Graphical models

Sunita Sarawagi IIT Bombay http://www.cse.iitb.ac.in/~sunita

Probabilistic modeling

- Given: several variables: $x_1, \ldots x_n$, *n* is large.
- Task: build a joint distribution function $Pr(x_1, \ldots x_n)$
- Goal: Answer several kind of projection queries on the distribution
- Basic premise
 - Explicit joint distribution is dauntingly large
 - Queries are simple marginals (sum or max) over the joint distribution.

Examples of Joint Distributions So far

- Naive Bayes: $P(x_1, \dots x_d | y)$, *d* is large. Assume conditional independence.
- Multivariate Gaussian
- Recurrent Neural Networks for Sequence labeling and prediction

Example

• Variables are attributes are people.

Age	Income	Experience	Degree	Location
10 ranges	7 scales	7 scales	3 scales	30 places
10 runges	1 Scales	1 Scales	5 Scales	

- An explicit joint distribution over all columns not tractable: number of combinations: $10 \times 7 \times 7 \times 3 \times 30 = 44100$.
- Queries: Estimate fraction of people with
 - Income > 200K and Degree="Bachelors",
 - Income < 200K, Degree="PhD" and experience > 10 years.
 - Many, many more.

Alternatives to an explicit joint distribution

- Assume all columns are independent of each other: bad assumption
- Use data to detect pairs of highly correlated column pairs and estimate their pairwise frequencies
 - ► Many highly correlated pairs income ⊥ age, income ⊥ experience, age⊥experience
 - Ad hoc methods of combining these into a single estimate
- Go beyond pairwise correlations: conditional independencies
 - ▶ income ⊥ age, but income ⊥ age | experience
 - ▶ experience $\bot\!\!\!\bot$ degree, but experience $\not\!\!\!\bot$ degree | income

Graphical models make explicit an efficient joint distribution from these independencies

More examples of CIs

- The grades of a student in various courses are correlated but they become CI given attributes of the student (hard-working, intelligent, etc?)
- Health symptoms of a person may be correlated but are CI given the latent disease.
- Words in a document are correlated, but may become CI given the topic.
- Pixel color in an image become CI of distant pixels given near-by pixels.

Graphical models

Model joint distribution over **several** variables as a product of smaller factors that is

- Intuitive to represent and visualize
 - Graph: represent structure of dependencies
 - Potentials over subsets: quantify the dependencies
- 2 Efficient to query
 - given values of any variable subset, reason about probability distribution of others.
 - many efficient exact and approximate inference algorithms

Graphical models = graph theory + probability theory.

Graphical models in use

- Roots in statistical physics for modeling interacting atoms in gas and solids [1900]
- Early usage in genetics for modeling properties of species [1920]
- Al: expert systems (1970s-80s)
- Now many new applications:
 - Error Correcting Codes: Turbo codes, impressive success story (1990s)
 - Robotics and Vision: image denoising, robot navigation.
 - Text mining: information extraction, duplicate elimination, hypertext classification, help systems
 - ► Bio-informatics: Secondary structure prediction, Gene discovery
 - > Data mining: probabilistic classification and clustering.

Representation

Structure of a graphical model: Graph + Potential

Graph

- Nodes: variables $\mathbf{x} = x_1, \dots x_n$
 - Continuous: Sensor temperatures, income
 - Discrete: Degree (one of Bachelors, Masters, PhD), Levels of age, Labels of words
- Edges: direct interaction
 - Directed edges: Bayesian networks
 - Undirected edges: Markov Random fields

Representation

Potentials: $\psi_c(\mathbf{x}_c)$

- Scores for assignment of values to subsets *c* of directly interacting variables.
- Which subsets? What do the potentials mean?
 - Different for directed and undirected graphs

Probability

Factorizes as product of potentials

$$\Pr(\mathbf{x} = x_1, \dots, x_n) \propto \prod \psi_{\mathcal{S}}(\mathbf{x}_{\mathcal{S}})$$

Directed graphical models: Bayesian networks

- Graph G: directed acyclic
 - Parents of a node: $Pa(x_i) = \text{set of nodes in } G$ pointing to x_i
- Potentials: defined at each node in terms of its parents.

$$\psi_i(x_i, \mathsf{Pa}(x_i)) = \mathsf{Pr}(x_i | \mathsf{Pa}(x_i))$$

Probability distribution

$$\Pr(x_1 \dots x_n) = \prod_{i=1}^n \Pr(x_i | pa(x_i))$$

Example of a directed graph

$$\psi_1(L) = \mathsf{Pr}(L)$$

NY	C۵	London	Other	
0.2	0.3	0.1	0.4	

 $\psi_{2}(A) = \Pr(A)$ 20-30 30-45 > 45
0.3 0.4 0.3
or, a Guassian distribution
(μ, σ) = (35, 10)

$\psi_2(E,A) = \Pr(E A)$								
	0–10	10–15	> 15					
20-30	0.9	0.1	0					
30–45	0.4	0.5	0.1					
> 45	0.1	0.1	0.8					

 $\psi_2(I, E, D) = \Pr(I|D, A)$

3 dimensional table, or a histogram approximation.

Probability distribution

 $\mathsf{Pa}(\mathbf{x} = L, D, I, A, E) = \mathsf{Pr}(L) \mathsf{Pr}(D) \mathsf{Pr}(A) \mathsf{Pr}(E|A) \mathsf{Pr}(I|D, E)$

Conditional Independencies

 Given three sets of variables X, Y, Z, set X is conditionally independent of Y given Z (X ⊥⊥ Y|Z) iff

$$\Pr(X|Y,Z) = \Pr(X|Z)$$

• Local conditional independencies in BN: for each x_i

 $x_i \perp D(x_i) | Pa(x_i)$

L ⊥⊥ E, D, A, I
A ⊥⊥ L, D
E ⊥⊥ L, D|A
I ⊥⊥ A|E, D

Sunita Sarawagi IIT Bombay http://www.c

Cls and Fractorization

Theorem

Given a distribution $P(x_1, ..., x_n)$ and a DAG G, if P satisfies Local-Cl induced by G, then P can be factorized as per the graph. Local-Cl(P, G) \implies Factorize(P, G)

Proof.

- $x_1, x_2, ..., x_n$ topographically ordered (parents before children) in *G*.
- Local CI(P, G): $P(x_i|x_1, ..., x_{i-1}) = P(x_i|Pa_G(x_i))$
- Chain rule: $P(x_1,...,x_n) = \prod_i P(x_i|x_1,...,x_{i-1}) = \prod_i P(x_i|Pa_G(x_i))$
- \implies Factorize(P, G)

Cls and Fractorization

Theorem

Given a distribution $P(x_1, ..., x_n)$ and a DAG G, if P can be factorized as per G then P satisfies Local-Cl induced by G. Factorize(P, G) \implies Local-Cl(P, G)

Proof skipped. (Refer book.)

Drawing a BN starting from a distribution

Given a distribution $P(x_1, ..., x_n)$ to which we can ask any CI of the form "Is $X \perp |Y|Z$?" and get a yes, no answer.

Goal: Draw a minimal, correct BN G to represent P.

Why minimal

Theorem

G constructed by the above algorithm is minimal, that is, we cannot remove any edge from the BN while maintaining the correctness of the BN for P

Proof.

By construction. A subset of ND of each x_i were available when parent of U were chosen minimally.

Why Correct

Theorem

G constructed by the above algorithm is correct, that is, the local-CIs induced by G hold in P

Proof.

The construction process makes sure that the factorization property holds. Since factorization implies local-Cls, the constructed BN satisfied the local-Cls of P

Order is important

Examples of CIs that hold in BN but not covered by local-CI

Global CIs in a BN

Three sets of variables X, Y, Z. If Z d-separates X from Y in BN then, $X \perp \!\!\!\perp Y | Z$. In a directed graph H, Z d-separates X from Y if all paths P from any X to Y is blocked by Z. A path P is blocked by Z when **1** $x_1 \rightarrow x_2 \rightarrow \ldots x_k$ and $x_i \in Z$ 2 $x_1 \leftarrow x_2 \leftarrow \ldots x_k$ and $x_i \in Z$ 3 $x_1 \ldots \leftarrow x_i \rightarrow \ldots x_k$ and $x_i \in Z$ • $x_1 \ldots \rightarrow x_i \leftarrow \ldots x_k$ and $x_i \notin Z$ and $Desc(x_i) \notin Z$

Theorem

The d-separation test identifies the complete set of conditional independencies that hold in all distributions that conform to a given Bayesian network.

Global Cls Examples

Global CIs and Local-CIs

In a BN, the set of CIs combined with the axioms of probability can be used to derive the Global-CIs.

Proof is long but easy to understand. Sketch of a proof available in the supplementary.

Popular Bayesian networks

• Hidden Markov Models: speech recognition, information extraction

- State variables: discrete phoneme, entity tag
- Observation variables: continuous (speech waveform), discrete (Word)
- Kalman Filters: State variables: continuous
 - Discussed later
- Topic models for text data
 - Principled mechanism to categorize multi-labeled text documents while incorporating priors in a flexible generative framework
 - Application: news tracking
- QMR (Quick Medical Reference) system

Sunita Sarawagi IIT Bombay http://www.c

Graphical model

Undirected graphical models

- Graph G: arbitrary undirected graph
- Useful when variables interact symmetrically, no natural parent-child relationship
- Example: labeling pixels of an image.
- Potentials ψ_C(**y**_C) defined on arbitrary cliques C of G.
- ψ_C(**y**_C): Any arbitrary non-negative value, cannot be interpreted as probability.
- Probability distribution

$$\Pr(y_1 \dots y_n) = \frac{1}{Z} \prod_{C \in G} \psi_C(\mathbf{y}_C)$$

where $Z = \sum_{\mathbf{y}'} \prod_{C \in G} \psi_C(\mathbf{y}'_C)$ (partition function)

Example

Node potentials

•
$$\psi_1(0) = 4, \ \psi_1(1) = 1$$

•
$$\psi_2(0) = 2, \ \psi_2(1) = 3$$

....

•
$$\psi_9(0) = 1$$
, $\psi_9(1) = 1$

- Edge potentials: Same for all edges
 - $\psi(0,0) = 5$, $\psi(1,1) = 5$, $\psi(1,0) = 1$, $\psi(0,1) = 1$
- Probability: $\Pr(y_1 \dots y_9) \propto \prod_{k=1}^9 \psi_k(y_k) \prod_{(i,j) \in E(G)} \psi(y_i, y_j)$

Conditional independencies (CIs) in an undirected graphical model

Let $V = \{y_1, \ldots, y_n\}$. Let distribution P be represented by an undirected graphical model G. If Z separates X and Y in G, then $X \perp P | Z$ in P. The set of all such CIs are called Global-CI of the UGM. Example:

•
$$y_1 \perp y_3, y_5y_6, y_7, y_8, y_9 | y_2, y_4$$

• $y_1 \perp y_3 | y_2, y_4, y_5, y_6, y_7, y_8, y_9$
• $y_1, y_2, y_3 \perp y_7, y_8, y_9 | y_4, y_5, y_6$

Factorization implies Global-CI

Theorem

Let G be a undirected graph over $V = x_1, ..., x_n$ nodes and $P(x_1, ..., x_n)$ be a distribution. If P is represented by G that is, if it can be factorized as per the cliques of G, then P will also satisfy the global-Cls of G Factorize(P, G) \implies Global-Cl(P, G)

Factorization implies Global-CI (Proof)

Available as proof of Theorem 4.1 in KF book.

Global-Cl does not imply factorization.

(Taken from example 4.4 of KF book) But global-CI does not imply factorization. Consider a distribution over 4 binary variables: $P(x_1, x_2, x_3, x_4)$ Let G be

Let $P(x_1, x_2, x_3, x_4) = 1/8$ when x_1, x_2, x_3, x_4 takes values from this set ={0000,1000,1100,1110,1111,0111,0011,0001}. In all other cases it is zero. One can painfully check that all four globals CIs in the graph: e.g. $x_1 \perp \{x_3\}|x_2, x_4$ etc hold in the graph. Now let us look at factorization. The factors correspond to the edges in $\psi(x_1, x_2)$. Each of the four possible assignment of each factor will get a positive value. But that cannot represent the zero probability for cases like $x_1, x_2, x_3, x_4 = 0101$.

Other Conditional independencies (Cls) in an undirected graphical model

Let
$$V = \{y_1, \ldots, y_n\}.$$

- Local CI: $y_i \perp V ne(y_i) \{y_i\} | ne(y_i)$
- **2** Pairwise CI: $y_i \perp p_j | V \{y_i, y_j\}$ if edge (y_i, y_j) does not exist.
- **③** Global CI: $X \perp \!\!\!\perp Y | Z$ if Z separates X and Y in the graph.

Equivalent when the distribution P(x) is positive, that is P(x) > 0, $\forall x$

9
$$y_1 \perp y_3, y_5y_6, y_7, y_8, y_9 | y_2, y_4$$

9 $y_1 \perp y_3 | y_2, y_4, y_5, y_6, y_7, y_8, y_9$
9 $y_1, y_2, y_3 \perp y_7, y_8, y_9 | y_4, y_5, y_6$

Relationship between Local-CI and Global-CI

Let G be a undirected graph over $V = x_1, \ldots, x_n$ nodes and $P(x_1, \ldots, x_n)$ be a distribution. If P satisfies Global-Cls of G, then P will also satisfy the local-Cls of G but the reverse is not always true. We will show this with an example.

Consider a distribution over 5 binary variables: $P(x_1, ..., x_5)$ where $x_1 = x_2$, $x_4 = x_5$ and $x_3 = x_2$ AND x_4 . Let G be

$$x_1 - x_2 - x_3 - x_4 - x_5$$

All 5 local CIs in the graph: e.g. $x_1 \perp \{x_3, x_4, x_5\}|x_2$ etc hold in the graph.

However, the global CI: $x_2 \perp \perp x_4 \mid x_3$ does not hold.

Relationship between Local-CI and Pairwise-CI

Let G be a undirected graph over $V = x_1, \ldots, x_n$ nodes and $P(x_1, \ldots, x_n)$ be a distribution. If P satisfies Local-Cls of G, then P will also satisfy the pairwise-Cls of G but the reverse is not always true. We will show this with an example.

Consider a distribution over 3 binary variables: $P(x_1, x_2, x_3)$ where $x_1 = x_2 = x_3$. That is, $P(x_1, x_2, x_3) = 1/2$ when all three are equal and 0 otherwise.

Let G be

$$x_1 - x_2 - x_3$$

All 2 pairwise CIs in the graph: e.g. $x_1 \perp \{x_3\}|x_2$ and $x_2 \perp \{x_3\}|x_1$ hold in the graph. However, the local CI: $x_1 \perp x_3$ does not hold.

Factorization and CIs

Theorem

(Hammerseley Clifford Theorem) If a positive distribution $P(x_1, ..., x_n)$ confirms to the pairwise Cls of a UDGM G, then it can be factorized as per the cliques C of G as

$$P(x_1,\ldots,x_n)\propto\prod_{C\in G}\psi_C(\mathbf{y}_C)$$

Proof.

Theorem 4.8 of KF book (partially)

Summary

Let P be a distribution and H be an undirected graph of the same set of nodes.

 $Factorize(P, H) \implies Global-Cl(P, H) \implies Local-Cl(P, H) \implies$ Pairwise-Cl(P, H)

But only for positive distributions

 $\mathsf{Pairwise-Cl}(P,H) \implies \mathsf{Factorize}(P,H)$

Constructing an UGM from a positive distribution

Given a positive distribution $P(x_1, \ldots, x_n)$ to which we can ask any CI of the form "Is $X \perp P | Z$?" and get a yes, no answer. Goal: Draw a minimal, correct UGM *G* to represent *P*. Two options: (1) Using pairwise CI (2) Using Local CI.
Constructing an UGM from a positive distribution using Local-CI

Definition: The Markov Blanket of a variable x_i , MB(x_i) is the smallest subset of variables V that makes x_i CI of others given the Markov blanket.

$$x_i \perp V - MB(x_i)|MB(x_i)|$$

The MB of a variable is always unique for a positive distribution.

Popular undirected graphical models

- Interacting atoms in gas and solids [1900]
- Markov Random Fields in vision for image segmentation
- Conditional Random Fields for information extraction
- Social networks
- Bio-informatics: annotating active sites in a protein molecules.

Conditional Random Fields (CRFs)

Used to represent conditional distribution $P(\mathbf{y}|\mathbf{x})$ where $\mathbf{y} = y_1, \ldots, y_n$ forms an undirected graphical model. The potentials are defined over subset of y variables, and the whole of \mathbf{x} .

$$\Pr(y_1,\ldots,y_n|\mathbf{x},\theta) = \frac{\prod_C \psi_c(\mathbf{y}_c,\mathbf{x},\theta)}{Z_{\theta}(\mathbf{x})} = \frac{1}{Z_{\theta}(\mathbf{x})} \exp(\sum_c F_{\theta}(\mathbf{y}_c,c,\mathbf{x}))$$

where
$$Z_{\theta}(\mathbf{x}) = \sum_{\mathbf{y}'} \exp(\sum_{c} F_{\theta}(\mathbf{y}'_{c}, c, \mathbf{x}))$$

clique potential $\psi_{c}(\mathbf{y}_{c}, \mathbf{x}) = \exp(F_{\theta}(\mathbf{y}_{c}, c, \mathbf{x}))$

Potentials in CRFs

• Log-linear model over user-defined features. E.g. CRFs, Maxent models, etc.

Let K be number of features. Denote a feature as $f_k(\mathbf{y}_c, c, \mathbf{x})$. Then,

$$F_{ heta}(\mathbf{y}_{c},c,\mathbf{x}) = \sum_{k=1}^{K} heta_{k} f_{k}(\mathbf{y}_{c},c,\mathbf{x})$$

Arbitrary function, e.g. a neural network that takes as input y_c, c, x and transforms them possibly non-linearly into a real value. θ are the parameters of the network.

Example: Named Entity Recognition

My review of Fermat's last theorem by S. Singh

t	1	2	3	4	5	6	7	8	9
x	Му	review	of	Fermat's	last	theorem	by	S.	Singh
y	Other	Other	Other	Title	Title	Title	other	Author	Author

Features decompose over adjacent labels.

$$\mathbf{f}(\mathbf{x}, \mathbf{y}) = \sum_{i=1}^{|\mathbf{x}|} \mathbf{f}(y_i, y_{i-1}, i, \mathbf{x})$$

Named Entity Recognition: Features

 $f_2(y_i, \mathbf{x}, i, y_{i-1}) = 1$ if y_i is Person & x_i is Douglas $f_3(y_i, \mathbf{x}, i, y_{i-1}) = 1$ if y_i is Person & y_{i-1} is Other

Comparing directed and undirected graphs

• Some distributions can only be expressed in one and not the other.

- Potentials
 - Directed: conditional probabilities, more intuitive
 - Undirected: arbitrary scores, easy to set.
- Dependence structure
 - Directed: Complicated d-separation test
 - ► Undirected: Graph separation: A ⊥⊥ B | C iff C separates A and B in G.
- Often application makes the choice clear.
 - Directed: Causality
 - Undirected: Symmetric interactions.

Equivalent BNs

Two BN DAGs are said to be equivalent if they express the same set of CIs. (Examples)

Theorem

Two BNs G_1 , G_2 are equivalent iff they have the same skeleton and the same set of immoralities. (An immorality is a structure of the form $x \to y \leftarrow z$ with no edge between x and z)

Converting BN to MRFs

Efficient: Using the Markov Blanket algorithm.

For which BN can we create perfect MRFs?

Converting MRFs to BNs

Which MRFs have perfect BNs

Chordal or triangulated graphs

A graph is chordal if it has no minimal cycle of length \geq 4.

Theorem

A MRF can be converted perfectly into a BN iff it is chordal.

Proof.

Theorems 4.11 and 4.13 of KF book

Algorithm for constructing perfect BNs from chordal MRFs to be discussed later.

Sunita Sarawagi IIT Bombay http://www.c

BN and Chordality

A BN with a minimal undirected cycle of length \geq 4 must have an immorality. A BN without any immorality is always chordal.

Inference queries

Marginal probability queries over a small subset of variables:

- Find Pr(Income='High & Degree='PhD')
- Find $Pr(pixel y_9 = 1)$

F

$$\Pr(x_1) = \sum_{x_2...x_n} \Pr(x_1...x_n)$$
$$= \sum_{x_2=1}^m \dots \sum_{x_n=1}^m \Pr(x_1...x_n)$$

Brute-force requires $O(m^{n-1})$ time.

Ø Most likely labels of remaining variables: (MAP queries)

- Find most likely entity labels of all words in a sentence
- Find likely temperature at sensors in a room

$$\mathbf{x}^* = \operatorname{argmax}_{x_1 \dots x_n} \Pr(x_1 \dots x_n)$$

Exact inference on chains

• Given,

$$y_1 \longrightarrow y_2 \longrightarrow y_3 \longrightarrow y_4 \longrightarrow y_5$$

- Graph
- Potentials: $\psi_i(y_i, y_{i+1})$
- $Pr(y_1,\ldots,y_n) = \prod_i \psi_i(y_i,y_{i+1}), Pr(y_1)$
- Find, $Pr(y_i)$ for any i, say $Pr(y_5 = 1)$
 - Exact method: $Pr(y_5 = 1) = \sum_{y_1,\dots,y_4} Pr(y_1,\dots,y_4,1)$ requires exponential number of summations.
 - A more efficient alternative...

Exact inference on chains

$$\begin{aligned} \Pr(y_5 = 1) &= \sum_{y_1, \dots, y_4} \Pr(y_1, \dots, y_4, 1) \\ &= \sum_{y_1} \sum_{y_2} \sum_{y_3} \sum_{y_4} \psi_1(y_1, y_2) \psi_2(y_2, y_3) \psi_3(y_3, y_4) \psi_4(y_4, 1) \\ &= \sum_{y_1} \sum_{y_2} \psi_1(y_1, y_2) \sum_{y_3} \psi_2(y_2, y_3) \sum_{y_4} \psi_3(y_3, y_4) \psi_4(y_4, 1) \\ &= \sum_{y_1} \sum_{y_2} \psi_1(y_1, y_2) \sum_{y_3} \psi_2(y_2, y_3) B_3(y_3) \\ &= \sum_{y_1} \sum_{y_2} \psi_1(y_1, y_2) B_2(y_2) \\ &= \sum_{y_1} B_1(y_1) \end{aligned}$$

An alternative view: flow of beliefs $B_i(.)$ from node i + 1 to node i

$$y_1 \longrightarrow y_2 \longrightarrow y_3 \longrightarrow y_4 \longrightarrow y_4$$

Sunita Sarawagi IIT Bombay http://www.c

Adding evidence

Given fixed values of a subset of variables **x**_e (evidence), find the *Marginal probability queries over a small subset of variables:*

Find Pr(Income='High | Degree='PhD')

$$\Pr(x_1) = \sum_{x_2...x_m} \Pr(x_1...x_n | \mathbf{x}_e)$$

- Most likely labels of remaining variables: (MAP queries)
 - Find likely temperature at sensors in a room given readings from a subset of them

$$\mathbf{x}^* = \operatorname{argmax}_{x_1...x_m} \Pr(x_1 \dots x_n | \mathbf{x}_e)$$

Easy to add evidence, just change the potential.

Case study: HMMs for Information Extraction

My review of Fermat's last theorem by S. Singh

t	1	2	3	4	5	6	7	8	9
x	Му	review	of	Fermat's	last	theorem	by	S.	Singh
y	Other	Other	Other	Title	Title	Title	other	Author	Author

Inference in HMMs

• Given,

- Potentials: $Pr(y_i|y_{i-1}), Pr(x_i|y_i)$
- Evidence variables: $\mathbf{x} = x_1 \dots x_n = o_1 \dots o_n$.
- Find most likely values of the hidden state variables.

$$\mathbf{y} = y_1 \dots y_n$$

$$\operatorname{argmax}_{\mathbf{y}} \mathsf{Pr}(\mathbf{y} | \mathbf{x} = \mathbf{o})$$

- Define $\psi_i(y_{i-1}, y_i) = \Pr(y_i|y_{i-1}) \Pr(x_i = o_i|y_i)$
- Reduced graph only a single chain of y nodes.

 $y_1 \longrightarrow y_2 \longrightarrow y_3 \longrightarrow y_4 \longrightarrow y_5 \longrightarrow y_6 \longrightarrow y_7$

• Algorithm same as earlier, just replace "Sum" with "Max"

This is the well-known Viterbi algorithm

The Viterbi algorithm

Let observations x_t take one of k possible values, states y_t take one of m possible value.

Given *n* observations: o_1, \ldots, o_n **Given** Potentials $Pr(y_t|y_{t-1}) = P(y|y')$ (Table with m^2 values), $Pr(x_t|y_t) = P(x|y)$ (Table with *mk* values), $Pr(y_1) = P(y)$ start probabilities (Table with m values.) **Find** $\max_{\mathbf{v}} \Pr(\mathbf{y} | \mathbf{x} = \mathbf{o})$ $B_n[y] = 1$ $y \in [1, \ldots, m]$ for $t = n \dots 2$ do $\psi(\mathbf{y},\mathbf{y}') = P(\mathbf{y}|\mathbf{y}')P(\mathbf{x}_t = \mathbf{o}_t|\mathbf{y})$ $B_{t-1}[y'] = \max_{y=1}^{n} \psi(y, y') B_t[y]$ end for **Return** $\max_{y} B_1[y]P(y)P(x_t = o_t|y)$ Time taken: $O(nm^2)$

Numerical Example

$$P(y|y') = \frac{\begin{array}{c|c} y' & P(y=0|y') & P(y=1|y') \\ \hline 0 & 0.9 & 0.1 \\ 1 & 0.2 & 0.8 \end{array}$$

$$P(x|y) = \frac{\begin{array}{c|c} y & P(x=0|y) & P(x=1|y) \\ \hline 0 & 0.7 & 0.3 \\ 1 & 0.6 & 0.4 \end{array}$$

$$P(y=1) = 0.5$$
Observation $[x_0, x_1, x_2] = [0, 0, 0]$

Variable elimination on general graphs

Given, arbitrary sets of potentials ψ_C(x_C), C = cliques in a graph G.

• Find,
$$Z = \sum_{x_1,...,x_n} \prod_C \psi_C(x_C)$$

 $x_1, \ldots x_n = \text{good ordering of variables}$ $\mathcal{F} = \psi_C(x_C), C = \text{cliques in a graph } G.$ for $i = 1 \ldots n$ do $\mathcal{F}_i = \text{factors in } \mathcal{F} \text{ that contain } x_i$ $M_i = \text{product of factors in } \mathcal{F}_i$ $m_i = \sum_{x_i} M_i$ $\mathcal{F} = \mathcal{F} - \mathcal{F}_i \cup \{m_i\}$

end for

Example: Variable elimination

- Given, $\psi_{12}(x_1, x_2)$, $\psi_{24}(x_2, x_4)$, $\psi_{23}(x_2, x_3)$, $\psi_{45}(x_4, x_5)$, , $\psi_{35}(x_3, x_5)$.
- Find, $Z = \sum_{x_1,...,x_5} \psi_{12}(x_1, x_2) \psi_{24}(x_2, x_4) \psi_{23}(x_2, x_3) \psi_{45}(x_4, x_5) \psi_{35}(x_3, x_5).$

- a x₂: ∏{ $\psi_{24}(x_2, x_4), \psi_{23}(x_2, x_3), m_1(x_2)$ } → M₂(x₂, x₃, x₄) → M₂(x₂, x₃, x₄) → M₂(x₂, x₃, x₄)
- **③** $x_3: \prod \{ \psi_{35}(x_3, x_5), m_2(x_3, x_4) \} \rightarrow M_3(x_3, x_4, x_5) \xrightarrow{\sum_{x_3}} m_3(x_4, x_5)$

Choosing a variable elimination order

- Complexity of VE $O(nm^w)$ where w is the maximum number of variables in any factor.
- Wrong elimination order can give rise to very large intermediate factors.
- Example: eliminating x_2 first will give a factor of size 4.
- Given an example where the penalty can be really severe (?)
- Choosing the optimal elimination order is NP hard for general graphs.
- Polynomial time algorithm exists for chordal graphs.
 - ► A graph is chordal or triangulated if all cycles of length greater than three have a shortcut.
- Optimal triangulation of graphs is NP hard. (Many heuristics)

Finding optimal order in a triangulated graph

Theorem

Every triangulated graph is either complete or has at least two simplicial vertices. A vertex is simplicial if its neighbors form a complete set.

Proof.

In supplementary. (not in syllabus)

Goal: find optimal ordering for $P(x_1)$ inference. x_1 has to be last in the ordering.

Input: Graph G. n = number of vertices of G for i = 2, ..., n do $\pi_i =$ pick any simplicial vertex in G other than 1. remove π_i from G end for

Sunita Sarawagi IIT Bombay http://www.c

Reusing computation across multiple inference queries

Given a chain graph with potentials $\psi_{i,i+1}(x_i, x_{i+1})$, suppose we need to compute all *n* marginals $P(x_1), \ldots, P(x_n)$. Invoking variable elimination algorithm *n* times for each x_i will entail a cost of $n \times nm^2$. Can we go faster by reusing work across computations?

Junction tree algorithm

- An optimal general-purpose algorithm for exact marginal/MAP queries
- Simultaneous computation of many queries
- Efficient data structures
- Complexity: O(m^wN) w= size of the largest clique in (triangulated) graph, m = number of values of each discrete variable in the clique. → linear for trees.
- Basis for many approximate algorithms.
- Many popular inference algorithms special cases of junction trees
 - Viterbi algorithm of HMMs
 - Forward-backward algorithm of Kalman filters

Junction tree

Junction tree JT of a triangulated graph G with nodes x_1, \ldots, x_n is a tree where

- Nodes = maximal cliques of G
- Edges ensure that if any two nodes contain a variable x_i then x_i is present in every node in the unique path between them (Running intersection property).

Constructing a junction tree

Efficient polynomial time algorithms exist for creating a JT from a triangulated graph.

- Enumerate a covering set of cliques
- Connect cliques to get a tree that satisfies the running intersection property.

If graph is non-triangulated, triangulate first using heuristics, optimal triangulation is NP-hard.

Creating a junction tree from a graphical model

1. Starting graph

2. Triangulate graph

 x_{-}

 x_{γ}

3. Create clique nodes

4. Create tree edges such that variables connected.

5) Assign potentials to exactly one subsumed clique node.

Finding cliques of a triangulated graph

Theorem

Every triangulated graph has a simplicial vertex, that is, a vertex whose neighbors form a complete set.

```
Input: Graph G. n = number of vertices of G
for i = 1, ..., n do
\pi_i = pick any simplicial vertex in G
C_i = {\pi_i} \cup Ne(\pi_i)
remove \pi_i from G
end for
```

Return maximal cliques from C_1, \ldots, C_n

Connecting cliques to form junction tree

Separator variables = intersection of variables in the two cliques joined by an edge.

Theorem

A clique tree that satisfies the running intersection property maximizes the number of separator variables.

Proof: https://people.eecs.berkeley.edu/~jordan/courses/ 281A-fall04/lectures/lec-11-16.pdf

```
Input: Cliques: C_1, \ldots, C_k
```

Form a complete weighted graph H with cliques as nodes and edge weights = size of the intersection of the two cliques it connects. T = maximum weight spanning tree of H

Return T as the junction tree.

Message passing on junction trees

- Each node *c*
 - ▶ sends message $m_{c \to c'}(.)$ to each of its neighbors c'
 - * once it has messages from every other neighbor $N(c) \{c'\}$.
 - m_{c→c'}(.) = Message from c to c' is the result of sum-product elimination on side of the tree that contains clique c but not c' on the separator variables s = c ∩ c'

$$m_{c \to c'}(\mathbf{x}_s) = \sum_{\mathbf{x}_{c-s}} \psi_c(\mathbf{x}_c) \prod_{d \in N(c) - \{c'\}} m_{d \to c}(\mathbf{x}_{d \cap c})$$

Replace "sum" with "max" for MAP queries.

Compute marginal probability of any variable x_i as

•
$$c = clique in JT containing x_i$$

• Pr(
$$x_i$$
) $\propto \sum_{\mathbf{x}_{c-x_i}} \psi_c(\mathbf{x}_c) \prod_{d \in N(c)} m_{d \to c}(\mathbf{x}_{d \cap c})$

Example

 $\psi_{234}(\mathbf{y}_{234}) = \psi_{23}(\mathbf{y}_{23})\psi_{34}(\mathbf{y}_{34})$ $\psi_{345}(\mathbf{y}_{345}) = \psi_{35}(\mathbf{y}_{35})\psi_{45}(\mathbf{y}_{45})$ $\psi_{234}(\mathbf{y}_{12}) = \psi_{12}(\mathbf{y}_{12})$

- Olique "12" sends Message m_{12→234}(y₂) = ∑_{y1} ψ₁₂(y₁₂) to its only neighbor.
- ② Clique "345" sends Message $m_{345\to 234}(\mathbf{y}_{34}) = \sum_{y_5} \psi_{234}(\mathbf{y}_{345})$ to "234"
- Olique "234" sends Message *m*_{234→345}(**y**₃₄) = ∑_{y2} ψ₂₃₄(**y**₂₃₄)*m*_{12→234}(*y*₂) to "345"

 Olique "234" sends Message *m*_{234→12}(*y*₂) = ∑_{y4} ψ₂₃₄(**y**₂₃₄)*m*_{345→234}(**y**₃₄) to "12"

 Pr(y₁) ∝ ∑_{y2} ψ₁₂(**y**₁₂)*m*_{234→12}(*y*₂)

Why approximate inference

- Exact inference is NP hard. Complexity: $O(m^w)$
 - w= tree width = size of the largest clique in (triangulated) graph-1,
 - m = number of values of each discrete variable in the clique.
- Many real-life graphs produce large cliques on triangulation
 - A $n \times n$ grid has a tree width of n
 - ► A Kalman filter on K parallel state variables influencing a common observation variable, has a tree width of size K + 1

Generalized belief propagation

- Approximate junction tree with a cluster graph where
 - Nodes = arbitrary clusters, not cliques in triangulated graph. Only ensure all potentials subsumed.
 - Separator nodes on edges = subset of intersecting variables so as to satisfy running intersection property.
- Special case: Factor graphs.

Sunita Sarawagi IIT Bombay http://www.c

Belief propagation in cluster graphs

- Graph can have loops, tree-based two-phase method not applicable.
- Many variants on scheduling order of propagating beliefs.
 - Simple loopy belief propagation [?]
 - Tree-reweighted message passing [?, ?]
 - Residual belief probagation [?]
- Many have no guarantees of convergence. Specific tree-based orders do [?]
- Works well in practice, default method of choice.
MCMC (Gibbs) sampling

- Useful when all else failes, guaranteed to converge to the optimal over infinite number of samples.
- Basic premise: easy to compute conditional probability Pr(x_i|fixed values of remaining variables)

Algorithm

• Start with some initial assignment, say

$$\mathbf{x}^1 = [x_1, \ldots, x_n] = [0, \ldots, 0]$$

• For several iterations

For each variable x_i

Get a new sample \mathbf{x}^{t+1} by replacing value of x_i with a new value sampled according to probability $\Pr(x_i|x_1^t, \dots, x_{i-1}^t, x_{i+1}^t, \dots, x_n^t)$

Others

- Combinatorial algorithms for MAP [?].
- Greedy algorithms: relaxation labeling.
- Variational methods like mean-field and structured mean-field.
- LP and QP based approaches.

Parameters in Potentials

- Manual: Provided by domain expert
 - Used in infrequently constructured graphs, example QMR systems
 - Also where potentials are an easy function of the attributes of connected graphs, example: vision networks.
- 2 Learned: from examples
 - More popular since difficult for humans to assign numeric values
 - Many variants of parameterizing potentials.
 - **1** Table potentials: each entry a parameter, example, HMMs
 - Potentials: combination of shared parameters and data attributes: example, CRFs.

Graph Structure

- Manual: Designed by domain expert
 - Used in applications where dependency structure is well-understood
 - Example: QMR systems, Kalman filters, Vision (Grids), HMM for speech recognition and IE.
- 2 Learned from examples
 - NP hard to find the optimal structure.
 - Widely researched, mostly posed as a branch and bound search problem.
 - Useful in dynamic situations

Learning potentials

Given sample $D = {\mathbf{x}^1, ..., \mathbf{x}^N}$ of data generated from a distribution $P(\mathbf{x})$ represented by a graphical model with known structure G, learn potentials $\psi_C(\mathbf{x}_C)$.

Two settings:

- All variables observed or not.
 - Fully observed: each training sample xⁱ has all n variables observed.
 - **2** Partially observed: a subset of the variables are observed.
- Potentials coupled with a log-partition function or not.
 - No: Closed form solutions
 - Yes: Potentials attached to arbitrary overlapping subset of variables in a UDGM. Example = edge potentials in a grid graph. iterative solution as in the case of learning with shared parameters Discussed later.

General framework for Parameter learning in graphical models

- Conditional distribution Pr(y|x, θ), potentials are function of x and parameters θ to be learned.
- $\mathbf{y} = y_1, \ldots, y_n$ forms a graphical model: directed or undirected.
- Undirected:

$$Pr(y_1, \dots, y_n | \mathbf{x}, \theta) = \frac{\prod_C \psi_c(\mathbf{y}_c, \mathbf{x}, \theta)}{Z_{\theta}(\mathbf{x})}$$
$$= \frac{1}{Z_{\theta}(\mathbf{x})} \exp(\sum_c F_{\theta}(\mathbf{y}_c, c, \mathbf{x}))$$

where
$$Z_{\theta}(\mathbf{x}) = \sum_{\mathbf{y}'} \exp(\sum_{c} F_{\theta}(\mathbf{y}'_{c}, c, \mathbf{x}))$$

clique potential $\psi_{c}(\mathbf{y}_{c}, \mathbf{x}) = \exp(F_{\theta}(\mathbf{y}_{c}, c, \mathbf{x}))$

Forms of $F_{\theta}(\mathbf{y}_{c}, c, \mathbf{x})$

• Log-linear model over user-defined features. E.g. CRFs, Maxent models, etc.

Let K be number of features. Denote a feature as $f_k(\mathbf{y}_c, c, \mathbf{x})$. Then,

$$\mathcal{F}_{ heta}(\mathbf{y}_{c},c,\mathbf{x}) = \sum_{k=1}^{K} heta_{k} f_{k}(\mathbf{y}_{c},c,\mathbf{x})$$

Arbitrary function, e.g. a neural network that takes as input y_c, c, x and transforms them possibly non-linearly into a real value. θ are the parameters of the network.

Example: Named Entity Recognition

My review of Fermat's last theorem by S. Singh

t	1	2	3	4	5	6	7	8	9
x	Му	review	of	Fermat's	last	theorem	by	S.	Singh
y	Other	Other	Other	Title	Title	Title	other	Author	Author

Features decompose over adjacent labels.

$$\mathbf{f}(\mathbf{x}, \mathbf{y}) = \sum_{i=1}^{|\mathbf{x}|} \mathbf{f}(y_i, y_{i-1}, i, \mathbf{x})$$

Named Entity Recognition: Features

 $f_2(y_i, \mathbf{x}, i, y_{i-1}) = 1$ if y_i is Person & x_i is Douglas $f_3(y_i, \mathbf{x}, i, y_{i-1}) = 1$ if y_i is Person & y_{i-1} is Other

Training

Given

- N input output pairs $D = \{(\mathbf{x}^1, \mathbf{y}^1), (\mathbf{x}^2, \mathbf{y}^2), \dots, (\mathbf{x}^N, \mathbf{y}^N)\}$
- Form of F_{θ}
- Learn parameters $\boldsymbol{\theta}$ by maximum likelihood.

$$\max_{\theta} LL(\theta, D) = \max_{\theta} \sum_{i=1}^{N} \log \Pr(\mathbf{y}^{i} | \mathbf{x}^{i}, \theta)$$

Training undirected graphical model

$$LL(\theta, D) = \sum_{i=1}^{N} \log \Pr(\mathbf{y}^{i} | \mathbf{x}^{i}, \theta)$$
$$= \sum_{i=1}^{N} \log \frac{1}{Z_{\theta}(\mathbf{x}^{i})} \exp(\sum_{c} F_{\theta}(\mathbf{y}^{i}_{c}, c, \mathbf{x}^{i}))$$
$$= \sum_{i} [\sum_{c} F_{\theta}(\mathbf{y}^{i}_{c}, c, \mathbf{x}^{i}) - \log Z_{\theta}(\mathbf{x}^{i})]$$

The first part is easy to compute but the second term requires to invoke an inference algorithm to compute $Z_{\theta}(\mathbf{x}^{i})$ for each *i*. Computing the gradient of the above objective with respect to θ also requires inference.

Sunita Sarawagi IIT Bombay http://www.c

Training via gradient descent

Assume log-linear models like in CRFs where $F_{\theta}(\mathbf{y}_{c}^{i}, c, \mathbf{x}^{i}) = \theta \cdot \mathbf{f}(\mathbf{x}^{i}, \mathbf{y}_{c}^{i}, c)$ Also, for brevity write $\mathbf{f}(\mathbf{x}^{i}, \mathbf{y}^{i}) = \sum_{c} \mathbf{f}(\mathbf{x}^{i}, \mathbf{y}_{c}^{i}, c)$

$$LL(\theta) = \sum_{i} \log \Pr(\mathbf{y}^{i} | \mathbf{x}^{i}, \theta) = \sum_{i} (\theta \cdot \mathbf{f}(\mathbf{x}^{i}, \mathbf{y}^{i}) - \log Z_{\theta}(\mathbf{x}^{i}))$$

Add a regularizer to prevent over-fitting.

$$\max_{\theta} \sum_{i} (\theta \cdot \mathbf{f}(\mathbf{x}^{i}, \mathbf{y}^{i}) - \log Z_{\theta}(\mathbf{x}^{i})) - \|\theta\|^{2} / C$$

Concave in $\theta \implies$ gradient descent methods will work.

