Graphical models

Sunita Sarawagi IIT Bombay
http://www.cse.iitb.ac.in/~sunita

Probabilistic modeling

- Given: several variables: $x_{1}, \ldots x_{n}, n$ is large.
- Task: build a joint distribution function $\operatorname{Pr}\left(x_{1}, \ldots x_{n}\right)$
- Goal: Answer several kind of projection queries on the distribution
- Basic premise
- Explicit joint distribution is dauntingly large
- Queries are simple marginals (sum or max) over the joint distribution.

Examples of Joint Distributions So far

- Naive Bayes: $P\left(x_{1}, \ldots x_{d} \mid y\right), d$ is large. Assume conditional independence.
- Multivariate Gaussian
- Recurrent Neural Networks for Sequence labeling and prediction

Example

- Variables are attributes are people.

Age	Income	Experience	Degree	Location
10 ranges	7 scales	7 scales	3 scales	30 places

- An explicit joint distribution over all columns not tractable: number of combinations: $10 \times 7 \times 7 \times 3 \times 30=44100$.
- Queries: Estimate fraction of people with
- Income $>200 \mathrm{~K}$ and Degree="Bachelors", Income < 200K, Degree="PhD" and experience >10 years. Many, many more.

Alternatives to an explicit joint distribution

- Assume all columns are independent of each other: bad assumption
- Use data to detect pairs of highly correlated column pairs and estimate their pairwise frequencies
- Many highly correlated pairs income $\not \Perp \perp$ age, income $\not \Perp \perp$ experience, age $\not \Perp$ experience
- Ad hoc methods of combining these into a single estimate
- Go beyond pairwise correlations: conditional independencies
- income $\not \Perp$ age, but income \Perp age | experience
- experience \Perp degree, but experience $\not \Perp$ degree \mid income

Graphical models make explicit an efficient joint distribution from these independencies

More examples of Cl

- The grades of a student in various courses are correlated but they become Cl given attributes of the student (hard-working, intelligent, etc?)
- Health symptoms of a person may be correlated but are Cl given the latent disease.
- Words in a document are correlated, but may become Cl given the topic.
- Pixel color in an image become Cl of distant pixels given near-by pixels.

Graphical models

Model joint distribution over several variables as a product of smaller factors that is
(1) Intuitive to represent and visualize

- Graph: represent structure of dependencies
- Potentials over subsets: quantify the dependencies
(2) Efficient to query
- given values of any variable subset, reason about probability distribution of others.
- many efficient exact and approximate inference algorithms

Graphical models $=$ graph theory + probability theory.

Graphical models in use

- Roots in statistical physics for modeling interacting atoms in gas and solids [1900]
- Early usage in genetics for modeling properties of species [1920]
- AI: expert systems (1970s-80s)
- Now many new applications:
- Error Correcting Codes: Turbo codes, impressive success story (1990s)
- Robotics and Vision: image denoising, robot navigation.
- Text mining: information extraction, duplicate elimination, hypertext classification, help systems
- Bio-informatics: Secondary structure prediction, Gene discovery
- Data mining: probabilistic classification and clustering.

Representation

Structure of a graphical model: Graph + Potential

Graph

- Nodes: variables $\mathbf{x}=x_{1}, \ldots x_{n}$

Continuous: Sensor temperatures, income Discrete: Degree (one of Bachelors, Masters, PhD), Levels of age, Labels of words

- Edges: direct interaction

Directed edges: Bayesian networks
Undirected edges: Markov Random fields

Directed

Undirected

Representation

Potentials: $\psi_{c}\left(\mathbf{x}_{c}\right)$

- Scores for assignment of values to subsets c of directly interacting variables.
- Which subsets? What do the potentials mean?

Different for directed and undirected graphs

Probability

Factorizes as product of potentials

$$
\operatorname{Pr}\left(\mathbf{x}=x_{1}, \ldots x_{n}\right) \propto \prod \psi_{s}\left(\mathbf{x}_{S}\right)
$$

Directed graphical models: Bayesian networks

- Graph G: directed acyclic
- Parents of a node: $\mathrm{Pa}\left(x_{i}\right)=$ set of nodes in G pointing to x_{i}
- Potentials: defined at each node in terms of its parents.

$$
\psi_{i}\left(x_{i}, \operatorname{Pa}\left(x_{i}\right)\right)=\operatorname{Pr}\left(x_{i} \mid \operatorname{Pa}\left(x_{i}\right)\right.
$$

- Probability distribution

$$
\operatorname{Pr}\left(x_{1} \ldots x_{n}\right)=\prod_{i=1}^{n} \operatorname{Pr}\left(x_{i} \mid p a\left(x_{i}\right)\right)
$$

Example of a directed graph

$$
\psi_{2}(A)=\operatorname{Pr}(A)
$$

$20-30$	$\mathbf{3 0 - 4 5}$	$>\mathbf{4 5}$
0.3	0.4	0.3

or, a Guassian distribution $(\mu, \sigma)=(35,10)$
$\psi_{2}(E, A)=\operatorname{Pr}(E \mid A)$

	$\mathbf{0} \mathbf{- 1 0}$	$\mathbf{1 0} \mathbf{- 1 5}$	$>\mathbf{1 5}$
$\mathbf{2 0 - 3 0}$	0.9	0.1	0
$\mathbf{3 0 - 4 5}$	0.4	0.5	0.1
$>\mathbf{4 5}$	0.1	0.1	0.8

$\psi_{2}(I, E, D)=\operatorname{Pr}(I \mid D, A)$
3 dimensional table, or a histogram approximation.

Probability distribution
$\operatorname{Pa}(\mathbf{x}=L, D, I, A, E)=\operatorname{Pr}(L) \operatorname{Pr}(D) \operatorname{Pr}(A) \operatorname{Pr}(E \mid A) \operatorname{Pr}(I \mid D, E)$

Conditional Independencies

- Given three sets of variables X, Y, Z, set X is conditionally independent of Y given $Z(X \Perp Y \mid Z)$ iff

$$
\operatorname{Pr}(X \mid Y, Z)=\operatorname{Pr}(X \mid Z)
$$

- Local conditional independencies in BN : for each x_{i}

$$
x_{i} \Perp N D\left(x_{i}\right) \mid \operatorname{Pa}\left(x_{i}\right)
$$

- $L \Perp E, D, A, I$
- $A \Perp L, D$
- $E \Perp L, D \mid A$
- I $\Perp A \mid E, D$

Cls and Fractorization

Theorem

Given a distribution $P\left(x_{1}, \ldots, x_{n}\right)$ and a $D A G G$, if P satisfies Local-Cl induced by G, then P can be factorized as per the graph. $\operatorname{Local-Cl}(P, G) \Longrightarrow F a c t o r i z e(P, G)$

Proof.

- $x_{1}, x_{2}, \ldots, x_{n}$ topographically ordered (parents before children) in G.
- Local $\mathrm{Cl}(P, G): P\left(x_{i} \mid x_{1}, \ldots, x_{i-1}\right)=P\left(x_{i} \mid P a_{G}\left(x_{i}\right)\right)$
- Chain rule: $P\left(x_{1}, \ldots, x_{n}\right)=\prod_{i} P\left(x_{i} \mid x_{1}, \ldots, x_{i-1}\right)=\prod_{i} P\left(x_{i} \mid P a_{G}\left(x_{i}\right)\right)$
- $\Longrightarrow \operatorname{Factorize}(P, G)$

Cls and Fractorization

Theorem

Given a distribution $P\left(x_{1}, \ldots, x_{n}\right)$ and a DAG G, if P can be factorized as per G then P satisfies Local-CI induced by G.
Factorize $(P, G) \Longrightarrow \operatorname{Local-CI}(P, G)$
Proof skipped. (Refer book.)

Drawing a BN starting from a distribution

Given a distribution $P\left(x_{1}, \ldots, x_{n}\right)$ to which we can ask any Cl of the form "Is $X \Perp Y \mid Z$?" and get a yes, no answer.
Goal: Draw a minimal, correct BN G to represent P.

Why minimal

Theorem

G constructed by the above algorithm is minimal, that is, we cannot remove any edge from the $B N$ while maintaining the correctness of the $B N$ for P

Proof.

By construction. A subset of ND of each x_{i} were available when parent of U were chosen minimally.

Why Correct

Theorem

G constructed by the above algorithm is correct, that is, the local-Cls induced by G hold in P

Proof.

The construction process makes sure that the factorization property holds. Since factorization implies local-Cls, the constructed BN satisfied the local-Cls of P

Order is important

Examples of Cls that hold in BN but not covered by local-CI

Global Cls in a BN

Three sets of variables X, Y, Z. If Z d-separates X from Y in BN then, $X \Perp Y \mid Z$.
In a directed graph H, Z d-separates X from Y if all paths P from any X to Y is blocked by Z.
A path P is blocked by Z when
(1) $x_{1} \rightarrow x_{2} \rightarrow \ldots x_{k}$ and $x_{i} \in Z$
(2) $x_{1} \leftarrow x_{2} \leftarrow \ldots x_{k}$ and $x_{i} \in Z$
(3) $x_{1} \ldots \leftarrow x_{i} \rightarrow \ldots x_{k}$ and $x_{i} \in Z$
(1) $x_{1} \ldots \rightarrow x_{i} \leftarrow \ldots x_{k}$ and $x_{i} \notin Z$ and $\operatorname{Desc}\left(x_{i}\right) \notin Z$

Theorem

The d-separation test identifies the complete set of conditional independencies that hold in all distributions that conform to a given Bayesian network.

