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1 Convex Sets

Recall the de�nitions of a convex set from the previous lecture.

Theorem 1 If S1 and S2 are two convex sets, then S1 \ S2 is a convex set.

Proof: Let x1; x2 2 S1 \ S2. Now since x1 and x2 belong to S1 (which is convex), any convex
combination of them lies in S1. Similarly we can say that this convex combination of x1 and x2 lies in
S2. Thus the convex combination lies in S1 \ S2. Thus S1 \ S2 is convex. �

We can use the previous theorem to give a proof of the fact that fx : Ax � bg is a convex set. It is,
in a sense, the same as the previous proof but easier to visualise. Consider A1x � b1. All the points
satisfying this inequality lie on one side of the hyperplane A1x = b1. This set is convex. If we take
two points satisfying this inequality, it can be easily checked that so does every convex combination.
Similarly the solution sets of the other inequalities Ajx � bj are also convex. Thus, Ax � b, which is an
intersection of all of these convex regions, is convex.

2 Maximize c
T
x

Recall our quest. How do we maximize cTx over the set of all x satisfying Ax � b? We now know that
Ax � b is a convex set. In subsequent lectures we will have more to say about what it looks like. It is
instructive to see how the value of the function cTx varies in Rn. This is something you know implicitly
but we wish to make it explicit.

For creating a picture in your mind, we will initially restrict attention to two dimensions. So consider
c1x + c2y as it varies over R2. We know that c1x + c2y = 0 is a line through the origin. And for any
value �, c1x+ c2y = � is a line which is parallel to the above line. So, the value of this function is zero
on the line c1x+ c2y = 0, increases monotonically in a direction perpendicular to the line and decreases
in the reverse direction.

Indeed, this picture is true even in higher dimensions. Can we identify a vector in the direction perpen-
dicular to cTx = �? A vector perpendicular to cTx = � is also perpendicular to cTx = 0. Why is this?
Can you now identify a vector perpendicular to cTx = 0?

What does the hyperplane cTx = 0 mean? It is the collection of all points which are perpendicular to
the vector c. Restating this, the vector c is perpendicular to all points on the hyperplane cTx = 0. And
this is the vector we are looking for. In fact, it is easy to see that the value increases along the direction
of c and decreases along �c.

Maximising this function on a convex set is not di�cult to imagine. Let us take a simple convex set:
the unit sphere given by xTx � 1.

This is a set such that all points are at a distance less than or equal to 1 from the origin.
Exercise: Prove that this set is convex.
We know that cTx increases in the direction of c. Thus we start moving in the direction of c. The last
point where cTx touches the sphere is the point of maxima. It can be easily seen that at this point, cTx
is a tangent to the sphere xTx.
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Now consider any convex polygon in the plane. To maximize cTx keep moving along c. The last
point where cTx touches the polygon will be the point of maxima. It can be observed that this point
will be a point on the boundary.
While we have made several loose statements (for instance what is the de�nition of boundary ?) the
picture we have painted is kosher and we will make all this formal in the forthcoming lectures.
Generously extending this argument to the case of our interest, it is natural to think that cTx will attain
its maximum value at some boundary point(s) of the region Ax � b. This is indeed true and we will
prove this too. In fact we will see shortly that Ax � b in 2D looks like a polygon.

A function f : Rn ! R is called linear if it satis�es the following:

1. f(x+ y) = f(x) + f(y) and

2. for any real �, f(�x) = �f(x).

Exercise: Check that the function gc : Rn ! R de�ned by gc(x) = cTx is linear.

A possibly surprising fact is that all linear functions are of the form gc for some c. Why is this?
Reverse engineering is called for to prove this. If indeed this were true, what would c be? Indeed, what
should the �rst coordinate of c be in terms of f?
You need to note now that if this were true then ci must be f(ei).

Solve the exercise below to �nish the proof. Exercise: Prove that f(x) = (f(e1); f(e2); : : : ; f(en))Tx, for
all x.

Maximising an arbitrary function over an arbitrary in�nite set is an intractable computational problem.
However, in our case, both the function and the sets are well behaved. We illustrate one key property
below.

Definition 1 A point x0 in a set S is said to be a local maxima for a function f if there exists a small
neighbourhood N of x0 where f(x0) � f(x);8x 2 N . For us, N is a ball of a small but non-zero radius
around x0.

Theorem 2 Let f be a linear function over a convex set S. Then a local maximum is a global maximum.

Proof: Let x0 be a local maximum and y be a global maximum. The basic idea is to consider the line
segment between x and y and show that the value of the function varies continuously in a non-decreasing
way from x0 to y. This is a property of linear functions. The existence of the line segment inside the set
is due to the convexity property.
Let N be a neighbourhood where x0 is the local maximum. Consider a point P = (1� �)x0+ �y. Choose
� small enough so that this point lies inside N .
Now, consider f((1� �)x0 + �y). Since f is linear, this can be written as

(1� �)f(x0) + �f(y)

= f(x0) + �(f(y)� f(x0))

Observe that at point P , which is in the neighbourhood of x0, the value of the function is strictly greater
than f(x0) if f(y) > f(x0). Thus f(x0) can be maximum only if f(x0) = f(y). Or that a local maximum
is the same as a global maximum. �


