Graphical models

Sunita Sarawagi
1T Bombay

http://www.cse.iitb.ac.in/~sunita

Sunita Sarawagi |IT Bombay http://www.c Graphical models


http://www.cse.iitb.ac.in/~sunita
http://www.cse.iitb.ac.in/~sunita

Probabilistic modeling

o Given: several variables: xi,...x,, nis large.
@ Task: build a joint distribution function Pr(xy, ... x,)
@ Goal: Answer several kind of projection queries on the
distribution
@ Basic premise
» Explicit joint distribution is dauntingly large
» Queries are simple marginals (sum or max) over the joint
distribution.
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Examples of Joint Distributions So far

o Naive Bayes: P(xi,...xqly), d is large. Assume conditional
independence.

@ Multivariate Gaussian

@ Recurrent Neural Networks for Sequence labeling and prediction
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Example

@ Variables are attributes are people.

Age Income | Experience | Degree | Location
10 ranges | 7 scales | 7 scales | 3 scales | 30 places

@ An explicit joint distribution over all columns not tractable:
number of combinations: 10 x 7 x 7 x 3 x 30 = 44100.
@ Queries: Estimate fraction of people with

Income > 200K and Degree="Bachelors",
Income < 200K, Degree="PhD" and experience > 10 years.
Many, many more.
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Alternatives to an explicit joint distribution

@ Assume all columns are independent of each other: bad
assumption
@ Use data to detect pairs of highly correlated column pairs and
estimate their pairwise frequencies
» Many highly correlated pairs
income /I age, income J experience, age /| experience
» Ad hoc methods of combining these into a single estimate
@ Go beyond pairwise correlations: conditional independencies
» income /L age, but income Ll age | experience
» experience 1L degree, but experience /L degree | income

Graphical models make explicit an efficient joint
distribution from these independencies
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More examples of Cls

@ The grades of a student in various courses are correlated but
they become Cl given attributes of the student (hard-working,
intelligent, etc?)

@ Health symptoms of a person may be correlated but are Cl given
the latent disease.

@ Words in a document are correlated, but may become Cl given
the topic.

@ Pixel color in an image become CI of distant pixels given near-by
pixels.
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Graphical models

Model joint distribution over several variables as a product of smaller
factors that is
© Intuitive to represent and visualize
» Graph: represent structure of dependencies
» Potentials over subsets: quantify the dependencies
© CEfficient to query

» given values of any variable subset, reason about probability
distribution of others.
» many efficient exact and approximate inference algorithms

Graphical models = graph theory + probability theory. J
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Graphical models in use

@ Roots in statistical physics for modeling interacting atoms in gas
and solids [ 1900]

e Early usage in genetics for modeling properties of species [ 1920]
@ Al: expert systems ( 1970s-80s)
@ Now many new applications:

» Error Correcting Codes: Turbo codes, impressive success story
(1990s)

Robotics and Vision: image denoising, robot navigation.

Text mining: information extraction, duplicate elimination,
hypertext classification, help systems

Bio-informatics: Secondary structure prediction, Gene discovery
Data mining: probabilistic classification and clustering.

v

v
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v
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Representation

Structure of a graphical model: Graph + Potential
Graph

@ Nodes: variables x = xq, ... X, Directed
Continuous: Sensor temperatures, income ae S
Discrete: Degree (one of Bachelors, Lf’fa,t",’,” y
Masters, PhD), Levels of age, Labels of ~pegree) Exp'enéncej)
words N e

Income

o Edges: direct interaction —

Directed edges: Bayesian networks
Undirected edges: Markov Random fields Und'reCted

( Location ) C Age /

-

‘\Degree — Experlence\:

N

Income

v
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Representation

Potentials: 1.(x.)
@ Scores for assignment of values to subsets ¢ of directly
interacting variables.
@ Which subsets? What do the potentials mean?
Different for directed and undirected graphs

Probability

Factorizes as product of potentials

Pr(x = xq,...x,) x HQ/}s(Xs)
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Directed graphical models: Bayesian networks

@ Graph G: directed acyclic
» Parents of a node: Pa(x;) = set of nodes in G pointing to x;

@ Potentials: defined at each node in terms of its parents.

LD,'(X,', Pa(x,-)) = Pr(x,-]Pa(x,-)

@ Probability distribution

Pr(xi...x,) = H Pr(xi|pa(x;))
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Example of a directed graph

\/ Location \/ (Age)

< N 2 L N
(Degree )  (Experience)

‘\\Inf:gmq,,‘
QZJI(L) = Pr(L) ¢2(E,A) _ Pr(E|A)
NY | CA | London | Other 0-10 | 10-15 | > 15
02 03 0.1 0.4 ) 2030 | 09 01 0
30-45 | 04 0.5 0.1
Un(A) = Pr(A) >45 | 01 | 01 | 08
20-30 | 30-45 | > 45 Ua(l, E, D) = Pr(1| D, A)
be .0'4 - .0'3 . 3 dimensional table, or a
or, a Guassian distribution histogram aporoximation
(1, 0) = (35,10) BT 2PP : /
Probability distribution
Pa(x =L,D, I, A E) = Pr(L) Pr(D) Pr(A) Pr(E|A) Pr(I|D, E) J
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Conditional Independencies

@ Given three sets of variables X, Y, Z, set X is conditionally
independent of Y given Z (X L Y|Z) iff

Pr(X|Y, Z) = Pr(X|2)

@ Local conditional independencies in BN: for each x;

X A ND(x;)|Pa(x,~)

o L1l E,D,A,I

Locaton ) A2
e AILLD — e \

(Degree ) (Experience)
e E1L L DIA \7 e

(Income)
o | 1L AE,D G
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Cls and Fractorization

Theorem

Given a distribution P(xy,...,x,) and a DAG G, if P satisfies
Local-Cl induced by G, then P can be factorized as per the graph.
Local-CI(P,G) = Factorize(P,G)

Proof.