Global Cls Examples

Global Cls and Local-Cls

In a BN, the set of Cls combined with the axioms of probability can be used to derive the Global-Cls.
Proof is long but easy to understand. Sketch of a proof available in the supplementary.

Popular Bayesian networks

- Hidden Markov Models: speech recognition, information extraction

- State variables: discrete phoneme, entity tag
- Observation variables: continuous (speech waveform), discrete (Word)
- Kalman Filters: State variables: continuous
- Discussed later
- Topic models for text data
(1) Principled mechanism to categorize multi-labeled text documents while incorporating priors in a flexible generative framework
(2) Application: news tracking
- QMR (Quick Medical Reference) system

Undirected graphical models

- Graph G: arbitrary undirected graph
- Useful when variables interact symmetrically, no natural parent-child relationship
- Example: labeling pixels of an image.

- Potentials $\psi_{C}\left(\mathbf{y}_{C}\right)$ defined on arbitrary cliques C of G.
- $\psi_{C}\left(\mathbf{y}_{C}\right)$: Any arbitrary non-negative value, cannot be interpreted as probability.
- Probability distribution

$$
\operatorname{Pr}\left(y_{1} \ldots y_{n}\right)=\frac{1}{Z} \prod_{C \in G} \psi_{c}\left(\mathbf{y}_{C}\right)
$$

where $Z=\sum_{\mathbf{y}^{\prime}} \prod_{C \in G} \psi_{C}\left(\mathbf{y}_{C}^{\prime}\right)$ (partition function)

Example

- Node potentials
- $\psi_{1}(0)=4, \psi_{1}(1)=1$
- $\psi_{2}(0)=2, \psi_{2}(1)=3$
- $\psi_{9}(0)=1, \psi_{9}(1)=1$
- Edge potentials: Same for all edges
- $\psi(0,0)=5, \psi(1,1)=5, \psi(1,0)=1, \psi(0,1)=1$
- Probability: $\operatorname{Pr}\left(y_{1} \ldots y_{9}\right) \propto \prod_{k=1}^{9} \psi_{k}\left(y_{k}\right) \prod_{(i, j) \in E(G)} \psi\left(y_{i}, y_{j}\right)$

Conditional independencies (Cls) in an undirected graphical model

Let $V=\left\{y_{1}, \ldots, y_{n}\right\}$.
Let distribution P be represented by an undirected graphical model G. If Z separates X and Y in G, then $X \Perp Y \mid Z$ in P.
The set of all such Cls are called Global-CI of the UGM.
Example:
(1) $y_{1} \Perp y_{3}, y_{5} y_{6}, y_{7}, y_{8}, y_{9} \mid y_{2}, y_{4}$
(2) $y_{1} \Perp y_{3} \mid y_{2}, y_{4}, y_{5}, y_{6}, y_{7}, y_{8}, y_{9}$
(3) $y_{1}, y_{2}, y_{3} \Perp y_{7}, y_{8}, y_{9} \mid y_{4}, y_{5}, y_{6}$

Factorization implies Global-CI

Theorem

Let G be a undirected graph over $V=x_{1}, \ldots, x_{n}$ nodes and $P\left(x_{1}, \ldots, x_{n}\right)$ be a distribution. If P is represented by G that is, if it can be factorized as per the cliques of G, then P will also satisfy the global-Cls of G
Factorize $(P, G) \Longrightarrow \operatorname{Global-CI}(P, G)$

Factorization implies Global-CI (Proof)

Available as proof of Theorem 4.1 in KF book.

Global- Cl does not imply factorization.

(Taken from example 4.4 of KF book)
But global-Cl does not imply factorization. Consider a distribution over 4 binary variables: $P\left(x_{1}, x_{2}, x_{3}, x_{4}\right)$
Let G be

Let $P\left(x_{1}, x_{2}, x_{3}, x_{4}\right)=1 / 8$ when $x_{1}, x_{2}, x_{3}, x_{4}$ takes values from this set $=\{0000,1000,1100,1110,1111,0111,0011,0001\}$. In all other cases it is zero. One can painfully check that all four globals Cls in the graph: e.g. $x_{1} \Perp\left\{x_{3}\right\} \mid x_{2}, x_{4}$ etc hold in the graph.
Now let us look at factorization. The factors correspond to the edges in $\psi\left(x_{1}, x_{2}\right)$. Each of the four possible assignment of each factor will get a positive value. But that cannot represent the zero probability for cases like $x_{1}, x_{2}, x_{3}, x_{4}=0101$.

Other Conditional independencies (Cls) in an

 undirected graphical modelLet $V=\left\{y_{1}, \ldots, y_{n}\right\}$.
(1) Local Cl: $y_{i} \Perp V-n e\left(y_{i}\right)-\left\{y_{i}\right\} \mid n e\left(y_{i}\right)$
(2) Pairwise CI: $y_{i} \Perp y_{j} \mid V-\left\{y_{i}, y_{j}\right\}$ if edge $\left(y_{i}, y_{j}\right)$ does not exist.
(3) Global Cl: $X \Perp Y \mid Z$ if Z separates X and Y in the graph.

Equivalent when the distribution $P(x)$ is positive, that is $P(x)>0, \quad \forall x$
(1) $y_{1} \Perp y_{3}, y_{5} y_{6}, y_{7}, y_{8}, y_{9} \mid y_{2}, y_{4}$
(2) $y_{1} \Perp y_{3} \mid y_{2}, y_{4}, y_{5}, y_{6}, y_{7}, y_{8}, y_{9}$
(3) $y_{1}, y_{2}, y_{3} \Perp y_{7}, y_{8}, y_{9} \mid y_{4}, y_{5}, y_{6}$

Relationship between Local-CI and Global-CI

Let G be a undirected graph over $V=x_{1}, \ldots, x_{n}$ nodes and $P\left(x_{1}, \ldots, x_{n}\right)$ be a distribution. If P satisfies Global-Cls of G, then P will also satisfy the local-Cls of G but the reverse is not always true. We will show this with an example.
Consider a distribution over 5 binary variables: $P\left(x_{1}, \ldots, x_{5}\right)$ where $x_{1}=x_{2}, x_{4}=x_{5}$ and $x_{3}=x_{2}$ AND x_{4}.
Let G be

All 5 local Cls in the graph: e.g. $x_{1} \Perp\left\{x_{3}, x_{4}, x_{5}\right\} \mid x_{2}$ etc hold in the graph.
However, the global CI: $x_{2} \Perp x_{4} \mid x_{3}$ does not hold.

Relationship between Local- Cl and Pairwise- Cl

Let G be a undirected graph over $V=x_{1}, \ldots, x_{n}$ nodes and $P\left(x_{1}, \ldots, x_{n}\right)$ be a distribution. If P satisfies Local-Cls of G, then P will also satisfy the pairwise-Cls of G but the reverse is not always true. We will show this with an example.
Consider a distribution over 3 binary variables: $P\left(x_{1}, x_{2}, x_{3}\right)$ where $x_{1}=x_{2}=x_{3}$. That is, $P\left(x_{1}, x_{2}, x_{3}\right)=1 / 2$ when all three are equal and 0 otherwise.
Let G be

$$
x_{1}-x_{2} \quad x_{3}
$$

All 2 pairwise Cls in the graph: e.g. $x_{1} \Perp\left\{x_{3}\right\} \mid x_{2}$ and $x_{2} \Perp\left\{x_{3}\right\} \mid x_{1}$ hold in the graph.
However, the local $\mathrm{Cl}: x_{1} \Perp x_{3}$ does not hold.

Factorization and Cls

Theorem
(Hammerseley Clifford Theorem) If a positive distribution $P\left(x_{1}, \ldots, x_{n}\right)$ confirms to the pairwise Cls of a UDGM G, then it can be factorized as per the cliques C of G as

$$
P\left(x_{1}, \ldots, x_{n}\right) \propto \prod_{C \in G} \psi_{C}\left(\mathbf{y}_{C}\right)
$$

Proof.

Theorem 4.8 of KF book (partially)

Summary

Let P be a distribution and H be an undirected graph of the same set of nodes.
Factorize $(P, H) \Longrightarrow$ Global-CI $(P, H) \Longrightarrow \operatorname{Local}-\mathrm{CI}(P, H) \Longrightarrow$ Pairwise- $\mathrm{Cl}(P, H)$
But only for positive distributions
Pairwise- $\mathrm{Cl}(P, H) \Longrightarrow \operatorname{Factorize}(P, H)$

Constructing an UGM from a positive distribution

Given a positive distribution $P\left(x_{1}, \ldots, x_{n}\right)$ to which we can ask any Cl of the form "Is $X \Perp Y \mid Z$?" and get a yes, no answer. Goal: Draw a minimal, correct UGM G to represent P. Two options: (1) Using pairwise Cl (2) Using Local CI.

