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1 Row Rank and the dimension of the Null Space

The space {x : Ax = 0} is called the null space of the matrix A. Having already seen that the dimension
of the null space of A is equal to the n − k where k is the number of linearly independent columns of
the matrix A, we now examine how this relates to the number of linearly independent rows of A.

Indeed, we will show that it is equal to n− r where r is the number of linearly independent rows of A.
This, in some sense, is not surprising. Unlike the column space, here both x and the rows of A, have the
same number of coordinates. As vectors, both x and rows of A are part of Rn. Recall that two vectors
are perpendicular if their dot product is zero. The set of interest then can be also described as the set
of all vectors x which are perpendicular to all rows of A. If the row space is the space spanned by the
rows of A then what we are looking for is the orthogonal complement of the row space of A. It is hence
believable that the dimension of the orthogonal complement is n− r.

One way of proving this is to use Gaussian Elimination which we do next. We have proved that Gaussian
Elimination does not change the set {x : Ax = 0}. From what we have done so far, it is easy to infer
that Gaussian Elimination does not change the number of linearly independent columns of A. Why?

We will next prove that Gaussian Elimination does not change the space spanned by the rows. This
is to be expected, since, we know that it does not change the orthogonal complement! So, one way to
prove this is to show that the orthogonal complement of the orthogonal complement of a subspace U of
Rn is the subspace U itself. We will do it differently but the reader is encouraged to try that approach.

Lemma 1 Gaussian Elimination does not change the row space of a matrix.

Proof: Gaussian Elimination consists of two elementary operations. Exchanging two rows and multi-
plying a row with a scalar and adding it to another row. It is clear that exchanging two rows does not
change the row space.

Suppose row Ai is replaced by Ai + cAj . This is the only change in the two sets of vectors. We are done
if we can show that every vector in the new space is in the old space and vice versa. The argument is
very similar to the exchange lemma we did when we proved that bases have the same size. Note that
the new vector Ai + cAj is also present in the old space. Hence every vector in the new space belongs
to the old space. Also Ai belongs to this new space since we can get it by subtracting cAj from the
new ith row. Hence vectors in the old space are also present in the new space. Since the space has not
changed, the dimension remains unchanged. �

Gaussian Elimination provides us with a tool to replace the old set of (row) vectors with a new set with
the same span. The new set has a structure which lets us make certain inferences, especially connected
with the rank, easily.

Lemma 1 dim({x : Ax = 0}) ≥ n− r

Proof: The previous lemma assures us that applying Gaussian Elimination does not alter either the
dimension of the row space nor the dimension of the space {x : Ax = 0}.
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After the Gaussian elimination, A looks like:

0 . . . 01 . . . . . . . . .
0 . . . . . . 01 . . .

...
0 . . . . . . . . . 01 . . .
0 . . . 0

...


Here the tth row, At, for 1 ≤ t ≤ r, contains a 1 in the itth coordinate and 1 ≤ i1 ≤ i2 ≤ · · · ≤ ir. For
simplicity of presentation, we will assume that it = t.

Actually, as per our old view, we did not necessarily have a one in that position. At,it
contained the

first non-zero entry in row t after Gaussian Elimination. We know further that is < is+1 for each
1 ≤ s ≤ r− 1. We assume that this constant At,it is one for convenience. If necessary we can divide the
equation by a suitable constant–this does not change any parameter of relevance. Also we can without
loss of generality assume it = t. We can do this, for example, by renumbering the variables.

Now let x be any solution to the set of equations. Then it can be easily seen that we can assign any
arbitrary values to xr+1 . . . xn, and solve for x1 . . . xr to find a solution to the set of equations. This is
very similar to the column case and we indeed tread the same path hereon. In particular, we look at the
n− r vectors of the form Ui−r = (x1, x2, . . . , xn); i = r + 1, . . . , n, where the ith coordinate of Ui−k is
1 and for j > k, j 6= i, the jth co-ordinate is 0.

Then the Ui’s are of the form:



U1,1

...
U1,r

1
0
...
0





U2,1

...
U2,r

0
1
...
0


· · ·



Un−r,1

...
Un−r,r

0
0
...
1


Where Ui,j is the jth coordinate of the vector Ui and are obtained as outlined above for 1 ≤ j ≤ r.
Clearly these n− r vectors U1, . . . , Un−r are linearly independent, as the last (n− r) coordinates show.
Also each Ui is a solution to Ax = 0 by construction. Thus we have (n−r) linearly independent solutions
to Ax = 0. This proves the lemma. �

Now, as before, we will prove that the dim({x : Ax = 0}) = n− r. We do this by showing that every
other vector in the space {x : Ax = 0} can be written as a linear combination of the Uis.

Theorem 2 dim({x : Ax = 0}) = n− r

Proof: Consider any x′ such that Ax′ = 0. We construct the following new vectors:

x̃ = x
′

r+1U1 + · · ·+ x
′

nUn−r

x
′′

= x′ − x̃

As before we are done if we prove that x
′′

= 0 since then x′ = x̃ which is expressible as a linear
combination of the Uis.

By construction,
x

′′

i = 0, i = r + 1, . . . , n. (1)
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We now observe that

Ax
′′

= A(x′ − x̃)

= Ax′ −
n−r∑
i=1

x
′

r+iAui

= 0−
n−r∑
i=1

x
′

r+i0 because Aui = 0

= 0 (2)

Now we prove that x
′′

i = 0 in the order r ≥ i ≥ 1. Consider the ith equation. Write this down to make
sure you understand what we are talking about. The value of x

′′

i depends only on x
′′

j for j > i. Hence
if all the co-ordinates x

′′

j for j > i are zero then so is x
′′

i . Whence, x
′′

= 0.

Thus we get dim({x : Ax = 0}) = n− r �

This concludes the proof of the fact that the row rank of a matrix is equal to n − t where t is the
dimension of its null space. As we have already proved, this is also equal to the column rank of a matrix.
We then get, as a corollary, that the row rank and column rank of a matrix are equal.

Corollary 3 The row rank of a matrix is equal to its column rank.

2 Solutions to Ax = b

Consider now Ax = b for any arbitrary column vector b. We see below that the set {x : Ax = b}
looks like a subspace shifted by a vector. By shifting a subspace we mean take all vectors in a subspace
and add a fixed vector to all of them.

Theorem 4 Let x0 be a vector in Rn such that Ax0 = b. Then every solution to Ax = b can be written
in the form x0 + x′, where x′ is any vector satisfying Ax′ = 0.

Proof: Consider any x̃ such that Ax̃ = b. Then, we have Ax0 = b and Ax̃ = b. Which means
A(x̃− x0) = 0. Set x′ = x̃− x0 to finish the proof. �

To conclude, the solution set of Ax = b looks like a subspace shifted by a vector x0.