Gradient of the training objective

$$\nabla L(\theta) = \sum_{i} \mathbf{f}(\mathbf{x}^{i}, \mathbf{y}^{i}) - \frac{\sum_{\mathbf{y}'} \mathbf{f}(\mathbf{y}', \mathbf{x}^{i}) \exp \theta \cdot \mathbf{f}(\mathbf{x}^{i}, \mathbf{y}')}{Z_{\theta}(\mathbf{x}^{i})} - 2\theta/C$$

$$= \sum_{i} \mathbf{f}(\mathbf{x}^{i}, \mathbf{y}^{i}) - \sum_{\mathbf{y}'} \mathbf{f}(\mathbf{x}^{i}, \mathbf{y}') \Pr(\mathbf{y}'|\theta, \mathbf{x}^{i}) - 2\theta/C$$

$$= \sum_{i} \mathbf{f}(\mathbf{x}^{i}, \mathbf{y}^{i}) - E_{\Pr(\mathbf{y}'|\theta, \mathbf{x}^{i})} \mathbf{f}(\mathbf{x}^{i}, \mathbf{y}') - 2\theta/C$$

$$E_{\Pr(\mathbf{y}'|\theta,\mathbf{x}^{i})}f_{k}(\mathbf{x}^{i},\mathbf{y}') = \sum_{\mathbf{y}'}f_{k}(\mathbf{x}^{i},\mathbf{y}')\Pr(\mathbf{y}'|\theta,\mathbf{x}^{i})$$
$$= \sum_{\mathbf{y}'}\sum_{c}f_{k}(\mathbf{x}^{i},\mathbf{y}_{c}',c)\Pr(\mathbf{y}'|\theta,\mathbf{x}^{i})$$
$$= \sum_{c}\sum_{\mathbf{y}_{c}'}f_{k}(\mathbf{x}^{i},\mathbf{y}_{c}',c)\Pr(\mathbf{y}_{c}'|\theta,\mathbf{x}^{i})$$

Computing $E_{\Pr(\mathbf{y}|\theta^t, \mathbf{x}^i)} f_k(\mathbf{x}^i, \mathbf{y})$

Three steps:

- Pr(y|θ^t, xⁱ) is represented as an undirected model where nodes are the different components of y, that is y₁,..., y_n. The potential ψ_c(y_c, x, θ) on clique c is exp(θ^t · f(xⁱ, yⁱ_c, c))
- **2** Run a sum-product inference algorithm on above UGM and compute for each c, \mathbf{y}_c marginal probability $\mu(\mathbf{y}_c, c, \mathbf{x}^i)$.
- **3** Using these μ s we compute $E_{\Pr(\mathbf{y}|\theta^t, \mathbf{x}^i)} f_k(\mathbf{x}^i, \mathbf{y}) = \sum_c \sum_{\mathbf{y}_c} \mu(\mathbf{y}_c, c, \mathbf{x}^i) f_k(\mathbf{x}^i, c, \mathbf{y}_c)$

Consider a parameter learning task for an undirected graphical model on 3 variables $\mathbf{y} = [y_1 \ y_2 \ y_3]$ where each $y_i = +1$ or 0 and they form a chain. Let the following two features be defined for it.

$$f_1(i, \mathbf{x}, y_i) = x_i y_i$$
 (where x_i =intensity of pixel i)
 $f_2((i, j), \mathbf{x}, (y_i, y_j)) = \llbracket y_i \neq y_j \rrbracket$
where $\llbracket z \rrbracket = 1$ if $z =$ true and 0 otherwise.
Initial parameters $\theta = [\theta_1, \theta_2] = [3, -2]$
Examples: $\mathbf{x}^1 = [0.1, 0.7, 0.3], \mathbf{y}^1 = [1, 1, 0]$
Using these we can calculate:

- Node potentials for y_i as $\exp(\theta_1 x_i y_i)$. For e.g. for y_1 it is $[\psi_1(0), \psi_1(1)] = [1, e^{3 \times 0.1}]$
- 2 Edge potentials $\psi_{12}(y_1, y_2) = \psi_{23}(y_2, y_3) = 1$ if $y_1 = y_2$ and e^{-2} if $y_1 \neq y_2$

Example (continued)

- Use above potentials to run sum-product inference on a junction tree to calculate marginals $\mu(y_i, i)$ and $\mu(y_i, y_j, (i, j))$
- Osing these we calculate expected value of features as:

$$E[f_1(\mathbf{x}^1, \mathbf{y})] = \sum_i x_i \mu_i(1, i) = 0.1 \mu(1, 1) + 0.7 \mu(1, 2) + 0.3 \mu(1, 3)$$

$$E[f_2(\mathbf{x}^1, \mathbf{y})] = \mu(1, 0, (1, 2)) + \mu(0, 1, (1, 2)) + \mu(1, 0, (2, 3)) + \mu(0, 1, (2, 3))$$

 The value of $f(x^1, y^1)$ for each feature is (Note value of $y^1 = [1, 1, 0]$):

$$f_1(\mathbf{x}^1, \mathbf{y}^1) = 0.1 * 1 + 0.7 * 1 + 0.3 * 0 = 0.8$$

$$f_2(\mathbf{x}^1, \mathbf{y}^1) = [\![y_1^1 \neq y_2^1]\!] + [\![y_2^1 \neq y_3^1]\!] = 1$$

The gradient of each parameter is then.

$$\nabla L(\theta_1) = 0.8 - E[f_1(\mathbf{x}^1, \mathbf{y})] - 2 * 3/C$$

$$\nabla L(\theta_2) = 1 - E[f_2(\mathbf{x}^1, \mathbf{y})] + 2 * 2/C$$

Another Example

Consider a parameter learning task for an undirected graphical model on six variables $\mathbf{y} = [y_1 \ y_2 \ y_3 \ y_4 \ y_5 \ y_6]$ where each $y_i = +1$ or -1. Let the following eight features be defined for it.

 $\begin{array}{l} f_1(y_i, y_{i+1}) = \llbracket y_i + y_{i+1} > 1 \rrbracket, 1 \leq i < 5 & f_2(y_1, y_3) = -2y_1y_3 \\ f_3(y_2, y_3) = y_2y_3 & f_4(y_3, y_4) = y_3y_4 \\ f_5(y_2, y_4) = \llbracket y_2y_4 < 0 \rrbracket & f_6(y_4, y_5) = 2y_4y_5 \\ f_7(y_3, y_5) = -y_3y_5 & f_8(y_5, y_6) = \llbracket y_5 + y_6 > 0 \rrbracket. \\ \text{where } \llbracket z \rrbracket = 1 \text{ if } z = \text{true and } 0 \text{ otherwise. That is,} \\ \mathbf{f}(\mathbf{y}) = [f_1 \ f_2 \ f_3 \ f_4 \ f_5 \ f_6 \ f_7 \ f_8]^T. \text{ Assume the corresponding weight} \\ \text{vector to be } \theta = [1 \ 1 \ 1 \ 2 \ 2 \ 1 \ -1 \ 1]^T \end{array}$

Draw the underlying graphical model corresponding to the 6 variables.

Draw an arc between any two y which appear together in any of the 8 features.

Draw the junction tree corresponding to the graph above and assign potentials to each node of your junction tree so that you can run message passing on it to find $Z = \sum_{\mathbf{y}} \theta^T \mathbf{f}(\mathbf{x}, \mathbf{y})$, that is, define $\psi_c(\mathbf{y}_c)$ in terms of the above quantities for each clique node c in the JT.

For clique c, $\psi_c(\mathbf{y}_c) = \exp(\theta_c \cdot \mathbf{f}_c(\mathbf{x}, \mathbf{y}_c))$. *log* of the potentials are shown below

Suppose you use the junction tree above to compute the marginal probability for each pair of adjacent variables in the graph of part (a). Let $\mu_{ij}(-1,1), \mu_{ij}(1,1), \mu_{ij}(-1,-1), \mu_{ij}(1,-1)$ denote the marginal probability of variable pairs y_i, y_j taking values (-1,1), (1,1), (-1,-1) and (1,-1) respectively. Express the expected value of the following features in terms of the μ values.