@ x1,Xp, ..., X, topographically ordered (parents before children) in
G.

e Local CI(P, G): P(xi|x1,...,xi—1) = P(xi|Pag(x;))
@ Chain rule:

P(x1,...,xa) = [, P(xi|x, ..., xie1) = [ [; P(xi| Pag(x;))
e —> Factorize(P, G)

]
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Cls and Fractorization

Theorem

Given a distribution P(xy,...,x,) and a DAG G, if P can be
factorized as per G then P satisfies Local-Cl induced by G.
Factorize(P,G) = Local-CI(P,G)

Proof skipped. (Refer book.)
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Drawing a BN starting from a distribution

Given a distribution P(xi, ..., Xx,) to which we can ask any Cl of the
form "Is X 1L Y|Z?" and get a yes, no answer.
Goal: Draw a minimal, correct BN G to represent P.
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Why minimal

Theorem

G constructed by the above algorithm is minimal, that is, we cannot

remove any edge from the BN while maintaining the correctness of
the BN for P

Proof.

By construction. A subset of ND of each x; were available when
parent of U were chosen minimally. O

v
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Why Correct

Theorem

G constructed by the above algorithm is correct, that is, the local-Cls
induced by G hold in P

y

Proof.

The construction process makes sure that the factorization property
holds. Since factorization implies local-Cls, the constructed BN
satisfied the local-Cls of P O

v
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Order is important
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Examples of Cls that hold in BN but not covered
by local-Cl
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Global Cls in a BN

Three sets of variables X, Y, Z. If Z d-separates X from Y in BN
then, X 1l Y|Z.

In a directed graph H, Z d-separates X from Y if all paths P from
any X to Y is blocked by Z.

A path P is blocked by Z when

Q@ x1—>x—...xxand x; € Z

Q@ x1<x%+...xxand x; € Z

Q@ x...+x—>...xxand x; € Z

Q@ x1... > x + ...x¢and x; & Z and Desc(x;) & Z

Theorem

The d-separation test identifies the complete set of conditional
independencies that hold in all distributions that conform to a given
Bayesian network.
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Global Cls Examples
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Global Cls and Local-Cls

In a BN, the set of Cls combined with the axioms of probability can
be used to derive the Global-Cls.

Proof is long but easy to understand. Sketch of a proof available in
the supplementary.
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Popular Bayesian networks

@ Hidden Markov Models: speech recognition, information

extraction
YiT Yo YsT " Ya " YsT " VYe " Y7
e
X4 X, X3 Xy Xs Xg X7

v

State variables: discrete phoneme, entity tag

Observation variables: continuous (speech waveform), discrete
(Word)

@ Kalman Filters: State variables: continuous
» Discussed later
@ Topic models for text data
@ Principled mechanism to categorize multi-labeled text

documents while incorporating priors in a flexible generative
framework

@ Application: news tracking
e QMR (Quick Medlcal Reference) system

[) [D
Sunita Sarawagl IIT Bombay http //www cl

v
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Undirected graphical models

Graph G: arbitrary undirected graph 3‘”_ 3"2_ ’|'3
Useful when variables interact symmetrically, no
natural parent-child relationship | | |
Example: labeling pixels of an image.

Potentials 1)c(yc) defined on arbitrary cliques C
of G.

e(yc): Any arbitrary non-negative value, cannot
be interpreted as probability.

Probability distribution

Priyi...ya) = % I %clye)

CceG

where Z =3, [Tccq¥c(ye) (partition function)
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Example

)“'1_ 3“'2_ )|ﬁ'3
)“'4_ )"’5_ )|"a

Yi—— ¥ ¥y, = 1 (part of foreground), O otherwise.
@ Node potentials

» 1(0) =4, P1(1) =1
> 12(0) =2, 2(1) =3

> o(0) =1, tho(1) =1
o Edge potentials: Same for all edges
> 16(0,0) =5, ¥(1,1) =5, ¥(1,0) = 1,4(0,1) = 1
@ Probability: Pr(y;...yy) H2=1 V(i) I jyeece) Y i i)
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Conditional independencies (Cls) in an undirected
graphical model

Let V = {y1,...,yn}.
Let distribution P be represented by an undirected graphical model

G. If Z separates X and Y in G, then X 1L Y|Z in P.
The set of all such Cls are called Global-Cl of the UGM.
Example:

Q y1 1L y3,¥5¥6, y7. 8, Yoly2, ya ’|'1_ ’|’2_ "’
QO n J-|-Y3|Y2,Y47)/5,Y6;Y7;)/87}/9 3|f4— }|’5_l‘fs
e Y1, Y2, Y3 uis Y77YB7)’9|)’4>)/57)/6 Yi—— Ys— Yo
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Factorization implies Global-Cl

Theorem

Let G be a undirected graph over V = x, ..., x, nodes and
P(x1,...,x,) be a distribution. If P is represented by G that is, if it

can be factorized as per the cliques of G, then P will also satisfy the
global-Cls of G

Factorize(P,G) = Global-CI(P, G)
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Factorization implies Global-Cl (Proof)
Available as proof of Theorem 4.1 in KF book.
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Global-Cl does not imply factorization.

