
Models and indices for integrating unstructured
data with a relational database

Sunita Sarawagi

IIT Bombay
sunita@iitb.ac.in

Abstract. Database systems are islands of structure in a sea of un-
structured data sources. Several real-world applications now need to cre-
ate bridges for smooth integration of semi-structured sources with exist-
ing structured databases for seamless querying. This integration requires
extracting structured column values from the unstructured source and
mapping them to known database entities. Existing methods of data in-
tegration do not effectively exploit the wealth of information available in
multi-relational entities.
We present statistical models for co-reference resolution and informa-
tion extraction in a database setting. We then go over the performance
challenges of training and applying these models efficiently over very
large databases. This requires us to break open a black box statistical
model and extract predicates over indexable attributes of the database.
We show how to extract such predicates for several classification models,
including naive Bayes classifiers and support vector machines. We ex-
tend these indexing methods for supporting similarity predicates needed
during data integration.

1 Introduction

Current research in the area of database mining integration is about finding pat-
terns in data residing within a single structured data box. Most data around us is
unstructured but is largely ignored in the data analysis phase. The only effective
way to exploit this abundance of unstructured data is to map it the structured
schema implicit in a database system. Not surprisingly, a lot of excitement in re-
cent learning and KDD community has been on dealing with partially structured
or semi-structured data. Although, in sheer volume structured data is small, it
is precious data that captures the language in which data is to be analyzed.
Ideally, we would like to be able to map the huge insanity of unstructuredness
in terms of this database, and perform our querying and mining the same way.

The KDID community has a lot to offer in this quest. We need to understand
and build models to statistically describe and recognize the entities stored in the
database. Given the huge volume of unstructured data involved, we have to rely
extensively on indexed access to both the database and the unstructured world.

Here are some examples of scenarios where a database and unstructured
sources meet.

Consider a company selling electronics products that maintains a table of its
products with their features as column names. Companies routinely monitor the
web to find competing companies offering products with similar features and to
find reviews of newly introduced features. Ideally, they would like to map these
unstructured webpages to additional rows and columns in their existing products
database.

Another interesting area where there is strong need for integrating unstruc-
tured data with a structured database is personal information management sys-
tems. These systems organize all information about an individual in a structured
fixed-schema database. For example, the PIM would contain structured entries
for documents along with their titles, authors and citations organized as a bibtex
entry, people including colleagues and students along with their contact infor-
mation, projects with topics, members and start dates. Links between the struc-
tured entities, like members pointing to people and authors pointing to people,
establish relationships between the entities. Such an interlinked database opens
up the possibility of a query interface significantly richer than has been possible
through grep on file-based unstructured desktops.

Given the legacy of existing file-based information systems, the creation of
such a database will not happen naturally. Separate data integration processes
are required to map unstructured data as it gets created as files into the existing
structured database. For example, as a user downloads a paper he would like the
bibtex entry of the paper to get automatically extracted and added in his PIM.
When a resume appears in an email, he might want to link them to relevant
projects.

This is a difficult problem involving several stages of information gathering,
extraction and matching. We are very far from this goal. In this article, I will
go over the pieces of the puzzle that are relevant and being solved today. We
explicitly limit the scope to the following concrete problem. We are given a large
multi-relational database and an optional small labeled unstructured set. Our
goal is to perform the following on an input unstructured string:

– Extract attributes corresponding to columns names in the database and as-
sign relationships through foreign keys when attributes span multiple linked
tables. We call this the information extraction problem.

– Map the extracted entities to existing entries in the database if they match,
otherwise, create new entries. We call this the matching problem.

On each of these subproblems a lot of work has already been done. These
span a number of approaches starting from manually-tuned set of scripts to plain
lookup-based methods to a bewildering set of pattern learning-based methods.
However, there is still a need to develop unified solutions that can exploit existing
networked structured databases along with labeled unstructured data. We would
like a proposed solution to have the following properties:

– Automated, domain-independent, database-driven: Our goal is to design a
system that does the integration in as domain-independent and automated a

manner as possible. Ideally, the database system should be the only domain-
specific component of the whole system. We should exploit it in the most
effective way possible.

– Unified learning-based model for all integration tasks: Instead of building
one classifier/strategy for recognizing year fields and another one for author-
names and a third one for geography, we want a unified model that recognizes
all of these through a single global model.

– Probabilistic output for post-querying and mining: We prefer a model that
can output probabilities with each extraction/matching it outputs. Integra-
tion is not a goal by itself. It is often followed by large aggregate queries and
soft-results with probabilities will provide better answers to these queries.

– Exploit all possible clues for extraction/matching in a simple combined
framework: Real-life extraction problems will need to exploit a rich and
diverse set of clues spanning, position, font, content, context, match in dic-
tionary, part-of-speech, etc. We want an extensible model where it is easy to
add such clues in a combined framework.

– Efficient, incremental training and inferencing: Finally we would like the
system and the trained models to continuously evolve with the addition of
new data and user corrections.

Conditional Random Fields [6,11], a recently proposed form of undirected
graphical models, is holding great promise in taking us toward this goal. I will
present an overview of CRFs and later concentrate on how they apply for ex-
traction and matching tasks.

2 Conditional Random Fields

We are given x a complex object like a record or a sequence or a graph for which
we need to make n interdependent predictions y = y1 . . . yn. During normal
classification we predict one variable. Here the goal is to predict n variables that
are not all independent. The dependency between them is expressed as a graph
G where nodes denote the random variable y and an edge between two nodes yi

and yj denotes that these variables are directly dependent on each other. Any
other pair of nodes yi and yk not connected by a direct edge are independent of
each other given the rest of the nodes in the graph. This graph allows the joint
probability of y (given x) to be factorized using simpler terms as:

Pr(y|x) =
Φ(y,x)
Z(x)

=
∏

c Φc(yc,x, c)
Z(x)

This provides a discriminative model of y in terms of x. The c terms refer to
cliques in the graph. For each clique a potential function captures the dependency
between variable yc in the clique. The denominator Z(x) is a normalizer and is
equal to

∑
y′ Φ(y′,x). In exponential models, the potential function takes the

form:
Φc(yc,x, c) = exp(

∑
m

wmfm(yc,x, c))

The terms within the exponent are a weighted sum of features that capture
various properties of the variables yc,x, c. Features can take any numerical value
and are not required to be independent of one other. This is one of the strengths
of the exponential models because it allows a user to exploit several properties of
data that might provide clues to its label without worrying about the relationship
among them. The wm terms are the parameters of the model and are learnt
during training. We will use W to denote the vector of all wms.

The inference problem for a CRF is defined as follows: given W and x, find
the best labels, y : y1, y2 . . . , yn

argmaxy Pr(y|x) = argmaxy

∑
c

W.f(yc,x, c)

In general it is too expensive to enumerate all possible values of each of
the ys and pick the best. However, the limited dependency among variables
can be exploited to significantly reduce this complexity. The message passing
algorithm is a popular method of solving various kinds of inference problems on
such graphs. For a graph, without cycles it can find the best y and/or various
marginals of the distribution in at most two passes over the graph. In a graph
with cycles it is used to provide an approximation. An excellent survey of these
techniques and how they solve the problems of training and inferencing appear
in [5].

We will now see how various forms of information extraction and matching
problems can be modeled within this unifying framework of conditional random
fields.

3 Information Extraction(IE)

Traditional models for information extraction take as input labeled unstructured
data and train models that can then extract the labeled fields from unseen
unstructured data. We will review these first. Next, we will see how these can
be extended to exploit an existing large database of structured entities.

3.1 IE using only labeled unstructured data

The state of the art methods of IE model extraction as a sequential labeling
problem. Typically, IE models treat the input unstructured text as a sequence
of tokens x = x1 . . . xn which need to be assigned a corresponding sequence of
labels y = y1 . . . yn from a fixed set Y. The label at position i depends only
on its previous label, thus the corresponding dependency graph on the variables
is a chain. For instance, x might be a sequence of words, and y might be a
sequence in {I,O}|x|, where yi = I indicates “word xi is inside a name” and
yi = O indicates the opposite. The simpler chain structure of the graph allows
for more efficient training and inferencing as discussed in [11]. The conditional
form of the CRF models allows us to exploit a variety of useful features without
worrying about whether these overlap or not. For example, we can add features

that capture the following diverse kinds of properties of a word: word ends in
“-ski”, word is capitalized, word is part of a noun phrase, word is under node
X in WordNet, word is in bold font, word is indented, next two words are “and
Associates”, previous label is “Other”.

3.2 IE using labeled data and structured databases

We now consider the case where in addition to the labeled data, we have large
databases of entity names. For example, in trying to extract journal names from
citations, we can have access to an existing list of journals in a bibtex database.

The conditional model provides one easy way to exploit such databases of
entities. Assume we have columns in the database corresponding to different
entity types like people and journals that we wish to extract. We simply add
one additional binary feature for each such column D, fD which is true for
every token that appears in that column of entity names: i.e., for any token
xi, fD(xi) = 1 if xi matches any word of the entity column D and fD(xi) = 0
otherwise. This feature is then treated like any other binary feature, and the
training procedure assigns an appropriate weighting to it relative to the other
features.

The above scheme ignores the fact that entity names consist of multiple
words. A better method of incorporating multi-word entity names was proposed
by Borthwick et al [1]. They propose defining a set of four features, fD.unique,
fD.first, fD.last, and fD.continue. For each token xi the four binary dictionary
features denote, respectively: (1) a match with a one-word dictionary entry, (2)
a match with the first word of a multi-word entry, (3) a match with the last
word of a multi-word entry, or, (4) a match with any other word of an entry. For
example, the token xi=“flintstone” will have feature values fD.unique(xi) = 0,
fD.first(xi) = 0, fD.continue(xi) = 0, and fD.last(xi) = 1 (for the column D
consisting of just two entries: “frederick flintstone” and “barney rubble”.

A major limitation of both of these approaches is that the proposed exact
match features cannot handle abbreviations and misspellings in unstructured
source. For example, a person names column might contain an entry of the
form “Jeffrey Ullman” whereas the unstructured text might have “J. Ullmann”.
This problem can be solved by exploiting state-of-the-art similarity metrics like
edit distance and TF-IDF match [3]. The features now instead of being binary
are real-valued and return the similarity measure with the closest word in a
dictionary.

A second limitation is that single word classification prevents effective use
of multi-word entities in dictionaries. Similarity measures on individual words is
less effective than similarity of a text segment to an entire entry in the dictionary.
We address this limitation by extending CRFs to do semi-markov modeling in-
stead of the usual markov models. In a semi-markov model we classify segments
(consisting of several adjacent words) instead of individual words. The features
are now defined over segments and this allows us to use as features similarity
measures between a segment and the closest entry in the entity column. During
inference, instead of finding a fixed sequence of labels y1 . . . yn we find the best

method of segmenting the text and assign labels for each segment. Although,
computationally this appears formidable, we can design efficient dynamic pro-
gramming algorithms as shown in [4] and [9].

Experimental results on five real-life extraction tasks in the presence of large
database of entity names show that the semi-markov models along with the use
of similarity features increase the overall F1 accuracy from 46% to 58%.

We believe that semi-markov models hold great promise in providing effective
use of multi-word databases for IE. More experiments are needed to establish
the usefulness of this approach in a general multi-column setting. An interesting
direction of future work is how existing foreign key/primary key relationships
can be exploited to get even higher accuracies.

4 Entity Matching

We now consider the problem of matching an extracted set of entities to existing
entries in the database. In the general case, an input unstructured record will be
segmented into multiple types of entities. For example, a citation entry can be
segmented into author names, title, journal names, year and volume. The existing
database will typically consist of multiple tables with columns corresponding to
the extracted entities and linked through foreign and primary keys.

4.1 Pair-wise single-attribute matching

Consider first the specific problem of matching a single extracted entity to a
column of entity names, if it exists and returning “none-of-the-above” if it does
not. Typically, there are several non-trivial variations of an entity name in the
unstructured world. So, it is hard to hand-tune scripts that will take into account
the different variations and match an extracted entity to the right database en-
try. We therefore pursue the learning approach where we design a classifier that
takes as input various similarity measures between a pair of records and returns
a “0” if the records match and a “1” otherwise. This is a straight-forward binary
classification problem where the features are real-valued typically denoting vari-
ous kinds of similarity functions between attributes like Edit distance, Soundex,
N-grams overlap, Jaccard, Jaro-Winkler and Subset match [3]. Thus, we can use
any binary classifier like SVM, decision trees, logistic regression. We use a CRF
with a single variable for later extensibility. Thus, given a record pair (x1x2),
the CRF predicts a y that can take values 0 or 1 as

Pr(y|x1, x2) =
exp(W.F(y, x1, x2))

Z(x1, x2)
(1)

The feature vector F(y, x1, x2) corresponds to various similarity measures
between the records when y = 1.

An important concern about this approach is efficiency. During training we
cannot afford to create pairs of records when the number of records is large.

Typically, we can use some easy filters like only include pairs which have at least
one common n-gram to reduce cost. During prediction too we cannot afford
to explicitly compute the similarity of an input record with each entry in the
database. Later we will discuss how we can index the learnt similarity criteria
for considering only a subset of records with which to match.

4.2 Grouped entity resolution

The “match” relation is transitive in the sense that if a record r1 matches with
r2 and r2 matches with r3 than r1 has to match with r3. When the input is a
group of records instead of a single record as in the previous section, the pair-
wise independent classification approach can output predictions that violate the
transitivity property. McCallum and Wellner [7] show how the CRF framework
enables us to form a correlated prediction problem over all input records pairs,
so as to enforce the transitivity constraint.

Assume new the sets of records are not already in the database. Given several
records x=x1, x2, . . . xn, we find n2 predictions, y = yij : 1 ≤ i ≤ n, 1 ≤ j ≤ n
so as to enforce transitivity

Pr(y|x) =
exp(

∑
i,j W.F(yij , xi, xj) +

∑
i,j,k w′.f(yij , yik, yjk))

Z(x)

The value of the feature f(yij , yik, yjk) is set to 0 whenever transitivity con-
straint is preserved otherwise it is set to −∞. This happens when exactly two
of the three arguments are set to 1.

The above formulation reduces to a graph partitioning problem whose exact
solution is hard. However, it is possible to get good approximate solutions as
discussed in [7]. The authors show that compared to simple pair-wise classifi-
cation, the combined model increases the accuracy of two noun co-referencing
tasks from 91.6% to 94% and 88.9% to 91.6% respectively.

4.3 Grouped multi-attribute entities

In the general case, the entity groups to be matched will each consist of mul-
tiple attributes. Grouped matching of multi-attribute records presents another
mechanism of increasing accuracy by exploiting correlated predictions using a
graphical model like CRF as discussed in [8]. Consider the four citation records
below (from [8]).

Record Title Author Venue
b1 Record Linkage using CRFs Linda Stewart KDD-2003
b2 Record Linkage using CRFs Linda Stewart 9th SIGKDD
b3 Learning Boolean Formulas Bill Johnson KDD-2003
b4 Learning of Boolean Expressions William Johnson” 9th SIGKDD
The similarity between b1 and b2 could be easy to establish because of the

high similarity of the title and author fields. This in turn forces the venues

“KDD-2003”, “9th SIGKDD” to be called duplicates even though intrinsic tex-
tual similarity is not too high. These same venue names are shared between b3
and b4 and now it might be easy to call b3 and b4 duplicates in spite of not
such high textual similarity between the author and title fields.

Such forms of shared inferencing are easy to exploit in the CRF framework.
Associate variables for predictions for each distinct attribute pair and each record
pair. In the formulation below, the first set of terms express the dependency
between record pair predictions and predictions of attributes that they contain.
The second set of terms exploits the text of the attribute pairs to predict if they
are the same entity or not.

Pr(y|x) =
exp(

∑
i,j

∑
k W.F(yij , A

k
ij) + W′.F′(Ak

ij , xi.a
k, xj .a

k))
Z(x)

The main concern about such formulations is the computation overhead and
[8] presents some mechanisms for addressing them using graph partitioning al-
gorithms. The combined model is shown to increase the match accuracy of a
collection of citations from 84% to 87% ([8]).

5 Indices for efficient inferencing

For both the extraction and matching tasks, efficient processing will require that
we break open the classification function learnt by a CRF and define appropriate
indices so that we can efficiently select only that data subset that will satisfy a
certain prediction. All aspects of this problem are not yet solved.

We will next consider a specific matching scenario of Section 4.1 where it is
possible to design indices to reduce the number of entries in the database with
which a query record is compared.

After the model in Equation 1 is trained we have a weight vector W for each
feature in the vector F(y, x1, x2). When applying this model during inferencing,
we are given a string xq and our goal is to find the xj-s from the database with
the largest value of W · F(1, xq, xj). We claim that for most common similarity
features, this function can be factorized as

W · F(1, xq, xj) = w1(xq)f1(xj), . . . wr(xq)fr(xj).

Consider an example: The original function is:

W · F(1, xq, xj) = 0.3 tf − idf(xj , xq) + 0.4 common-words(xj , xq)

. This can be rewritten as:∑
word e∈xq

(0.3 weight(e, xq)weight(e, xj) + 0.4[[e ∈ xj]])

The factorized form above allows us to index the data for efficiently finding
the best match for a given query record as follows. We create inverted index

for each of the r features fi. Thus, for each feature we keep the list of (record
identifiers, feature-value) pair for all records that have a non-zero value of the
feature. The query records assigns a weight for a subset of these features. We
create a weighted merge of these lists to find the record identifiers that will have
the largest value of the dot-product. A number of techniques have been proposed
in the database or IR literature to efficiently perform this merge and find the
top-k matching records without performing the full merge. These details can be
found in [10,2,12].

A number of interesting problems in designing indices for pulling parts that
are likely to contain entities of a given type still remain. We can expect to see
lot of work in this area in the future.

6 Conclusion

In this article we motivated the research area of developing techniques for infor-
mation extraction and integration by exploiting existing large databases. Recent
advances in graphical models provide a unified framework for structure extrac-
tion and reference resolution. This is a call to researchers in the KDD community
to investigate the problems of developing practical models for these problems and
providing methods for efficient training and inferencing.

References

1. A. Borthwick, J. Sterling, E. Agichtein, and R. Grishman. Exploiting diverse
knowledge sources via maximum entropy in named entity recognition. In Sixth
Workshop on Very Large Corpora New Brunswick, New Jersey. Association for
Computational Linguistics., 1998.

2. Surajit Chaudhuri, Kris Ganjam, Venkatesh Ganti, and Rajeev Motwani. Robust
and efficient fuzzy match for online data cleaning. In SIGMOD, 2003.

3. William W. Cohen, Pradeep Ravikumar, and Stephen E. Fienberg. A comparison of
string distance metrics for name-matching tasks. In Proceedings of the IJCAI-2003
Workshop on Information Integration on the Web (IIWeb-03), 2003. To appear.

4. William W. Cohen and Sunita Sarawagi. Exploiting dictionaries in named en-
tity extraction: Combining semi-markov extraction processes and data integration
methods. In Proceedings of the Tenth ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining, 2004. To appear.

5. M. I. Jordan. Graphical models. Statistical Science (Special Issue on Bayesian
Statistics), 19:140–155, 2004.

6. John Lafferty, Andrew McCallum, and Fernando Pereira. Conditional random
fields: Probabilistic models for segmenting and labeling sequence data. In Proceed-
ings of the International Conference on Machine Learning (ICML-2001), Williams,
MA, 2001.

7. Andrew McCallum and Ben Wellner. Toward conditional models of identity uncer-
tainty with application to proper noun coreference. In Proceedings of the IJCAI-
2003 Workshop on Information Integration on the Web, pages 79–86, Acapulco,
Mexico, August 2003.

8. Parag and P. Domingos. Multi-relational record linkage. In Proceedings of 3rd
Workshop on Multi-Relational Data Mining at ACM SIGKDD, Seattle, WA, Au-
gust 2004.

9. Sunita Sarawagi and William W. Cohen. Semi-markov conditional random fields
for information extraction. In NIPs (to appear), 2004.

10. Sunita Sarawagi and Alok Kirpal. Efficient set joins on similarity predicates. In
Proceedings of the ACM SIGMOD International Conference on Management of
Data, 2004.

11. F. Sha and F. Pereira. Shallow parsing with conditional random fields. In In
Proceedings of HLT-NAACL, 2003.

12. Martin Theobald, Gerhard Weikum, and Ralf Schenkel. Top-k query evaluation
with probabilistic guarantees. In VLDB, pages 648–659, 2004.

	Models and indices for integrating unstructured data with a relational database
	Sunita Sarawagi