Constructing an UGM from a positive distribution

 using Local-ClDefinition: The Markov Blanket of a variable $x_{i}, \mathrm{MB}\left(x_{i}\right)$ is the smallest subset of variables V that makes $x_{i} \mathrm{Cl}$ of others given the Markov blanket.

$$
x_{i} \Perp V-M B\left(x_{i}\right) \mid M B\left(x_{i}\right)
$$

The MB of a variable is always unique for a positive distribution.

Popular undirected graphical models

- Interacting atoms in gas and solids [1900]
- Markov Random Fields in vision for image segmentation
- Conditional Random Fields for information extraction
- Social networks
- Bio-informatics: annotating active sites in a protein molecules.

Conditional Random Fields (CRFs)

Used to represent conditional distribution $P(\mathbf{y} \mid \mathbf{x})$ where $\mathbf{y}=y_{1}, \ldots, y_{n}$ forms an undirected graphical model.
The potentials are defined over subset of y variables, and the whole of \mathbf{x}.

$$
\operatorname{Pr}\left(y_{1}, \ldots, y_{n} \mid \mathbf{x}, \theta\right)=\frac{\prod_{c} \psi_{c}\left(\mathbf{y}_{c}, \mathbf{x}, \theta\right)}{Z_{\theta}(\mathbf{x})}=\frac{1}{Z_{\theta}(\mathbf{x})} \exp \left(\sum_{c} F_{\theta}\left(\mathbf{y}_{c}, c, \mathbf{x}\right)\right)
$$

where $Z_{\theta}(\mathbf{x})=\sum_{\mathbf{y}^{\prime}} \exp \left(\sum_{c} F_{\theta}\left(\mathbf{y}_{c}^{\prime}, c, \mathbf{x}\right)\right)$
clique potential $\psi_{c}\left(\mathbf{y}_{c}, \mathbf{x}\right)=\exp \left(F_{\theta}\left(\mathbf{y}_{c}, c, \mathbf{x}\right)\right)$

Potentials in CRFs

- Log-linear model over user-defined features. E.g. CRFs, Maxent models, etc.
Let K be number of features. Denote a feature as $f_{k}\left(\mathbf{y}_{c}, c, \mathbf{x}\right)$. Then,

$$
F_{\theta}\left(\mathbf{y}_{c}, c, \mathbf{x}\right)=\sum_{k=1}^{K} \theta_{k} f_{k}\left(\mathbf{y}_{c}, c, \mathbf{x}\right)
$$

- Arbitrary function, e.g. a neural network that takes as input $\mathbf{y}_{c}, c, \mathbf{x}$ and transforms them possibly non-linearly into a real value. θ are the parameters of the network.

Example: Named Entity Recognition

My review of Fermat's last theorem by S. Singh

1	2	3	4	5	6	7	8	9
\boldsymbol{t}	\boldsymbol{x}	My	review	of	Fermat's	last	theorem	by
\boldsymbol{y}	Other	Other	Other	Title	Title	Title	other	Author

$$
\begin{gathered}
y_{1}-y_{2}-y_{3}-y_{4}-y_{5}-y_{6}-y_{7}-y_{8}-y_{9} \\
\mathbf{f}\left(y_{i}, y_{i-1}, i, \mathbf{x}\right)
\end{gathered}
$$

Features decompose over adjacent labels.

$$
\mathbf{f}(\mathbf{x}, \mathbf{y})=\sum_{i=1}^{|\mathbf{x}|} \mathbf{f}\left(y_{i}, y_{i-1}, i, \mathbf{x}\right)
$$

Named Entity Recognition: Features

- Feature vector for each position

$$
\mathbf{f}\left(y_{i}, \mathbf{x}, i, y_{i-1}\right) \quad \text { User provided }
$$

- Examples
Word i \&
previous label

$$
\begin{aligned}
& f_{2}\left(y_{i}, \mathbf{x}, i, y_{i-1}\right)=1 \text { if } y_{i} \text { is Person } \& x_{i} \text { is Douglas } \\
& f_{3}\left(y_{i}, \mathbf{x}, i, y_{i-1}\right)=1 \text { if } y_{i} \text { is Person } \& y_{i-1} \text { is Other }
\end{aligned}
$$

Comparing directed and undirected graphs

- Some distributions can only be expressed in one and not the other.

- Potentials
- Directed: conditional probabilities, more intuitive
- Undirected: arbitrary scores, easy to set.
- Dependence structure
- Directed: Complicated d-separation test
- Undirected: Graph separation: $A \Perp B \mid C$ iff C separates A and B in G.
- Often application makes the choice clear.
- Directed: Causality
- Undirected: Symmetric interactions.

Equivalent BNs

Two BN DAGs are said to be equivalent if they express the same set of Cls. (Examples)

Theorem

Two $B N s G_{1}, G_{2}$ are equivalent iff they have the same skeleton and the same set of immoralities. (An immorality is a structure of the form $x \rightarrow y \leftarrow z$ with no edge between x and z)

Converting BN to MRFs

Efficient: Using the Markov Blanket algorithm.

For which BN can we create perfect MRFs?

Converting MRFs to BNs

Which MRFs have perfect BNs

Chordal or triangulated graphs
A graph is chordal if it has no minimal cycle of length ≥ 4.

Theorem
A MRF can be converted perfectly into a BN iff it is chordal.

Proof.

Theorems 4.11 and 4.13 of KF book
Algorithm for constructing perfect BNs from chordal MRFs to be discussed later.

BN and Chordality

A BN with a minimal undirected cycle of length ≥ 4 must have an immorality. A BN without any immorality is always chordal.

Inference queries

(1) Marginal probability queries over a small subset of variables:

- Find $\operatorname{Pr}($ Income='High \& Degree='PhD')
- Find $\operatorname{Pr}\left(\right.$ pixel $\left.y_{9}=1\right)$

$$
\begin{aligned}
\operatorname{Pr}\left(x_{1}\right) & =\sum_{\substack{x_{2} \ldots x_{n}}} \operatorname{Pr}\left(x_{1} \ldots x_{n}\right) \\
& =\sum_{x_{2}=1}^{m} \ldots \sum_{x_{n}=1}^{m} \operatorname{Pr}\left(x_{1} \ldots x_{n}\right)
\end{aligned}
$$

Brute-force requires $O\left(m^{n-1}\right)$ time.
(2) Most likely labels of remaining variables: (MAP queries)

- Find most likely entity labels of all words in a sentence
- Find likely temperature at sensors in a room

$$
\mathbf{x}^{*}=\operatorname{argmax}_{x_{1} \ldots x_{n}} \operatorname{Pr}\left(x_{1} \ldots x_{n}\right)
$$

Exact inference on chains

- Given,
- Graph $\mathrm{y}_{1} \rightarrow \mathrm{y}_{2} \rightarrow \mathrm{y}_{3} \rightarrow \mathrm{y}_{4} \longrightarrow \mathrm{y}_{5}$
- Potentials: $\psi_{i}\left(y_{i}, y_{i+1}\right)$
- $\operatorname{Pr}\left(y_{1}, \ldots y_{n}\right)=\prod_{i} \psi_{i}\left(y_{i}, y_{i+1}\right), \operatorname{Pr}\left(y_{1}\right)$
- Find, $\operatorname{Pr}\left(y_{i}\right)$ for any i, say $\operatorname{Pr}\left(y_{5}=1\right)$
- Exact method: $\operatorname{Pr}\left(y_{5}=1\right)=\sum_{y_{1}, \ldots y_{4}} \operatorname{Pr}\left(y_{1}, \ldots y_{4}, 1\right)$ requires exponential number of summations.
- A more efficient alternative...

Exact inference on chains

$$
\begin{aligned}
\operatorname{Pr}\left(y_{5}=1\right) & =\sum_{y_{1}, \ldots y_{4}} \operatorname{Pr}\left(y_{1}, \ldots y_{4}, 1\right) \\
& =\sum_{y_{1}} \sum_{y_{2}} \sum_{y_{3}} \sum_{y_{4}} \psi_{1}\left(y_{1}, y_{2}\right) \psi_{2}\left(y_{2}, y_{3}\right) \psi_{3}\left(y_{3}, y_{4}\right) \psi_{4}\left(y_{4}, 1\right) \\
& =\sum_{y_{1}} \sum_{y_{2}} \psi_{1}\left(y_{1}, y_{2}\right) \sum_{y_{3}} \psi_{2}\left(y_{2}, y_{3}\right) \sum_{y_{4}} \psi_{3}\left(y_{3}, y_{4}\right) \psi_{4}\left(y_{4}, 1\right) \\
& =\sum_{y_{1}} \sum_{y_{2}} \psi_{1}\left(y_{1}, y_{2}\right) \sum_{y_{3}} \psi_{2}\left(y_{2}, y_{3}\right) B_{3}\left(y_{3}\right) \\
& =\sum_{y_{1}} \sum_{y_{2}} \psi_{1}\left(y_{1}, y_{2}\right) B_{2}\left(y_{2}\right) \\
& =\sum_{y_{1}} B_{1}\left(y_{1}\right)
\end{aligned}
$$

An alternative view: flow of beliefs $B_{i}($.$) from node i+1$ to node i

$$
\mathrm{y}_{1} \rightarrow \mathrm{y}_{2} \rightarrow \mathrm{y}_{3} \rightarrow \mathrm{y}_{4} \longrightarrow \mathrm{y}_{5}
$$

Adding evidence

Given fixed values of a subset of variables \mathbf{x}_{e} (evidence), find the
(1) Marginal probability queries over a small subset of variables:

- Find $\operatorname{Pr}($ Income='High | Degree='PhD')

$$
\operatorname{Pr}\left(x_{1}\right)=\sum_{x_{2} \ldots x_{m}} \operatorname{Pr}\left(x_{1} \ldots x_{n} \mid \mathbf{x}_{e}\right)
$$

(2) Most likely labels of remaining variables: (MAP queries)

- Find likely temperature at sensors in a room given readings from a subset of them

$$
\mathbf{x}^{*}=\operatorname{argmax}_{x_{1} \ldots x_{m}} \operatorname{Pr}\left(x_{1} \ldots x_{n} \mid \mathbf{x}_{e}\right)
$$

Easy to add evidence, just change the potential.

Case study: HMMs for Information Extraction

My review of Fermat's last theorem by S. Singh

1	2	3	4	5	6	7	8	9
\boldsymbol{t}	\boldsymbol{x}	My	review	of	Fermat's	last	theorem	by
\boldsymbol{y}	Other	Other	Other	Title	Title	Title	other	Author

Inference in HMMs

- Given,
- Graph $\begin{array}{llllllll}\mathrm{x}_{1} & \mathrm{x}_{2} & \mathrm{x}_{3} & \mathrm{x}_{4} & \mathrm{x}_{5} & \mathrm{x}_{6} & \mathrm{x}_{7}\end{array}$
- Potentials: $\operatorname{Pr}\left(y_{i} \mid y_{i-1}\right), \operatorname{Pr}\left(x_{i} \mid y_{i}\right)$
- Evidence variables: $\mathbf{x}=x_{1} \ldots x_{n}=o_{1} \ldots o_{n}$.
- Find most likely values of the hidden state variables.

$$
\mathbf{y}=y_{1} \ldots y_{n}
$$

$$
\operatorname{argmax}_{\mathbf{y}} \operatorname{Pr}(\mathbf{y} \mid \mathbf{x}=\mathbf{0})
$$

- Define $\psi_{i}\left(y_{i-1}, y_{i}\right)=\operatorname{Pr}\left(y_{i} \mid y_{i-1}\right) \operatorname{Pr}\left(x_{i}=o_{i} \mid y_{i}\right)$
- Reduced graph only a single chain of y nodes.

$$
y_{1} \longrightarrow y_{2} \longrightarrow y_{3} \longrightarrow y_{4} \longrightarrow y_{5} \longrightarrow y_{6} \longrightarrow y_{7}
$$

- Algorithm same as earlier, just replace "Sum" with "Max"

The Viterbi algorithm

Let observations x_{t} take one of k possible values, states y_{t} take one of m possible value.

Given n observations: o_{1}, \ldots, o_{n}
Given Potentials $\operatorname{Pr}\left(y_{t} \mid y_{t-1}\right)=P\left(y \mid y^{\prime}\right)$ (Table with m^{2} values), $\operatorname{Pr}\left(x_{t} \mid y_{t}\right)=P(x \mid y)$ (Table with $m k$ values), $\operatorname{Pr}\left(y_{1}\right)=P(y)$ start probabilities (Table with m values.)
Find $\max _{\mathbf{y}} \operatorname{Pr}(\mathbf{y} \mid \mathbf{x}=\mathbf{0})$
$B_{n}[y]=1 \quad y \in[1, \ldots, m]$
for $t=n \ldots 2$ do

$$
\begin{aligned}
& \psi\left(y, y^{\prime}\right)=P\left(y \mid y^{\prime}\right) P\left(x_{t}=o_{t} \mid y\right) \\
& B_{t-1}\left[y^{\prime}\right]=\max _{y=1}^{n} \psi\left(y, y^{\prime}\right) B_{t}[y]
\end{aligned}
$$

end for
Return $\max _{y} B_{1}[y] P(y) P\left(x_{t}=o_{t} \mid y\right)$
Time taken: $O\left(n m^{2}\right)$

Numerical Example

$$
\begin{aligned}
& P\left(y \mid y^{\prime}\right)=\begin{array}{l|l|l}
\mathrm{y}^{\prime} & P\left(y=0 \mid y^{\prime}\right) & P\left(y=1 \mid y^{\prime}\right) \\
\hline 0 & 0.9 & 0.1 \\
1 & 0.2 & 0.8
\end{array} \\
& P(x \mid y)=\begin{array}{l|l|l}
y & P(x=0 \mid y) & P(x=1 \mid y) \\
\hline 0 & 0.7 & 0.3 \\
1 & 0.6 & 0.4
\end{array} \\
& P(y=1)=0.5 \\
& \text { Observation }\left[x_{0}, x_{1}, x_{2}\right]=[0,0,0]
\end{aligned}
$$

Variable elimination on general graphs

- Given, arbitrary sets of potentials $\psi_{C}\left(x_{C}\right), C=$ cliques in a graph G.
- Find, $Z=\sum_{x_{1}, \ldots, x_{n}} \prod_{C} \psi_{C}\left(x_{C}\right)$
$x_{1}, \ldots x_{n}=$ good ordering of variables
$\mathcal{F}=\psi_{C}\left(x_{C}\right), C=$ cliques in a graph G.
for $i=1 \ldots n$ do
$\mathcal{F}_{i}=$ factors in \mathcal{F} that contain x_{i}
$M_{i}=$ product of factors in \mathcal{F}_{i}
$m_{i}=\sum_{x_{i}} M_{i}$
$\mathcal{F}=\mathcal{F}-\mathcal{F}_{i} \cup\left\{m_{i}\right\}$
end for

Example: Variable elimination

- Given, $\psi_{12}\left(x_{1}, x_{2}\right), \psi_{24}\left(x_{2}, x_{4}\right), \psi_{23}\left(x_{2}, x_{3}\right), \psi_{45}\left(x_{4}, x_{5}\right)$, , $\psi_{35}\left(x_{3}, x_{5}\right)$.
- Find, $Z=$ $\sum_{x_{1}, \ldots, x_{5}} \psi_{12}\left(x_{1}, x_{2}\right) \psi_{24}\left(x_{2}, x_{4}\right) \psi_{23}\left(x_{2}, x_{3}\right) \psi_{45}\left(x_{4}, x_{5}\right) \psi_{35}\left(x_{3}, x_{5}\right)$.
(1) $x_{1}: \prod\left\{\psi_{12}\left(x_{1}, x_{2}\right)\right\} \rightarrow M_{1}\left(x_{1}, x_{2}\right) \xrightarrow{\sum_{x_{1}}} m_{1}\left(x_{2}\right)$
(2) $x_{2}: \prod\left\{\psi_{24}\left(x_{2}, x_{4}\right), \psi_{23}\left(x_{2}, x_{3}\right), m_{1}\left(x_{2}\right)\right\} \rightarrow M_{2}\left(x_{2}, x_{3}, x_{4}\right) \xrightarrow{\sum_{x_{2}}}$ $m_{2}\left(x_{3}, x_{4}\right)$
(3) $x_{3}: \prod\left\{\psi_{35}\left(x_{3}, x_{5}\right), m_{2}\left(x_{3}, x_{4}\right)\right\} \rightarrow M_{3}\left(x_{3}, x_{4}, x_{5}\right) \xrightarrow{\sum_{x_{3}}} m_{3}\left(x_{4}, x_{5}\right)$
(4) $x_{4}: \prod\left\{\psi_{45}\left(x_{4}, x_{5}\right), m_{3}\left(x_{4}, x_{5}\right)\right\} \rightarrow M_{4}\left(x_{4}, x_{5}\right) \xrightarrow{\sum_{x_{4}}} m_{4}\left(x_{5}\right)$
(5) $x_{5}: \prod\left\{m_{5}\left(x_{5}\right)\right\} \rightarrow M_{5}\left(x_{5}\right) \xrightarrow{\sum_{x_{5}}} Z$

Choosing a variable elimination order

- Complexity of VE $O\left(n m^{w}\right)$ where w is the maximum number of variables in any factor.
- Wrong elimination order can give rise to very large intermediate factors.
- Example: eliminating x_{2} first will give a factor of size 4 .
- Given an example where the penalty can be really severe (?)
- Choosing the optimal elimination order is NP hard for general graphs.
- Polynomial time algorithm exists for chordal graphs.
- A graph is chordal or triangulated if all cycles of length greater than three have a shortcut.
- Optimal triangulation of graphs is NP hard. (Many heuristics)

Finding optimal order in a triangulated graph

Theorem

Every triangulated graph is either complete or has at least two simplicial vertices. A vertex is simplicial if its neighbors form a complete set.

Proof.

In supplementary. (not in syllabus)
Goal: find optimal ordering for $P\left(x_{1}\right)$ inference. x_{1} has to be last in the ordering.

Input: Graph G. $n=$ number of vertices of G
for $i=2, \ldots, n$ do
$\pi_{i}=$ pick any simplicial vertex in G other than 1.
remove π_{i} from G
end for

Reusing computation across multiple inference

 queriesGiven a chain graph with potentials $\psi_{i, i+1}\left(x_{i}, x_{i+1}\right)$, suppose we need to compute all n marginals $P\left(x_{1}\right), \ldots, P\left(x_{n}\right)$. Invoking variable elimination algorithm n times for each x_{i} will entail a cost of $n \times n m^{2}$. Can we go faster by reusing work across computations?

Junction tree algorithm

- An optimal general-purpose algorithm for exact marginal/MAP queries
- Simultaneous computation of many queries
- Efficient data structures
- Complexity: $O\left(m^{w} N\right) w=$ size of the largest clique in (triangulated) graph, $m=$ number of values of each discrete variable in the clique. \rightarrow linear for trees.
- Basis for many approximate algorithms.
- Many popular inference algorithms special cases of junction trees
- Viterbi algorithm of HMMs
- Forward-backward algorithm of Kalman filters

Junction tree

Junction tree JT of a triangulated graph G with nodes x_{1}, \ldots, x_{n} is a tree where

- Nodes $=$ maximal cliques of G
- Edges ensure that if any two nodes contain a variable x_{i} then x_{i} is present in every node in the unique path between them (Running intersection property).

Constructing a junction tree

Efficient polynomial time algorithms exist for creating a JT from a triangulated graph.
(1) Enumerate a covering set of cliques
(2) Connect cliques to get a tree that satisfies the running intersection property.
If graph is non-triangulated, triangulate first using heuristics, optimal triangulation is NP-hard.

Creating a junction tree from a graphical model

1. Starting graph

2. Triangulate graph

3. Create clique nodes

4. Create tree edges such that variables connected.

5) Assign potentials to exactly one subsumed clique node.

Finding cliques of a triangulated graph

Theorem

Every triangulated graph has a simplicial vertex, that is, a vertex whose neighbors form a complete set.

Input: Graph G. $n=$ number of vertices of G
for $i=1, \ldots, n$ do
$\pi_{i}=$ pick any simplicial vertex in G
$C_{i}=\left\{\pi_{i}\right\} \cup \operatorname{Ne}\left(\pi_{i}\right)$
remove π_{i} from G
end for
Return maximal cliques from $C_{1}, \ldots C_{n}$

Connecting cliques to form junction tree

Separator variables $=$ intersection of variables in the two cliques joined by an edge.

Theorem

A clique tree that satisfies the running intersection property maximizes the number of separator variables.

Proof: https://people.eecs.berkeley.edu/~jordan/courses/ 281A-fall04/lectures/lec-11-16.pdf

Input: Cliques: $C_{1}, \ldots C_{k}$
Form a complete weighted graph H with cliques as nodes and edge weights = size of the intersection of the two cliques it connects.
$T=$ maximum weight spanning tree of H
Return T as the junction tree.

Message passing on junction trees

- Each node c
- sends message $m_{c \rightarrow c^{\prime}}($.$) to each of its neighbors c^{\prime}$
\star once it has messages from every other neighbor $N(c)-\left\{c^{\prime}\right\}$.
- $m_{c \rightarrow c^{\prime}}()=$. Message from c to c^{\prime} is the result of sum-product elimination on side of the tree that contains clique c but not c^{\prime} on the separator variables $s=c \cap c^{\prime}$

$$
m_{c \rightarrow c^{\prime}}\left(\mathbf{x}_{s}\right)=\sum_{\mathbf{x}_{c-s}} \psi_{c}\left(\mathbf{x}_{c}\right) \prod_{d \in N(c)-\left\{c^{\prime}\right\}} m_{d \rightarrow c}\left(\mathbf{x}_{d \cap c}\right)
$$

Replace "sum" with "max" for MAP queries.
Compute marginal probability of any variable x_{i} as
(1) $c=$ clique in JT containing x_{i}
(2) $\operatorname{Pr}\left(x_{i}\right) \propto \sum_{\mathbf{x}_{c-x_{i}}} \psi_{c}\left(\mathbf{x}_{c}\right) \prod_{d \in N(c)} m_{d \rightarrow c}\left(\mathbf{x}_{d \cap c}\right)$

Example

$$
\begin{array}{r}
\psi_{234}\left(\mathbf{y}_{234}\right)=\psi_{23}\left(\mathbf{y}_{23}\right) \psi_{34}\left(\mathbf{y}_{34}\right) \\
\psi_{345}\left(\mathbf{y}_{345}\right)=\psi_{35}\left(\mathbf{y}_{35}\right) \psi_{45}\left(\mathbf{y}_{45}\right) \\
\psi_{234}\left(\mathbf{y}_{12}\right)=\psi_{12}\left(\mathbf{y}_{12}\right)
\end{array}
$$

(1) Clique " 12 " sends Message $m_{12 \rightarrow 234}\left(y_{2}\right)=\sum_{y_{1}} \psi_{12}\left(\mathbf{y}_{12}\right)$ to its only neighbor.
(2) Clique " 345 " sends Message $m_{345 \rightarrow 234}\left(\mathbf{y}_{34}\right)=\sum_{y_{5}} \psi_{234}\left(\mathbf{y}_{345}\right)$ to "234"
(3) Clique " 234 " sends Message $m_{234 \rightarrow 345}\left(\mathbf{y}_{34}\right)=\sum_{y_{2}} \psi_{234}\left(\mathbf{y}_{234}\right) m_{12 \rightarrow 234}\left(y_{2}\right)$ to " 345 "
(4) Clique " 234 " sends Message $m_{234 \rightarrow 12}\left(y_{2}\right)=\sum_{y_{4}} \psi_{234}\left(\mathbf{y}_{234}\right) m_{345 \rightarrow 234}\left(\mathbf{y}_{34}\right)$ to " 12 "
$\operatorname{Pr}\left(y_{1}\right) \propto \sum_{y_{2}} \psi_{12}\left(\mathbf{y}_{12}\right) m_{234 \rightarrow 12}\left(y_{2}\right)$

Why approximate inference

- Exact inference is NP hard. Complexity: $O\left(m^{w}\right)$
- $w=$ tree width $=$ size of the largest clique in (triangulated) graph-1,
- $m=$ number of values of each discrete variable in the clique.
- Many real-life graphs produce large cliques on triangulation
- A $n \times n$ grid has a tree width of n
- A Kalman filter on K parallel state variables influencing a common observation variable, has a tree width of size $K+1$

Generalized belief propagation

- Approximate junction tree with a cluster graph where
(1) Nodes $=$ arbitrary clusters, not cliques in triangulated graph. Only ensure all potentials subsumed.
(2) Separator nodes on edges $=$ subset of intersecting variables so as to satisfy running intersection property.
- Special case: Factor graphs.

Example cluster graph

Junction tree.
Cluster graph

Belief propagation in cluster graphs

- Graph can have loops, tree-based two-phase method not applicable.
- Many variants on scheduling order of propagating beliefs.
- Simple loopy belief propagation [?]
- Tree-reweighted message passing [?, ?]
- Residual belief probagation [?]
- Many have no guarantees of convergence. Specific tree-based orders do [?]
- Works well in practice, default method of choice.

MCMC (Gibbs) sampling

- Useful when all else failes, guaranteed to converge to the optimal over infinite number of samples.
- Basic premise: easy to compute conditional probability $\operatorname{Pr}\left(x_{i} \mid\right.$ fixed values of remaining variables $)$

Algorithm

- Start with some initial assignment, say
$\mathbf{x}^{1}=\left[x_{1}, \ldots, x_{n}\right]=[0, \ldots, 0]$
- For several iterations

For each variable x_{i}
Get a new sample \mathbf{x}^{t+1} by replacing value of x_{i} with a new value sampled according to probability $\operatorname{Pr}\left(x_{i} \mid x_{1}^{t}, \ldots x_{i-1}^{t}, x_{i+1}^{t}, \ldots, x_{n}^{t}\right)$

Others

- Combinatorial algorithms for MAP [?].
- Greedy algorithms: relaxation labeling.
- Variational methods like mean-field and structured mean-field.
- LP and QP based approaches.

Parameters in Potentials

(1) Manual: Provided by domain expert

- Used in infrequently constructured graphs, example QMR systems
- Also where potentials are an easy function of the attributes of connected graphs, example: vision networks.
(2) Learned: from examples
- More popular since difficult for humans to assign numeric values
- Many variants of parameterizing potentials.
(1) Table potentials: each entry a parameter, example, HMMs
(2) Potentials: combination of shared parameters and data attributes: example, CRFs.

Graph Structure

(1) Manual: Designed by domain expert

- Used in applications where dependency structure is well-understood
- Example: QMR systems, Kalman filters, Vision (Grids), HMM for speech recognition and IE.
(2) Learned from examples
- NP hard to find the optimal structure.
- Widely researched, mostly posed as a branch and bound search problem.
- Useful in dynamic situations

Learning potentials

Given sample $D=\left\{\mathbf{x}^{1}, \ldots, \mathbf{x}^{N}\right\}$ of data generated from a distribution $P(\mathbf{x})$ represented by a graphical model with known structure G, learn potentials $\psi_{C}\left(\mathbf{x}_{C}\right)$.
Two settings:
(1) All variables observed or not.
(1) Fully observed: each training sample \mathbf{x}^{i} has all n variables observed.
(2) Partially observed: a subset of the variables are observed.
(2) Potentials coupled with a log-partition function or not.
(1) No: Closed form solutions
(2) Yes: Potentials attached to arbitrary overlapping subset of variables in a UDGM. Example = edge potentials in a grid graph. iterative solution as in the case of learning with shared parameters Discussed later.

General framework for Parameter learning in

graphical models

- Conditional distribution $\operatorname{Pr}(\mathbf{y} \mid \mathbf{x}, \theta)$, potentials are function of \mathbf{x} and parameters θ to be learned.
- $\mathbf{y}=y_{1}, \ldots, y_{n}$ forms a graphical model: directed or undirected.
- Undirected:

$$
\begin{aligned}
\operatorname{Pr}\left(y_{1}, \ldots, y_{n} \mid \mathbf{x}, \theta\right) & =\frac{\prod_{c} \psi_{c}\left(\mathbf{y}_{c}, \mathbf{x}, \theta\right)}{Z_{\theta}(\mathbf{x})} \\
& =\frac{1}{Z_{\theta}(\mathbf{x})} \exp \left(\sum_{c} F_{\theta}\left(\mathbf{y}_{c}, c, \mathbf{x}\right)\right)
\end{aligned}
$$

where $Z_{\theta}(\mathbf{x})=\sum_{\mathbf{y}^{\prime}} \exp \left(\sum_{c} F_{\theta}\left(\mathbf{y}_{c}^{\prime}, c, \mathbf{x}\right)\right)$
clique potential $\psi_{c}\left(\mathbf{y}_{c}, \mathbf{x}\right)=\exp \left(F_{\theta}\left(\mathbf{y}_{c}, c, \mathbf{x}\right)\right)$

Forms of $F_{\theta}\left(\mathbf{y}_{c}, c, \mathbf{x}\right)$

- Log-linear model over user-defined features. E.g. CRFs, Maxent models, etc.
Let K be number of features. Denote a feature as $f_{k}\left(\mathbf{y}_{c}, c, \mathbf{x}\right)$. Then,

$$
F_{\theta}\left(\mathbf{y}_{c}, c, \mathbf{x}\right)=\sum_{k=1}^{K} \theta_{k} f_{k}\left(\mathbf{y}_{c}, c, \mathbf{x}\right)
$$

- Arbitrary function, e.g. a neural network that takes as input $\mathbf{y}_{c}, c, \mathbf{x}$ and transforms them possibly non-linearly into a real value. θ are the parameters of the network.

Example: Named Entity Recognition

My review of Fermat's last theorem by S. Singh

1	2	3	4	5	6	7	8	9
\boldsymbol{t}	\boldsymbol{x}	My	review	of	Fermat's	last	theorem	by
\boldsymbol{y}	Other	Other	Other	Title	Title	Title	other	Author

$$
\begin{gathered}
y_{1}-y_{2}-y_{3}-y_{4}-y_{5}-y_{6}-y_{7}-y_{8}-y_{9} \\
\mathbf{f}\left(y_{i}, y_{i-1}, i, \mathbf{x}\right)
\end{gathered}
$$

Features decompose over adjacent labels.

$$
\mathbf{f}(\mathbf{x}, \mathbf{y})=\sum_{i=1}^{|\mathbf{x}|} \mathbf{f}\left(y_{i}, y_{i-1}, i, \mathbf{x}\right)
$$

Named Entity Recognition: Features

- Feature vector for each position

$$
\mathbf{f}\left(y_{i}, \mathbf{x}, i, y_{i-1}\right) \quad \text { User provided }
$$

- Examples
Word i \&

$$
\begin{aligned}
& f_{2}\left(y_{i}, \mathbf{x}, i, y_{i-1}\right)=1 \text { if } y_{i} \text { is Person } \& x_{i} \text { is Douglas } \\
& f_{3}\left(y_{i}, \mathbf{x}, i, y_{i-1}\right)=1 \text { if } y_{i} \text { is Person } \& y_{i-1} \text { is Other }
\end{aligned}
$$

Training

Given

- N input output pairs $D=\left\{\left(\mathbf{x}^{1}, \mathbf{y}^{1}\right),\left(\mathbf{x}^{2}, \mathbf{y}^{2}\right), \ldots,\left(\mathbf{x}^{N}, \mathbf{y}^{N}\right)\right\}$
- Form of F_{θ}
- Learn parameters θ by maximum likelihood.

$$
\max _{\theta} L L(\theta, D)=\max _{\theta} \sum_{i=1}^{N} \log \operatorname{Pr}\left(\mathbf{y}^{i} \mid \mathbf{x}^{i}, \theta\right)
$$

Training undirected graphical model

$$
\begin{aligned}
L L(\theta, D) & =\sum_{i=1}^{N} \log \operatorname{Pr}\left(\mathbf{y}^{i} \mid \mathbf{x}^{i}, \theta\right) \\
& =\sum_{i=1}^{N} \log \frac{1}{Z_{\theta}\left(\mathbf{x}^{i}\right)} \exp \left(\sum_{c} F_{\theta}\left(\mathbf{y}_{c}^{i}, c, \mathbf{x}^{i}\right)\right) \\
& =\sum_{i}\left[\sum_{c} F_{\theta}\left(\mathbf{y}_{c}^{i}, c, \mathbf{x}^{i}\right)-\log Z_{\theta}\left(\mathbf{x}^{i}\right)\right.
\end{aligned}
$$

The first part is easy to compute but the second term requires to invoke an inference algorithm to compute $Z_{\theta}\left(\mathbf{x}^{i}\right)$ for each i. Computing the gradient of the above objective with respect to θ also requires inference.

Training via gradient descent

Assume log-linear models like in CRFs where $F_{\theta}\left(\mathbf{y}_{c}^{i}, c, \mathbf{x}^{i}\right)=\theta \cdot \mathbf{f}\left(\mathbf{x}^{i}, \mathbf{y}_{c}^{i}, c\right)$ Also, for brevity write $\mathbf{f}\left(\mathbf{x}^{i}, \mathbf{y}^{i}\right)=\sum_{c} \mathbf{f}\left(\mathbf{x}^{i}, \mathbf{y}_{c}^{i}, c\right)$

$$
L L(\theta)=\sum_{i} \log \operatorname{Pr}\left(\mathbf{y}^{i} \mid \mathbf{x}^{i}, \theta\right)=\sum_{i}\left(\theta \cdot \mathbf{f}\left(\mathbf{x}^{i}, \mathbf{y}^{i}\right)-\log Z_{\theta}\left(\mathbf{x}^{i}\right)\right)
$$

Add a regularizer to prevent over-fitting.

$$
\max _{\theta} \sum_{i}\left(\theta \cdot \mathbf{f}\left(\mathbf{x}^{i}, \mathbf{y}^{i}\right)-\log Z_{\theta}\left(\mathbf{x}^{i}\right)\right)-\|\theta\|^{2} / C
$$

Concave in $\theta \Longrightarrow$ gradient descent methods will work.

Gradient of the training objective

$$
\begin{aligned}
& \nabla L(\theta)=\sum_{i} \mathbf{f}\left(\mathbf{x}^{i}, \mathbf{y}^{i}\right)-\frac{\sum_{y^{\prime}} \mathbf{f}\left(\mathbf{y}^{\prime}, \mathbf{x}^{\prime}\right) \exp \theta \cdot \mathbf{f}\left(\mathbf{x}^{i}, \mathbf{y}^{\prime}\right)}{Z_{\theta}\left(\mathbf{x}^{i}\right)}-2 \theta / C \\
& =\sum_{i} f\left(x^{i}, y^{i}\right)-\sum_{y^{\prime}} f\left(x^{i}, y^{\prime}\right) \operatorname{Pr}\left(\mathbf{y}^{\prime} \mid \theta, \mathbf{x}^{i}\right)-2 \theta / C \\
& =\sum_{i} f\left(x^{i}, y^{i}\right)-E_{\operatorname{Pr}\left(y^{\prime} \mid \theta, x^{\prime}\right)} f\left(x^{i}, y^{\prime}\right)-2 \theta / C \\
& \begin{aligned}
E_{\operatorname{Pr}\left(\mathbf{y}^{\prime} \mid \theta, x^{\prime}\right)} f_{k}\left(\mathbf{x}^{i}, \mathbf{y}^{\prime}\right) & =\sum_{\mathbf{y}^{\prime}} f_{k}\left(\mathbf{x}^{i}, \mathbf{y}^{\prime}\right) \operatorname{Pr}\left(\mathbf{y}^{\prime} \mid \theta, \mathbf{x}^{i}\right) \\
= & \sum_{\mathbf{y}^{\prime}} \sum_{c} f_{k}\left(\mathbf{x}^{i}, \mathbf{y}^{\prime}, c\right) \operatorname{Pr}\left(\mathbf{y}^{\prime} \mid \theta, \mathbf{x}^{i}\right) \\
& =\sum_{c} \sum_{y_{c}^{\prime}} f_{k}\left(\mathbf{x}^{i}, \mathbf{y}_{c}^{\prime}, c\right) \operatorname{Pr}\left(\mathbf{y}_{c}^{\prime} \mid \theta, \mathbf{x}^{\prime}\right)
\end{aligned}
\end{aligned}
$$

Computing $E_{\operatorname{Pr}\left(\mathbf{y} \mid \theta^{t}, \mathbf{x}^{i}\right)} f_{k}\left(\mathbf{x}^{i}, \mathbf{y}\right)$

Three steps:
(1) $\operatorname{Pr}\left(\mathbf{y} \mid \theta^{t}, \mathbf{x}^{i}\right)$ is represented as an undirected model where nodes are the different components of \mathbf{y}, that is y_{1}, \ldots, y_{n}. The potential $\psi_{c}\left(\mathbf{y}_{c}, \mathbf{x}, \theta\right)$ on clique c is $\exp \left(\theta^{t} \cdot \mathbf{f}\left(\mathbf{x}^{i}, \mathbf{y}_{c}^{i}, c\right)\right)$
(2) Run a sum-product inference algorithm on above UGM and compute for each c, \mathbf{y}_{c} marginal probability $\mu\left(\mathbf{y}_{c}, c, \mathbf{x}^{i}\right)$.
(3) Using these $\mu \mathrm{s}$ we compute

$$
E_{\operatorname{Pr}\left(\mathbf{y} \mid \theta^{t}, \mathbf{x}^{i}\right)} f_{k}\left(\mathbf{x}^{i}, \mathbf{y}\right)=\sum_{c} \sum_{\mathbf{y}_{c}} \mu\left(\mathbf{y}_{c}, c, \mathbf{x}^{i}\right) f_{k}\left(\mathbf{x}^{i}, c, \mathbf{y}_{c}\right)
$$

Example

Consider a parameter learning task for an undirected graphical model on 3 variables $\boldsymbol{y}=\left[\begin{array}{lll}y_{1} & y_{2} & y_{3}\end{array}\right]$ where each $y_{i}=+1$ or 0 and they form a chain. Let the following two features be defined for it.
$f_{1}\left(i, \mathbf{x}, y_{i}\right)=x_{i} y_{i}$ (where $x_{i}=$ intensity of pixel $\left.i\right)$
$f_{2}\left((i, j), \mathbf{x},\left(y_{i}, y_{j}\right)\right)=\llbracket y_{i} \neq y_{j} \rrbracket$
where $\llbracket z \rrbracket=1$ if $z=$ true and 0 otherwise.
Initial parameters $\theta=\left[\theta_{1}, \theta_{2}\right]=[3,-2]$
Examples: $\mathbf{x}^{1}=[0.1,0.7,0.3], \mathbf{y}^{1}=[1,1,0]$
Using these we can calculate:
(1) Node potentials for y_{i} as $\exp \left(\theta_{1} x_{i} y_{i}\right)$. For e.g. for y_{1} it is $\left[\psi_{1}(0), \psi_{1}(1)\right]=\left[1, e^{3 \times 0.1}\right]$
(2) Edge potentials $\psi_{12}\left(y_{1}, y_{2}\right)=\psi_{23}\left(y_{2}, y_{3}\right)=1$ if $y_{1}=y_{2}$ and e^{-2} if $y_{1} \neq y_{2}$

Example (continued)

(1) Use above potentials to run sum-product inference on a junction tree to calculate marginals $\mu\left(y_{i}, i\right)$ and $\mu\left(y_{i}, y_{j},(i, j)\right)$
(2) Using these we calculate expected value of features as:

$$
E\left[f_{1}\left(\mathbf{x}^{1}, \mathbf{y}\right)\right]=\sum_{i} x_{i} \mu_{i}(1, i)=0.1 \mu(1,1)+0.7 \mu(1,2)+0.3 \mu(1,3)
$$

$E\left[f_{2}\left(\mathbf{x}^{1}, \mathbf{y}\right)\right]=\mu(1,0,(1,2))+\mu(0,1,(1,2))+\mu(1,0,(2,3))+\mu(0,1,(2,3))$
(3) The value of $\mathbf{f}\left(\mathbf{x}^{1}, \mathbf{y}^{1}\right)$ for each feature is (Note value of $\left.\mathbf{y}^{1}=[1,1,0]\right):$

$$
\begin{gathered}
f_{1}\left(\mathbf{x}^{1}, \mathbf{y}^{1}\right)=0.1 * 1+0.7 * 1+0.3 * 0=0.8 \\
f_{2}\left(\mathbf{x}^{1}, \mathbf{y}^{1}\right)=\llbracket y_{1}^{1} \neq y_{2}^{1} \rrbracket+\llbracket y_{2}^{1} \neq y_{3}^{1} \rrbracket=1
\end{gathered}
$$

(- The gradient of each parameter is then.

$$
\nabla L\left(\theta_{1}\right)=0.8-E\left[f_{1}\left(\mathbf{x}^{1}, \mathbf{y}\right)\right]-2 * 3 / C
$$

$$
\nabla L\left(\theta_{2}\right)=1-E\left[f_{2}\left(\mathbf{x}^{1}, \mathbf{y}\right)\right]+2 * 2 / C
$$

Another Example

Consider a parameter learning task for an undirected graphical model on six variables $\boldsymbol{y}=\left[\begin{array}{lllll}y_{1} & y_{2} & y_{3} & y_{4} & y_{5}\end{array} y_{6}\right]$ where each $y_{i}=+1$ or -1 . Let the following eight features be defined for it.

$$
\begin{array}{ll}
f_{1}\left(y_{i}, y_{i+1}\right)=\llbracket y_{i}+y_{i+1}>1 \rrbracket, 1 \leq i<5 & f_{2}\left(y_{1}, y_{3}\right)=-2 y_{1} y_{3} \\
f_{3}\left(y_{2}, y_{3}\right)=y_{2} y_{3} & f_{4}\left(y_{3}, y_{4}\right)=y_{3} y_{4} \\
f_{5}\left(y_{2}, y_{4}\right)=\llbracket y_{2} y_{4}<0 \rrbracket & f_{6}\left(y_{4}, y_{5}\right)=2 y_{4} y_{5} \\
f_{7}\left(y_{3}, y_{5}\right)=-y_{3} y_{5} & \\
f_{8}\left(y_{5}, y_{6}\right)=\llbracket y_{5}+y_{6}>0 \rrbracket .
\end{array}
$$

where $\llbracket z \rrbracket=1$ if $z=$ true and 0 otherwise. That is, $\mathbf{f}(\mathbf{y})=\left[\begin{array}{llll}f_{1} & f_{2} f_{3} & f_{4} & f_{5}\end{array} f_{6} f_{7} f_{8}\right]^{T}$. Assume the corresponding weight vector to be $\left.\theta=\left[\begin{array}{lllllllll}1 & 1 & 1 & 2 & 2 & 1 & -1\end{array}\right]\right]^{T}$

Example

Draw the underlying graphical model corresponding to the 6 variables.

Draw an arc between any two y which appear together in any of the 8 features.

Example

Draw the junction tree corresponding to the graph above and assign potentials to each node of your junction tree so that you can run message passing on it to find $Z=\sum_{\mathbf{y}} \theta^{T} \mathbf{f}(\mathbf{x}, \mathbf{y})$, that is, define $\psi_{c}\left(\mathbf{y}_{c}\right)$ in terms of the above quantities for each clique node c in the JT.
For clique $c, \psi_{c}\left(\mathbf{y}_{c}\right)=\exp \left(\theta_{c} \cdot \mathbf{f}_{c}\left(\mathbf{x}, \mathbf{y}_{c}\right)\right)$. \log of the potentials are shown below
$y_{1}, y_{2}, y_{3} \quad y_{2}, y_{3}, y_{4} \quad y_{3}, y_{4}, y_{5} \quad y_{5}, y_{6}$

$1 . f_{1}\left(y_{1}, y_{2}\right)+$			
$1 . f_{1}\left(y_{2}, y_{3}\right)+$	$2 . f_{5}\left(y_{2}, y_{4}\right)+$	$-1 . f_{7}\left(y_{3}, y_{5}\right)+$	$1 . f_{1}\left(y_{5}, y_{6}\right)+$
$1 . f_{2}\left(y_{1}, y_{3}\right)+$	$1 . f_{1}\left(y_{3}, y_{4}\right)+$	$1 . f_{1}\left(y_{4}, y_{5}\right)+$	$1 . f_{8}\left(y_{5}, y_{6}\right)$
$1 . f_{3}\left(y_{2}, y_{3}\right)$	$2 . f_{4}\left(y_{3}, y_{4}\right)$	$1 . f_{6}\left(y_{4}, y_{5}\right)$	