(Taken from example 4.4 of KF book)

But global-Cl does not imply factorization. Consider a distribution
over 4 binary variables: P(xi, X2, X3, Xq)

Let G be

X1 X2

Xg

X3

Let P(x1,x2,x3, %) = 1/8 when x1, x2, x3, x4 takes values from this
set ={0000,1000,1100,1110,1111,0111,0011,0001}. In all other cases
it is zero. One can painfully check that all four globals Cls in the
graph: e.g. x1 1L {x3}|x2, x4 etc hold in the graph.

Now let us look at factorization. The factors correspond to the edges
in ¥(x1, x2). Each of the four possible assignment of each factor will
get a positive value. But that cannot represent the zero probability
for cases like x1, x2, x3, x4 = 0101.
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Other Conditional independencies (Cls) in an
undirected graphical model

Let V = {y1,...,yn}.
Q Local Cl: y; AL V — ne(y;) — {yi}|ne(y;)
@ Pairwise Cl: y; Il y;|V — {y;, y;} if edge (i, y;) does not exist.
@ Global Cl: X 1L Y|Z if Z separates X and Y in the graph.

Equivalent when the distribution P(x) is positive, that is
P(x) >0, Vx

Q y1 1L y3,¥5¥6, y7. Y8, Yoly2, ya ’|'1_ ’|’2_ "’
O n J-|-Y3|Y2,Y47)/5,Y6;Y7;)/87}/9 3|f4— }|’5_l‘fs
e Y1, Y2, Y3 A Y77YB7)’9|)’4>)/57)/6 Yi—— Ys— Yo
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Relationship between Local-Cl and Global-Cl

Let G be a undirected graph over V = x, ..., x, nodes and
P(xi,...,x,) be a distribution. If P satisfies Global-Cls of G, then P
will also satisfy the local-Cls of G but the reverse is not always true.
We will show this with an example.

Consider a distribution over 5 binary variables: P(xi, ..., xs) where
X1 = X2, Xa = X5 and x3 = xo AND x,.
Let G be

X1 X2 X3 X4 X5

All 5 local Cls in the graph: e.g. x; 1L {x3, x4, X5 }|x2 etc hold in the

graph.
However, the global Cl: x, L x4|x3 does not hold.
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Relationship between Local-Cl and Pairwise-Cl

Let G be a undirected graph over V = x, ..., x, nodes and
P(xi,...,x,) be a distribution. If P satisfies Local-Cls of G, then P
will also satisfy the pairwise-Cls of G but the reverse is not always
true. We will show this with an example.

Consider a distribution over 3 binary variables: P(x, x2, x3) where
X1 = X = x3. Thatis, P(x1, X2, x3) = 1/2 when all three are equal
and 0 otherwise.

Let G be

X1

X2 X3

All 2 pairwise Cls in the graph: e.g. x; 1L {x3}|x2 and x, L {x3}|x4
hold in the graph.
However, the local Cl: x; 1L x3 does not hold.
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Factorization and Cls

Theorem

(Hammerseley Clifford Theorem) If a positive distribution

P(x,...,x,) confirms to the pairwise Cls of a UDGM G, then it can
be factorized as per the cliques C of G as

P(xi,...,X,) o< H Ye(ye)

CeG

Proof.
Theorem 4.8 of KF book (partially)
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Summary

Let P be a distribution and H be an undirected graph of the same set
of nodes.

Factorize(P, H) = Global-CI(P, H) — Local-CI(P,H) —
Pairwise-CI(P, H)

But only for positive distributions

Pairwise-CI(P, H) = Factorize(P, H)

Sunita Sarawagi |IT Bombay http://www.c Graphical models 36 / 105


http://www.cse.iitb.ac.in/~sunita

Constructing an UGM from a positive distribution

Given a positive distribution P(xq, ..., x,) to which we can ask any
Cl of the form "Is X 1L Y|Z?" and get a yes, no answer.

Goal: Draw a minimal, correct UGM G to represent P.

Two options: (1) Using pairwise Cl (2) Using Local Cl.
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Constructing an UGM from a positive distribution
using Local-Cl

Definition: The Markov Blanket of a variable x;, MB(x;) is the

smallest subset of variables V' that makes x; Cl of others given the
Markov blanket.

Xj V- MB(X,)’MB(X,)

The MB of a variable is always unique for a positive distribution.
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Popular undirected graphical models

Interacting atoms in gas and solids [ 1900]
Markov Random Fields in vision for image segmentation

°
°
@ Conditional Random Fields for information extraction
@ Social networks

°

Bio-informatics: annotating active sites in a protein molecules.
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Conditional Random Fields (CRFs)

Used to represent conditional distribution P(y|x) where

Y = Vi,...,Y, forms an undirected graphical model.

The potentials are defined over subset of y variables, and the whole
of x.

Prlvs ool ) = HEZIEX ) o3 Falye, )

where Zy(x) = Zy, exp(D>_. Fo(y., c,x))
clique potential ¥, (y, x) — exp(Fy(ye, ¢, X))
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Potentials in CRFs

@ Log-linear model over user-defined features. E.g. CRFs, Maxent

models, etc.
Let K be number of features. Denote a feature as f(ye, ¢, x).
Then,

Fo(ye, ¢, ) Zekfk Ye, €, X)

@ Arbitrary function, e.g. a neural network that takes as input
Ye, ¢, x and transforms them possibly non-linearly into a real
value. 6 are the parameters of the network.
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Example: Named Entity Recognition

| My review of Fermat’s last theorem by S. Singh ‘

‘ 1 2 3 4 5 6 7 8 9
My review of | Fermat’s last theorem | by S. Singh

x

y| Other Other | Other Title Title Title other | Author | Author

Y Yo —— Y, Y, Y, Y Y Y% Y,

f(yi: Yi—1, i: X)

Features decompose over adjacent labels.
|

f(x: y) = Z f(y’ls Yi—1, i,X)

i=1
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Named Entity Recognition: Features

= Feature vector for each position

f(z.’ X, 1, yi—l) User provided

= Examples neighbors

foly;, x,i,y,1) = 1 if y; is Person & z; is Douglas

f3(yi, x,1,y,_1) = 1 if y; is Person & y;_1 is Other
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Comparing directed and undirected graphs

@ Some distributions can only be expressed in one and not the
other.

