This is just a subset of the vectors that is also
a vector space. The laws of vector addition and scalar multiplication are inherited, and a subset is a
vector space in its own right provided for any two vectors u and v in the subspace and α any real, u+ v
and αu are also in the subspace. The details of the proof are left to the reader.

U ⊆ V is a subspace of V if U itself is a vector space, i.e. for all u1,u2 ∈ U and α ∈ R, u1 + u2 ∈ U
and α.u1 ∈ U. For example, if u ∈ V, then U = {α.u ∀α ∈ R} is a subspace.
For α = −1, −u1 ∈ U whenever u1 ∈ U. Hence, −u1 + u1 ∈ U. Therefore, 0 is always a member of
any subspace.

Consider the familiar vector space in two dimensions; what are the subspaces?

Example 1 In a 2-dimensional space, any line passing through the origin is a subspace. If there is any
vector in U that does not lie on this line, then U has to be the entire plane. Of course, the origin by
itself, is a subspace. So there are three different types of subspaces in 2 dimensions.

3 Linear Dependence, Independence and Basis

The next definition is crucial to the development of this subject.

Definition 1 Vectors v1, . . . , vn are linearly dependent if there exist α1, . . . , αn ∈ R, not all zero, such
that

n∑
i=1

αi.vi = 0

The important point is the not all zero clause.

Definition 2 Vectors v1, . . . , vn are linearly independent if they are not linearly dependent, i.e. for
α1, . . . , αn ∈ R

n∑
i=1

αi.vi = 0 ⇒ αi = 0, ∀i

Definition 3 Vectors v1, . . . , vn form the basis of a vector space V it iff:

1. they are linearly independent.

2. every other vector w which belongs to V can be written as

w =
n∑

i=1

βi.vi

Alternatively, v1, . . . , vn form the basis of the vector space V if they are linearly independent and on
adding any other vector w ∈ V to this set, the set becomes linearly dependent.

The crucial fact is that though there can be multiple basis for the same vector space, all of them will
have the same size. We will prove this beautiful fact soon. This seems obvious once you have a picture
in your mind. Certainly in two and three dimensions. However, this does require a proof and the proof
technique is used often in mathematics and algorithm design.

To restate this important fact, if v1, . . . ,vn is a basis, and so is u1, . . . ,um, then m = n. The number
of vectors in a basis is called the dimension of the vector space.

One other point. There are vector spaces where the dimension is infinite. We will, however, only deal
with vector spaces where the dimension is finite.
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We first give a proof of the result stated above. If two sets of vectors form a basis for a vector space V ,
their sizes are the same.

We recall that a set X of vectors is a basis for a space V if:

1. the vectors in X are linearly independent and

2. any vector in V can be expressed as a linear combination of vectors in X.

We will prove the result by contradiction. So consider two bases S and T . We assume for a contradiction
that |S| is strictly smaller than |T |. We will then obtain a set S′ ⊂ T which is also a basis, with the
property |S′| = |S|. Now, |S′| = |S| < |T | and S′ ⊂ T . Hence the vectors in T \ S′ can be expressed in
terms of those in S′, contradicting the fact that T is a basis.

The idea behind the proof is this. Suppose S = {u1, u2, . . . , um} and T = {v1, v2, . . . , vn} with m < n.
We will repeatedly replace elements of T with elements of S, each time maintaining the invariant that
the set remains a basis. After m such substitutions, we have our desired contradiction.

For a set of vectors, the span of a set of vectors is the set of all vectors that can be obtained by taking
linear combinations of the vectors in the set. The vectors in the set may or may not be independent. In
other words, for a set of vectors v1, . . . , vk, span(v1, . . . , vk) is the set {

∑n
i=1 αivi : αi ∈ R}.

Exercise: Prove that for a set of vectors v1, . . . , vk; span(v1, . . . , vk) is a subspace.

The following lemma shows how to replace one vector in a basis with another so that the new set is also
a basis.

Lemma 1 Suppose S = {v1, . . . , vn} and let x =
∑n

i=1 αivi with α1 6= 0. Let S′ = {x, v2, . . . , vn}. Then,
span(S) = span(S′).

Proof: There are two directions to prove. First observe that since α1 6= 0, we can write v1 as a linear
combination of x, v2, . . . , vn. Thus, any vector in span(S) is also in span(S′). For the other direction,
since x is a combination of vis, every vector in span(S′) is also in span(S). �

We did something like this during the proof that Gaussian Elimination works. Do go over it.

Theorem 1 Suppose S = {u1, u2, . . . , um} and T = {v1, v2, . . . , vn} be two sets of vectors such that
each is a basis for the vector space V . Then m = n.

Proof: The proof will follow the outline above. Suppose without loss of generality, that m < n.
Starting with the set S0 = S, we do the following: replace one of the vectors of S0 by a vector from T
such that the new set, say S1, still spans all of V . Also, if vi was the vector in T which was added to
S0, we set T1 = T \ {vi}.
We repeat this step m times. Further, we ensure that at each step, the element removed from Si is one
of the uj ’s and not the vj ’s that have been added. For the generic step, assume that we have two sets
Si and Ti (with i < m). We maintain the invariants that Si is a basis and Ti = T \ Si. We show that it
is always possible to obtain a set Si+1 such that:

1. Si+1 is obtained from Si by removing one of the uj ’s from Si and adding one of the vj ’s (which is
from Ti) (call it x) to it.

2. The span of Si+1 is the same as the span of Si.

Further, we set Ti+1 = Ti \ {x}, to maintain the invariant.

We assume that we have re-numbered the ui’s and vi’s such that Si = {ui+1, . . . , um, v1, . . . , vi} and
Ti = {vi+1, . . . , vn}.1 Since Si spans the whole of V , we have

vi+1 =
m∑

j=i+1

αjuj +
i∑

j=1

βjvj (1)

1If i = 0, S0 = S, T0 = T , and we interpret summations of the form (
Pi

j=1 . . . ) as zero.
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Now, at least one of αj ’s must be non-zero, since otherwise we will have a non-trivial combination of vi’s
yielding zero, which is not possible since T is a basis. So assume without loss of generality that αi+1 is
non-zero. Then, by the lemma above, replacing ui+1 by vi+1 yields another basis. This is the required
Si+1.

After repeating this process m times, the resulting set, Sm will have m vectors from T and they span
the whole of V . This is the contradiction we desire. �

We have proved that given a vector space V , any basis for it will have the same size. Thus, this number
is a property of V alone, and it is called the dimension of V .