Example

Suppose you use the junction tree above to compute the marginal probability for each pair of adjacent variables in the graph of part (a). Let $\mu_{i j}(-1,1), \mu_{i j}(1,1), \mu_{i j}(-1,-1), \mu_{i j}(1,-1)$ denote the marginal probability of variable pairs y_{i}, y_{j} taking values $(-1,1),(1,1),(-1,-1)$ and $(1,-1)$ respectively. Express the expected value of the following features in terms of the μ values.
(1)

$$
\begin{aligned}
f_{1}= & \sum_{i}\left(f_{1}(-1,-1) \mu_{i, i+1}(-1,-1)+f_{1}(-1,1) \mu_{i, i+1}(-1,1)+\right. \\
& \left.f_{1}(1,-1) \mu_{i, i+1}(1,-1)+f_{1}(1,1) \mu_{i, i+1}(1,1)\right)
\end{aligned}
$$

(2) $f_{2}=2\left(-\mu_{1,3}(-1,-1)+\mu_{1,3}(-1,1)+\mu_{1,3}(1,-1)-\mu_{1,3}(1,1)\right)$
(0) $f_{8}=\mu_{56}(1,1)$

Training algorithm

1: Initialize $\theta^{0}=\mathbf{0}$
2: for $t=1 \ldots$ T do
3: \quad for $i=1 \ldots N$ do
4: $\quad g_{k, i}=f_{k}\left(\mathbf{x}^{i}, \mathbf{y}^{i}\right)-E_{\operatorname{Pr}\left(\mathbf{y}^{\prime} \mid \theta^{t}, \mathbf{x}^{i}\right)} f_{k}\left(\mathbf{x}^{i}, \mathbf{y}^{\prime}\right) \quad k=1 \ldots K$
5: end for
6: $\quad g_{k}=\sum_{i} g_{k, i} \quad k=1 \ldots K$
7: $\quad \theta_{k}^{t}=\theta_{k}^{t-1}+\gamma_{t}\left(g_{k}-2 \theta_{k}^{t-1} / C\right)$
8: \quad Exit if $\|\mathbf{g}\| \approx$ zero
9: end for
Running time of the algorithm is $O\left(I N n\left(m^{2}+K\right)\right)$ where I is the total number of iterations.

Local conditional probability for BN

$$
\begin{aligned}
\operatorname{Pr}\left(y_{1}, \ldots, y_{n} \mid \mathbf{x}, \theta\right) & =\prod_{j} \operatorname{Pr}\left(y_{j} \mid \mathbf{y}_{\mathrm{Paj}}(\mathrm{j}), \mathbf{x}, \theta\right) \\
& =\prod_{j} \frac{\exp \left(F_{\theta}\left(\mathbf{y}_{\mathrm{Pa}}(j), y, j, \mathbf{x}\right)\right)}{\sum_{y^{\prime}=1}^{m} \exp \left(F_{\theta}\left(\mathbf{y}_{\mathrm{Pa} a(j)}, y^{\prime}, j, \mathbf{x}\right)\right)}
\end{aligned}
$$

Training for BN

$$
\begin{aligned}
L L(\theta, D) & =\sum_{i=1}^{N} \log \operatorname{Pr}\left(\mathbf{y}^{i} \mid \mathbf{x}^{i}, \theta\right) \\
& =\sum_{i=1}^{N} \log \prod_{j} \operatorname{Pr}\left(y_{j}^{i} \mid \mathbf{y}_{\mathrm{Pa}}^{i}(j), \mathbf{x}^{i}, \theta\right) \\
& =\sum_{i} \sum_{j} \log \operatorname{Pr}\left(y_{j}^{i} \mid \mathbf{y}_{\mathrm{Pa}}^{i}(j), \mathbf{x}^{i}, \theta\right) \\
& \left.=\sum_{i} \sum_{j} F_{\theta}\left(\mathbf{y}_{\mathrm{Pa}(j)}^{i}, y_{j}^{i}, j, \mathbf{x}^{i}\right)\right)-\log \sum_{y^{\prime}=1}^{m} \exp \left(F_{\theta}\left(\mathbf{y}_{\mathrm{Pa}(j)}^{i}, y^{\prime}, j, \mathbf{x}^{i}\right)\right)
\end{aligned}
$$

Like normal classification task. No challenge arising during training because of graphical model. Normalizer is easy to compute.

Table Potentials in the feature framework.

Assume \mathbf{x}^{i} does not exist..(As in HMMs)

- $\left.F_{\theta}\left(\mathbf{y}_{\mathrm{Pa}_{\mathrm{a}}(j)}^{i}, y_{j}^{i}, j\right)\right)=\log P\left(y_{j}^{i} \mid \mathbf{y}_{\mathrm{Pa}(j)}^{i}\right)$, normalizer vanishes.
- $\operatorname{Pr}\left(y_{j} \mid y_{\mathrm{Pa}(j)}\right)=$ Table of real values denoting the probability of each value of x_{j} corresponding to each combination of values of the parents $\left(\theta^{j}\right)$.
- If each variables takes m possible values, and has k parents, then each $\operatorname{Pr}\left(y_{j} \mid \mathbf{y P a}_{\mathrm{Pa}}(j)\right.$ will require $m^{k}(m)$ parameters in θ^{j}.

$$
\theta_{v u_{1}, \ldots, u_{k}}^{j}=\operatorname{Pr}\left(y_{j}=v \mid \mathbf{y}_{p a(j)}=u_{1}, \ldots, u_{k}\right)
$$

Maximum Likelihood estimation of parameters

$$
\begin{aligned}
& \max _{\theta} \sum_{i} \sum_{j} \log P\left(y_{j}^{i} \mid \mathbf{y}_{\mathrm{Pa}(j)}^{i}\right) \\
= & \max _{\theta} \sum_{i} \sum_{j} \log \theta_{y_{j}^{j} y_{(j)}^{i}}^{j} \quad \text { s.t. } \sum_{v} \theta_{v u_{1}, \ldots, u_{k}}^{j}=1 \forall j, u_{1}, \ldots, u_{k} \\
= & \max _{\theta} \sum_{i} \sum_{j} \log \theta_{y_{j}^{j} y_{(j)}^{j}}^{j}-\sum_{j} \sum_{u_{1}, \ldots, u_{k}} \lambda_{u_{1}, \ldots, u_{k}}^{j}\left(\sum_{v} \theta_{v u_{1}, \ldots, u_{k}}^{j}-1\right)
\end{aligned}
$$

Solve above using gradient descent to get

$$
\begin{equation*}
\theta_{v u_{1}, \ldots, u_{k}}^{j}=\frac{\sum_{i=1}^{N}\left[\left[y_{j}^{i}==v, \mathbf{y}_{P a(j)}^{i}=u_{1}, \ldots, u_{k}\right]\right]}{\sum_{i=1}^{N}\left[\left[\mathbf{y}_{P a(j)}^{i}=u_{1}, \ldots, u_{k}\right]\right]} \tag{1}
\end{equation*}
$$

Partially observed, decoupled potentials

EM Algorithm

Input: Graph G, Data D with observed subset of variables \mathbf{x} and hidden variables \mathbf{z}.
Initially $(t=0)$: Assign random variables of parameters
$\operatorname{Pr}\left(x_{j} \mid p a\left(x_{j}\right)\right)^{t}$
for $=1, \ldots, T$ do

E-step

for $i=1, \ldots, N$ do
Use inference in G to estimate conditionals $\operatorname{Pr}_{i}\left(\mathbf{z}_{c} \mid \mathbf{x}^{i}\right)^{t}$ for all variable subsets (i,pa(i)) involving any hidden variable.
end for
M-step

$$
\operatorname{Pr}\left(x_{j} \mid p a\left(x_{j}\right)=\mathbf{z}_{c}\right)^{t}=\frac{\sum_{i=1}^{N} \operatorname{Pr}_{i}\left(\mathbf{z}_{c} \mid x^{i}\right)\left[\left[x_{j}^{j}==x_{j}\right]\right]}{\sum_{i=1}^{N} \operatorname{Pr}_{i}\left(\mathbf{z}_{c} \mid x^{i}\right)^{t}}
$$

end for

More on graphical models

- Koller and Friedman, Probabilistic Graphical Models: Principles and Techniques. MIT Press, 2009.
- Wainwright's article in FnT for Machine Learning. 2009.
- Kevin Murphy's brief online introduction (http://www.cs.ubc.ca/~murphyk/Bayes/bnintro.html)
- Graphical models. M. I. Jordan. Statistical Science (Special Issue on Bayesian Statistics), 19, 140-155, 2004. (http:
//www.cs.berkeley.edu/~jordan/papers/statsci.ps.gz)
- Other text books:
- R. G. Cowell, A. P. Dawid, S. L. Lauritzen and D. J. Spiegelhalter. "Probabilistic Networks and Expert Systems". Springer-Verlag. 1999.
- J. Pearl. "Probabilistic Reasoning in Intelligent Systems: Networks of Plausible Inference." Morgan Kaufmann. 1988.
- Graphical models by Lauritzen, Oxford science publications F. V. Jensen. "Bayesian Networks and Decision Graphs". Springer.