) z,)

D

@ Potentials

» Directed: conditional probabilities, more intuitive
» Undirected: arbitrary scores, easy to set.

@ Dependence structure
» Directed: Complicated d-separation test
» Undirected: Graph separation: A 1L B| C iff C separates A and
Bin G.
@ Often application makes the choice clear.

» Directed: Causality
» Undirected: Symmetric interactions.
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Equivalent BNs

Two BN DAGs are said to be equivalent if they express the same set
of Cls. (Examples)

Theorem

Two BNs Gy, G, are equivalent iff they have the same skeleton and
the same set of immoralities. (An immorality is a structure of the
form x — y < z with no edge between x and z)
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Converting BN to MRFs

Efficient: Using the Markov Blanket algorithm.
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For which BN can we create perfect MRFs?
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Converting MRFs to BNs
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Which MRFs have perfect BNs

Chordal or triangulated graphs
A graph is chordal if it has no minimal cycle of length > 4.

Theorem
A MRF can be converted perfectly into a BN iff it is chordal.

Proof.
Theorems 4.11 and 4.13 of KF book ]

Algorithm for constructing perfect BNs from chordal MRFs to be
discussed later.
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BN and Chordality

A BN with a minimal undirected cycle of length > 4 must have an
immorality. A BN without any immorality is always chordal.
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Inference queries
© Marginal probability queries over a small subset of variables:

» Find Pr(Income="High & Degree="PhD")
» Find Pr(pixel yo = 1)

Pr(x1) = Z Pr(xi...xp)

X2...Xn
m m
= E E Pr(xi...xn)
xo=1 xp=1

Brute-force requires O(m"!) time.
@ Most likely labels of remaining variables: (MAP queries)
» Find most likely entity labels of all words in a sentence
» Find likely temperature at sensors in a room
X" = argmax Pr(xy...xn)

X1...Xnp
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Exact inference on chains

o Given,
» Graph MR s
» Potentials: ¥;(yi, yi+1)
> Pr(y1,...yn) = I1; %i(yi, yis1), Pr(y1)
e Find, Pr(y;) for any i, say Pr(ys = 1)
> Exact method: Pr(ys =1) =3  Pr(y,
exponential number of summations.
» A more efficient alternative...
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Exact inference on chains

Priys =1)= >_ Pr(yi,...y1
= nZﬂZ Z D 1y, y2)va(va, ya)s(vs, va) (e, 1)
—ZZ% ﬂjﬁ sz Y21 Y3 Z% Vs, ya)a(ya, 1)
= izzwl (y1, 2 Z% Y2, ¥3) B3 (ys)
= ii% (1, y2) Bz (v2)
w o v

=> Bi(n)

An alternative view: flow of beliefs B;(.) from node / + 1 to node i
V00— Qa1 — s
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Adding evidence

Given fixed values of a subset of variables x. (evidence), find the
@ Marginal probability queries over a small subset of variables:

» Find Pr(Income="High | Degree='PhD’)

Pr(x1) = Z Pr(xi...xn|Xe)

X2...Xm

@ Most likely labels of remaining variables: (MAP queries)

» Find likely temperature at sensors in a room given readings
from a subset of them

x* = argmax Pr(xi ... xa|xe)

X1 ... Xm

Easy to add evidence, just change the potential.
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Case study: HMMs for Information Extraction

‘ My review of Fermat’s last theorem by S. Singh ‘

. 1 2 3 4 5 6 7 8 9
My review of | Fermat’s last theorem | by S. Singh

x

¥ Other Other | Other Title Title Title other | Author | Author

X T <

£

X T <
x T <
x o <
X T <

He— <

S N/ W
i i
2 8

w
S
]
@
~
w©

1
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Inference in HMMs

o Given,
YiT Yo Ys " Ya T Ys " VYe Yy
A T
» Graph % X, X3 Xy Xs Xg X7

» Potentials: Pr(y;|yi—1), Pr(xi|y;)
» Evidence variables: x =x7...x, = 01...0p.
@ Find most likely values of the hidden state variables.
Y=V1---Vn
argmax, Pr(y|x = o)

o Define ¥i(yi-1,yi) = Pr(yilyi-1) Pr(x = oily;)
@ Reduced graph only a single chain of y nodes.

YiT Yo Y3 " Ya " Ys " VYs T Yy

@ Algorithm same as earlier, just replace “Sum” with “Max”

This is the well-known Viterbi aliorithm |
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The Viterbi algorithm

Let observations x; take one of k possible values, states y; take one
of m possible value.