1

$$f_{1} = \sum_{i} \left(f_{1}(-1,-1)\mu_{i,i+1}(-1,-1) + f_{1}(-1,1)\mu_{i,i+1}(-1,1) + f_{1}(1,-1)\mu_{i,i+1}(1,-1) + f_{1}(1,1)\mu_{i,i+1}(1,1) \right)$$

$$f_{2} = 2\left(-\mu_{1,3}(-1,-1) + \mu_{1,3}(-1,1) + \mu_{1,3}(1,-1) - \mu_{1,3}(1,1) \right)$$

$$f_{8} = \mu_{56}(1,1)$$

Training algorithm

1: Initialize $\theta^0 = \mathbf{0}$ 2: for $t = 1 \dots T$ do 3: for $i = 1 \dots N$ do 4: $g_{k,i} = f_k(\mathbf{x}^i, \mathbf{y}^i) - E_{\Pr(\mathbf{y}'|\theta^t, \mathbf{x}^i)}f_k(\mathbf{x}^i, \mathbf{y}')$ $k = 1 \dots K$ 5: end for 6: $g_k = \sum_i g_{k,i}$ $k = 1 \dots K$ 7: $\theta_k^t = \theta_k^{t-1} + \gamma_t(g_k - 2\theta_k^{t-1}/C)$ 8: Exit if $\|\mathbf{g}\| \approx zero$ 9: end for

Running time of the algorithm is $O(INn(m^2 + K))$ where I is the total number of iterations.

Local conditional probability for BN

$$\begin{aligned} \mathsf{Pr}(y_1, \dots, y_n | \mathbf{x}, \theta) &= \prod_j \mathsf{Pr}(y_j | \mathbf{y}_{\mathsf{Pa}(j)}, \mathbf{x}, \theta) \\ &= \prod_j \frac{\exp(F_{\theta}(\mathbf{y}_{\mathsf{Pa}(j)}, y, j, \mathbf{x}))}{\sum_{y'=1}^m \exp(F_{\theta}(\mathbf{y}_{\mathsf{Pa}(j)}, y', j, \mathbf{x}))} \end{aligned}$$

Training for BN

$$LL(\theta, D) = \sum_{i=1}^{N} \log \Pr(\mathbf{y}^{i} | \mathbf{x}^{i}, \theta)$$

= $\sum_{i=1}^{N} \log \prod_{j} \Pr(y^{i}_{j} | \mathbf{y}^{i}_{\mathsf{Pa}}(j), \mathbf{x}^{i}, \theta)$
= $\sum_{i} \sum_{j} \log \Pr(y^{i}_{j} | \mathbf{y}^{i}_{\mathsf{Pa}}(j), \mathbf{x}^{i}, \theta)$
= $\sum_{i} \sum_{j} F_{\theta}(\mathbf{y}^{i}_{\mathsf{Pa}(j)}, y^{i}_{j}, j, \mathbf{x}^{i})) - \log \sum_{y'=1}^{m} \exp(F_{\theta}(\mathbf{y}^{i}_{\mathsf{Pa}(j)}, y', j, \mathbf{x}^{i}))$

Like normal classification task. No challenge arising during training because of graphical model. Normalizer is easy to compute.

Table Potentials in the feature framework.

Assume \mathbf{x}^i does not exist..(As in HMMs)

- $F_{\theta}(\mathbf{y}_{\mathsf{Pa}(j)}^{i}, y_{j}^{i}, j)) = \log P(y_{j}^{i} | \mathbf{y}_{\mathsf{Pa}(j)}^{i})$, normalizer vanishes.
- Pr(y_j|**y**_{Pa(j)}) = Table of real values denoting the probability of each value of x_j corresponding to each combination of values of the parents (θ^j).
- If each variables takes *m* possible values, and has *k* parents, then each $Pr(y_j | \mathbf{y}_{Pa(j)})$ will require $m^k(m)$ parameters in θ^j .

$$heta_{\mathsf{v}\mathsf{u}_1,\ldots,\mathsf{u}_k}^j = \mathsf{Pr}(y_j = \mathsf{v}|\mathbf{y}_{\mathsf{pa}(j)} = u_1,\ldots,u_k)$$

Maximum Likelihood estimation of parameters

$$\begin{aligned} \max_{\theta} \sum_{i} \sum_{j} \log P(y_{j}^{i} | \mathbf{y}_{\mathsf{Pa}(j)}^{i}) \\ &= \max_{\theta} \sum_{i} \sum_{j} \log \theta_{y_{j}^{i} \mathbf{y}_{(j)}^{i}}^{j} \quad s.t. \sum_{v} \theta_{vu_{1},...,u_{k}}^{j} = 1 \ \forall j, u_{1},..., u_{k} \end{aligned}$$
$$= \max_{\theta} \sum_{i} \sum_{j} \log \theta_{y_{j}^{i} \mathbf{y}_{(j)}^{i}}^{j} - \sum_{j} \sum_{u_{1},...,u_{k}} \lambda_{u_{1},...,u_{k}}^{j} (\sum_{v} \theta_{vu_{1},...,u_{k}}^{j} - 1) \end{aligned}$$

Solve above using gradient descent to get

$$\theta_{vu_1,\dots,u_k}^{j} = \frac{\sum_{i=1}^{N} [[y_j^{i} == v, \mathbf{y}_{Pa(j)}^{i} = u_1,\dots,u_k]]}{\sum_{i=1}^{N} [[\mathbf{y}_{Pa(j)}^{i} = u_1,\dots,u_k]]}$$
(1)

Partially observed, decoupled potentials

EM Algorithm

Input: Graph G, Data D with observed subset of variables \mathbf{x} and hidden variables \mathbf{z} .

Initially (t = 0): Assign random variables of parameters

$$Pr(x_j | pa(x_j))^c$$

for = 1, ..., *T* do

for
$$i = 1, \ldots, N$$
 do

Use inference in G to estimate conditionals $Pr_i(\mathbf{z}_c | \mathbf{x}^i)^t$ for all variable subsets (i, pa(i)) involving any hidden variable. end for

M-step

$$\Pr(x_j | pa(x_j) = \mathbf{z}_c)^t = \frac{\sum_{i=1}^{N} \Pr_i(\mathbf{z}_c | \mathbf{x}^i) [[x_j^i = = x_j]]}{\sum_{i=1}^{N} \Pr_i(\mathbf{z}_c | \mathbf{x}^i)^t}$$
end for

Sunita Sarawagi IIT Bombay http://www.c

More on graphical models

- Koller and Friedman, Probabilistic Graphical Models: Principles and Techniques. MIT Press, 2009.
- Wainwright's article in FnT for Machine Learning. 2009.
- Kevin Murphy's brief online introduction (http://www.cs.ubc.ca/~murphyk/Bayes/bnintro.html)
- Graphical models. M. I. Jordan. Statistical Science (Special Issue on Bayesian Statistics), 19, 140-155, 2004. (http: //www.cs.berkeley.edu/~jordan/papers/statsci.ps.gz)
- Other text books:
 - R. G. Cowell, A. P. Dawid, S. L. Lauritzen and D. J. Spiegelhalter. "Probabilistic Networks and Expert Systems". Springer-Verlag. 1999.
 - J. Pearl. "Probabilistic Reasoning in Intelligent Systems: Networks of Plausible Inference." Morgan Kaufmann. 1988.
 - Graphical models by Lauritzen, Oxford science publications F.
 V. Jensen. "Bayesian Networks and Decision Graphs". Springer.