Given n observations: oy, ..., 0,
Given Potentials Pr(y:|y:_1) = P(y|y’) (Table with m? values),
Pr(x:|y:) = P(x|y) (Table with mk values), Pr(y;) = P(y) start
probabilities (Table with m values.)
Find max, Pr(y|x = o)
Bily]=1 yell,...,m]
fort=n...2do
U(y,y') = Plyly)P(xe = oly)
Be_aly'] = maxj_, ¥(y, y') Bely]
end for
Return max, Bi[y]|P(y)P(x: = ot]y)
Time taken: O(nm?)
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Numerical Example

y' | Ply =0ly) | P(y = 1]y")
P(yly’)= 0 | 0.9 0.1

102 0.8

y | P(x=0ly) | P(x =1]y)
P(x|ly)= 0 0.7 0.3

1|06 0.4
P(y=1)=05

Observation [xo, x1, x2] = [0, 0, 0]
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Variable elimination on general graphs

@ Given, arbitrary sets of potentials ¢)c(xc), C = cliques in a
graph G.

o Find, Z=3,  Tlctc(xc)

X1, ...X, = good ordering of variables
F =1c(xc), C = cliques in a graph G.
fori=1...ndo

JF; = factors in F that contain x;

M; = product of factors in F;

m; = ZX,. M;
F=F—-FUu{m}
end for
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Example: Variable elimination

o Given, ¥12(x1, X2), Voa(X2, Xa), Y23(x2, X3), Vas(Xa, Xs),
¢35(X3,X5)-
e Find, Z =

Q xi: [[{¥12(x1, %)} = Mi(x1, x2) & my(x2)

Q xo: [[{2a(x2, Xa), Vo3(x2, X3), mi(x2)} — Ma(x2, X3, X2) —
m2(X37X4)

© xo:TT{thss (x5, %5), Ma (03, 36) = Ma (x5, X0, x5) =25 (e, 36)
© ¢ [T{thas (0, x5). ma(xe. x5)} — Ma(xe. x5) % ma(x5)
e X5:H{m5(X5)} — M5(X5) E:—XS—) Z
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Choosing a variable elimination order

o Complexity of VE O(nm") where w is the maximum number of
variables in any factor.

Wrong elimination order can give rise to very large intermediate
factors.

Example: eliminating x; first will give a factor of size 4.

Given an example where the penalty can be really severe (?)

Choosing the optimal elimination order is NP hard for general
graphs.

Polynomial time algorithm exists for chordal graphs.

» A graph is chordal or triangulated if all cycles of length greater
than three have a shortcut.

Optimal triangulation of graphs is NP hard. (Many heuristics)
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Finding optimal order in a triangulated graph

Theorem

Every triangulated graph is either complete or has at least two
simplicial vertices. A vertex is simplicial if its neighbors form a
complete set.

Proof.
In supplementary. (not in syllabus) O

vy

Goal: find optimal ordering for P(x;) inference. x; has to be last in
the ordering.
Input: Graph G. n = number of vertices of G
fori=2,....,ndo
m; = pick any simplicial vertex in G other than 1.
remove 7; from G
end for
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Reusing computation across multiple inference
queries

Given a chain graph with potentials ¢; ;+1(x;, X;+1), suppose we need
to compute all n marginals P(xy),. .., P(x,).

Invoking variable elimination algorithm n times for each x; will entail
a cost of n x nm?. Can we go faster by reusing work across
computations?
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Junction tree algorithm

@ An optimal general-purpose algorithm for exact marginal/MAP
queries

@ Simultaneous computation of many queries

o Efficient data structures

o Complexity: O(m"N) w= size of the largest clique in
(triangulated) graph, m = number of values of each discrete
variable in the clique. — linear for trees.

@ Basis for many approximate algorithms.
@ Many popular inference algorithms special cases of junction trees

» Viterbi algorithm of HMMs
» Forward-backward algorithm of Kalman filters
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Junction tree

Junction tree JT of a triangulated graph G with nodes xi, ..., x, is a
tree where

@ Nodes = maximal cliques of G

@ Edges ensure that if any two nodes contain a variable x; then x;
is present in every node in the unique path between them
(Running intersection property).

Constructing a junction tree
Efficient polynomial time algorithms exist for creating a JT from a
triangulated graph.

© Enumerate a covering set of cliques

@ Connect cliques to get a tree that satisfies the running
intersection property.

If graph is non-triangulated, triangulate first using heuristics, optimal
triangulation is NP-hard.
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Creating a junction tree from a graphical model

1. Starting graph 2. Triangulate graph 3. Create clique nodes
N () (z) (N () S
(2 )22y N Y @)
Lo @y /L
z.)
&yl —(z,) N VA (z,)
4. Create tree edges such that 5) Assign potentials to exactly
variables connected. one subsumed clique node.
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Finding cliques of a triangulated graph
Theorem

Every triangulated graph has a simplicial vertex, that is, a vertex
whose neighbors form a complete set.

Input: Graph G. n = number of vertices of G
fori=1,...,ndo

m; = pick any simplicial vertex in G

C,' = {71',‘} U Ne(w,—)

remove 7; from G
end for

Return maximal cliques from Gy, ... C,
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Connecting cliques to form junction tree

Separator variables = intersection of variables in the two cliques
joined by an edge.
Theorem

A clique tree that satisfies the running intersection property
maximizes the number of separator variables.

Proof: https://people.eecs.berkeley.edu/~jordan/courses/
281A-fall04/lectures/lec-11-16.pdf
Input: Cliques: Gy, ... Cx
Form a complete weighted graph H with cliques as nodes and edge
weights = size of the intersection of the two cliques it connects.
T = maximum weight spanning tree of H
Return T as the junction tree.
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Message passing on junction trees

e Each node ¢
» sends message m._,./(.) to each of its neighbors ¢’
* once it has messages from every other neighbor N(c) — {c’}.

» mq_(.) = Message from ¢ to ¢’ is the result of sum-product
elimination on side of the tree that contains clique ¢ but not ¢’
on the separator variables s = c N ¢’

mc%c’(xs) = Z @Z)c(xc) H md—)c(xdﬂc)
Xc—s dEN(C)—{C/}

Replace “sum” with “max” for MAP queries.

Compute marginal probability of any variable x; as
@ c = clique in JT containing x;

Q Pr(x) x Zxc_xi Ye(xe) HdeN(c) My c(Xdnc)
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Example

yl_yn )
@] V34(Y234) = V23(Y23)134(Y34)
R R et T V345(Y345) = V35(Y35) Va5 (Yas)

2ﬁ23.4()l12) = ¢12(Y12)

O Clique “12" sends Message miz 234(y2) = >, ¥12(¥12) to its
only neighbor.

O Clique “345" sends Message msas234(Y34) = D, V234(Y3a5) to
234"

© C(lique “234" sends Message

Mo3a-345(Y34) = D, V23a(Y234) Mi25234(y2) to 345"
Q C(lique “234" sends Message

Mza—12(Y2) = >, V234(¥234) M3a5234(y34) to “12"

Pr(y1) o Zy2 V12(Y12) M234-512(y2)
71/ 105
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Why approximate inference

@ Exact inference is NP hard. Complexity: O(m")
» w= tree width = size of the largest clique in (triangulated)
graph-1,
» m = number of values of each discrete variable in the clique.
@ Many real-life graphs produce large cliques on triangulation
» A n x n grid has a tree width of n
» A Kalman filter on K parallel state variables influencing a
common observation variable, has a tree width of size K + 1
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Generalized belief propagation

@ Approximate junction tree with a cluster graph where
@ Nodes = arbitrary clusters, not cliques in triangulated graph.
Only ensure all potentials subsumed.
@ Separator nodes on edges = subset of intersecting variables so
as to satisfy running intersection property.
@ Special case: Factor graphs.

Example cluster graph

Starting graph

\z |,,/""\xz/ \Z3/)
L]

(@) ()

Junction tree. Cluster graph

@)
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Belief propagation in cluster graphs

@ Graph can have loops, tree-based two-phase method not
applicable.

@ Many variants on scheduling order of propagating beliefs.
» Simple loopy belief propagation [?]
» Tree-reweighted message passing [?, 7]
» Residual belief probagation [?]

@ Many have no guarantees of convergence. Specific tree-based
orders do [?]

@ Works well in practice, default method of choice.
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MCMC (Gibbs) sampling

@ Useful when all else failes, guaranteed to converge to the
optimal over infinite number of samples.

@ Basic premise: easy to compute conditional probability
Pr(x;|fixed values of remaining variables)

Algorithm

@ Start with some initial assignment, say
x'=[x,...,x] =10,...,0]
@ For several iterations

For each variable x;

Get a new sample xt*! by replacing value of x; with a new value

sampled according to probability Pr(x;|x{,...x" 1, x " ;,...,x})
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Others

e Combinatorial algorithms for MAP [?].
@ Greedy algorithms: relaxation labeling.
@ Variational methods like mean-field and structured mean-field.

@ LP and QP based approaches.
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Parameters in Potentials

©@ Manual: Provided by domain expert
» Used in infrequently constructured graphs, example QMR

systems
» Also where potentials are an easy function of the attributes of

connected graphs, example: vision networks.

© Learned: from examples
» More popular since difficult for humans to assign numeric values
» Many variants of parameterizing potentials.

@ Table potentials: each entry a parameter, example, HMMs
@ Potentials: combination of shared parameters and data
attributes: example, CRFs.
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Graph Structure

© Manual: Designed by domain expert

» Used in applications where dependency structure is
well-understood

» Example: QMR systems, Kalman filters, Vision (Grids), HMM
for speech recognition and IE.

© Learned from examples

» NP hard to find the optimal structure.

» Widely researched, mostly posed as a branch and bound search
problem.

» Useful in dynamic situations

Sunita Sarawagi |IT Bombay http://www.c Graphical models 80 / 105


http://www.cse.iitb.ac.in/~sunita

Learning potentials

Given sample D = {x!,...,x"} of data generated from a distribution
P(x) represented by a graphical model with known structure G, learn
potentials ¢ (xc).
Two settings:
@ All variables observed or not.
@ Fully observed: each training sample x has all n variables
observed.
@ Partially observed: a subset of the variables are observed.
@ Potentials coupled with a log-partition function or not.
@ No: Closed form solutions
@ Yes: Potentials attached to arbitrary overlapping subset of
variables in a UDGM. Example = edge potentials in a grid
graph. iterative solution as in the case of learning with shared
parameters Discussed later.
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General framework for Parameter learning in
graphical models

e Conditional distribution Pr(y|x, @), potentials are function of x
and parameters 6 to be learned.

@ y=),...,Y, forms a graphical model: directed or undirected.

@ Undirected:

c\Joc ,0
Priyi,...,yalx,0) = Ilc 1/120((yx)x )

thx) exp( D _ Fy(ye, c,x))

Where Z@(x) = Zy’ eXp(Zc Fe(y/c’ CJ x))
clique potential tn(ye, x) — exp(Fo(ye. €. x))
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Forms of Fy(y., c,x)

@ Log-linear model over user-defined features. E.g. CRFs, Maxent

models, etc.
Let K be number of features. Denote a feature as f(ye, ¢, x).
Then,

Fo(ye, ¢, ) Zekfk Ye, €, X)

@ Arbitrary function, e.g. a neural network that takes as input
Ye, ¢, x and transforms them possibly non-linearly into a real
value. 6 are the parameters of the network.
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Example: Named Entity Recognition

| My review of Fermat’s last theorem by S. Singh ‘

‘ 1 2 3 4 5 6 7 8 9
My review of | Fermat’s last theorem | by S. Singh

x

y| Other Other | Other Title Title Title other | Author | Author

Y Yo —— Y, Y, Y, Y Y Y% Y,

f(yi: Yi—1, i: X)

Features decompose over adjacent labels.
|

f(x: y) = Z f(y’ls Yi—1, i,X)

i=1
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Named Entity Recognition: Features

= Feature vector for each position

f(z.’ X, 1, yi—l) User provided

= Examples neighbors

foly;, x,i,y,1) = 1 if y; is Person & z; is Douglas

f3(yi, x,1,y,_1) = 1 if y; is Person & y;_1 is Other

Sunita Sarawagi |IT Bombay http://www.c Graphical models

86 / 105


http://www.cse.iitb.ac.in/~sunita

Training
Given
e N input output pairs D = {(x*,y!), (x%,¥?),...,(x",y")}
@ Form of Fy
@ Learn parameters 6 by maximum likelihood.
N

max LL(#, D) = m(?xz log Pr(y'|x’, 0)

i=1
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Training undirected graphical model

N
D) = Z log Pr(y’|x’, §)

—Zlog exp ZFQ yi, ¢, x))
= Z[Z Fo(yL, c,x') — log Zyp(x')

The first part is easy to compute but the second term requires to
invoke an inference algorithm to compute Zy(x') for each i.
Computing the gradient of the above objective with respect to 6 also
requires inference.
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Training via gradient descent

Assume log-linear models like in CRFs where
Fo(yi, c,x') =0 -f(x',y., c) Also, for brevity write
f(xl7 yl) = Zc f(xlv Yes C)

LL(O) = Z log Pr(y’|x',0) = > (6 f(x',y) — log Zy(x"))

Add a regularizer to prevent over-fitting.
max > (0-f(x',y") — log Zy(x')) - |10]*/C

0

i

Concave in § = gradient descent methods will work.
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Gradient of the training objective

o (Y, x)expd - f(x',y
VLi(0) = Zf(x',y')—Zy v Z)e(x',.’) CLY) e

= DY)~ YY) Py 0,x) — 20/

= Z f(xi7 yl) - EPr(y’|0,x’)f(xi7 yl) - ZH/C

= fi(x',y') Pr(y'|0, x)
= Yy X filx',ye €) Pr(y'|6, x')
= Zc Zy’c fk(xl7 Yo C) Pr(y/cw» xi)

EPr(y’|0,x’)fk(xi> y/)
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Computing Epr(ywt’xi)fk(xiv y)
Three steps:

@ Pr(y|0*,x') is represented as an undirected model where nodes
are the different components of y, that is yi,..., y,.
The potential ¥.(yc, x, ) on clique c is exp(6* - f(x',y., ¢))
@ Run a sum-product inference algorithm on above UGM and
compute for each c,y. marginal probability u(y., ¢, x’).

© Using these us we compute
EPr(y|9t,Xi)fk(xl7 y) = Zc Zyc /’L(yC7 C7 xl)fk(xl7 C7 yc)
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Example

Consider a parameter learning task for an undirected graphical model
on 3 variables y = [y; y» y3] where each y; = +1 or 0 and they form
a chain. Let the following two features be defined for it.
fi(i,x,y;) = x;y; (where x;=intensity of pixel /)
B((7,4), %, (vi, ¥3)) = Lyi # vl
where [z] = 1 if z = true and 0 otherwise.
Initial parameters 6 = [0y, 0,] = [3, —2]
Examples: x! =[0.1,0.7,0.3],y! = [1,1,0]
Using these we can calculate:
@ Node potentials for y; as exp(01x;y;). For e.g. for y; it is
[¢1(0), ¥1(1)] = [1, €]
@ Edge potentials 15(y1, y2) = ¥3(y2,y3) = 1 if y1 = y» and €72
if y1 # y2
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Example (continued)

@ Use above potentials to run sum-product inference on a junction
tree to calculate marginals p(y;, i) and p(yi, y;, (1,4))
@ Using these we calculate expected value of features as:

EAGy)] = D xin(L, 1) = 0.1u(1,1)+0.7p(1,2) +0.3u(1,3)

E[f(x",y)] = 11,0, (1,2))+4(0, 1, (1,2))+4(1,0,(2,3))+4(0, 1,(2,3))

© The value of f(x!,y!) for each feature is (Note value of
y! =[1,1,0]):

fi(x,y!)=01%14+07%14+03x0=0.8

by =i #nl+ s #xl=1

@ The gradient of each parameter is then.

VL(6) =08 — E[fA(x},y)] —2%3/C

VL(:) = 1 - Elh(x,y)] +2+2/C
T ——————— Y
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Another Example

Consider a parameter learning task for an undirected graphical model
on six variables y = [y1 ¥> ¥3 V4 ¥5 Y] where each y; = +1 or —1.
Let the following eight features be defined for it.

(i Yivr) = i +yipn > 1,1 <0 <5 fa2(y1,13) = —2)1y3
f3(y2, y3) = yoy3 f4(y3, ya) = yaya

fs(y2, ya) = [yoya < 0] fo(va, y5) = 2vays
f7(y3,y5) = —)3¥5 fe(yvs, ¥6) = [ys + y6 > 0].

where [z] = 1 if z = true and 0 otherwise. That is,
fly)=[h f fs fa fs fs f fg] 7. Assume the corresponding weight
vectortobe§ =[111221 —11]"
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Example

Draw the underlying graphical model corresponding to the 6 variables.

b3 Y2 ¥3 Ya Y5 Yo

T > >

Draw an arc between any two y which appear together in any of the
8 features.
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Example

Draw the junction tree corresponding to the graph above and assign
potentials to each node of your junction tree so that you can run
message passing on it to find Z =3/ OTf(x,y), that is, define
c(yc) in terms of the above quantities for each clique node ¢ in the
JT.

For clique ¢, ¥:(y.) = exp(f. - f-(x,y.)). log of the potentials are
shown below

1.1
1(y1,y2) + 2.f5(ya,ya) +  —L1.f(ys,y5) +

L (s 1.A(ys, ¥6) +
N égj ﬁg LA(ys,ye) + LAGa,ys) + ,%E)y,z ﬁ;

: 2.fa(y3, ya) 1.f6(va, ys) R
1.f(y2, y3)
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Example

Suppose you use the junction tree above to compute the marginal
probability for each pair of adjacent variables in the graph of part (a).
Let p;i(—1,1), pj(1,1), i (—1, —1), ;5(1, —1) denote the marginal
probability of variable pairs y;, y; taking values (-1,1), (1,1), (-1,-1)

and (1,-1) respectively. Express the expected value of the following
features in terms of the u values.

fi =Y (A(=1,=Dpiia(=1,=1) + A(=1, Dpi (=1, 1)+

i

AL, =) (1, —1) + A(L, 1) ip1(1, 1))

Q f=2(—ms(~1,—1) + pm3(=1,1) + pa3(1, —1) — pr3(1, 1))
o f8 = M56(17 1)
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Training algorithm

1. Initialize ° =0
2. fort=1...T do
33 fori=1...Ndo
8k,i = fk(Xi, y’) — Epr(y/‘9t7xi)ﬁ<(xi,y/) k=1...K
end for
gk:Zigk,i k:].K
O = 0, ' +e(g — 20,7/ C)
8: Exitif ||g] ~ zero
9: end for

Running time of the algorithm is O(INn(m? + K)) where [ is the
total number of iterations.

No g R
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Local conditional probability for BN

Pr(yi,...,yalx,0) = H Pr(y;|ypa(j): X, 0)

o H exp FG yPa(_/) Y, ./ X))
>y

11 exp(Fo(Ypa(), ¥'s J: X))
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Training for BN

N
LL(6,D) = logPr(y'|x’, 0)
i=1

N
= log [ [ Pr(y]lyb.(i). X', 6)
i=1 j
=> ) logPr(y/lyp.(j). X', 6)
i J

= Z Z Fe(y{Da(j)?yjiLju Xi)) - |Og Z eXp(Fe(yéa(j),y/,j, xi))
i

y'=1

Like normal classification task. No challenge arising during training
because of graphical model. Normalizer is easy to compute.
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Table Potentials in the feature framework.

Assume x' does not exist..(As in HMMs)

© Fo(Ypa(j): Y} J)) = log P(¥/|ypa;)), normalizer vanishes.

@ Pr(yjlypa(j)) = Table of real values denoting the probability of
each value of x; corresponding to each combination of values of
the parents (&).

@ If each variables takes m possible values, and has k parents, then
each Pr(y;|ypa(;)) will require m*(m) parameters in ¢/.

0{;u1,...,uk = Pr(yj = V’YPBU) = U]_7 st Uk)
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Maximum Likelihood estimation of parameters

max Z Z log P(y;|¥pa()))
i
= mgaxzzlog%yb) S‘t'ze{;ul ..... uk:]'vjvl—ll?"'auk
i

v
_ j _ J j _
- meax Z Z Iog %yb) Z Z )\ul ..... uk(z 9{/U1 ..... Uy 1)
i j J Ui, ug v

Solve above using gradient descent to get

N i i
. Zi:l[[yj ==V ¥pag) = U1y- e Uk]]

1
Sl pagy = - ] 2
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Partially observed, decoupled potentials

Yim e s T Yam T YsT T Ye T Yy
R’
X4 Xp X3 X4 X Xg X7

EM Algorithm
Input: Graph G, Data D with observed subset of variables x and
hidden variables z.
Initially (¢ = 0): Assign random variables of parameters
Pr(x|pal))"
for=1,..., T do
E-step
fori=1,...,Ndo
Use inference in G to estimate conditionals Pr;(z.|x')* for all
variable subsets (i, pa(i)) involving any hidden variable.

end for
M-step
SN Pri(zex)[[xi==x;]]
: ) — t __ i=1 G
Prixlpalx) = zo)' = ==zw 5 iy
end for
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More on graphical models

@ Koller and Friedman, Probabilistic Graphical Models: Principles
and Techniques. MIT Press, 2009.

e Wainwright's article in FnT for Machine Learning. 2009.

@ Kevin Murphy's brief online introduction
(http://www.cs.ubc.ca/~murphyk/Bayes/bnintro.html)

@ Graphical models. M. |. Jordan. Statistical Science (Special
Issue on Bayesian Statistics), 19, 140-155, 2004. (http:
//www.cs.berkeley.edu/~jordan/papers/statsci.ps.gz)

@ Other text books:

» R. G. Cowell, A. P. Dawid, S. L. Lauritzen and D. J.
Spiegelhalter. " Probabilistic Networks and Expert Systems”.
Springer-Verlag. 1999.

» J. Pearl. "Probabilistic Reasoning in Intelligent Systems:
Networks of Plausible Inference.” Morgan Kaufmann. 1988.

» Graphical models by Lauritzen, Oxford science publications F.
V. Jensen. "Bayesian Networks and Decision Graphs”. Springer.
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