Training algorithms for Structured
Learning

Sunita Sarawagi
II'T Bombay
http://www.cse.iitb.ac.in/~sunita


http://www.cse.iitb.ac.in/~sunita

Training
Given

o N input output pairs (x1,y1), (X2, ¥2),-- -, (Xn, Yn)

o Features f(x,y) = > f(x,yc, ¢)
@ Error of output : E(y;,y)

» (Use short form: E(y;,y) = Ei(y))
» Also decomposes over smaller parts:

Ei(y) = ZCEC Eic(ye)
Find w

@ Small training error
@ Generalizes to unseen instances
o Efficient for structured models



QOutline

@ Likelihood based Training

a Max-margin training
@ Decomposition-based approaches
@ Cutting-plane approaches



Probability distribution from scores

@ Convert scores into a probability distribution
P =
r(ylx) Zu(X)

where Zy(x) = >, exp(w.f(x,y’))

exp(w.f(x,y))



Probability distribution from scores

@ Convert scores into a probability distribution

Priyix) = 5 exp(w(x.9))
where Zy(x) = >, exp(w.f(x,y’))
@ When y vector of variables, say y1,...,y, and

decomposition parts ¢ are subsets of variables we
get a graphical model.

Priyl) = 5 exp(3owAxye.€)) = 5 [ vty

with clique potential ¥.(y.) = exp(w.f(x,y, ¢))




Probability distribution from scores

@ Convert scores into a probability distribution
1
Prlybe) = 5y ©PwA(x,y)

where Zy(x) = >, exp(w.f(x,y’))

@ When y vector of variables, say y1,...,y, and
decomposition parts ¢ are subsets of variables we
get a graphical model.

Priyl) = 5 exp(3owAxye.€)) = 5 [ vty

with clique potential ¥.(y.) = exp(w.f(x,y, ¢))
@ These are called Conditional Random Fields (CRFs).




Training via gradient descent

L(w) = log Pr(yx;,w) = > (w - f(x¢, y¢) — log Zu(x))
7

14

Add a regularizer to prevent over-fitting.

max Z(W F(xe,y0) — log Zu(x¢)) — [|wl]?/C
¢

Concave in w = gradient descent methods will work.
Gradient:
Zy’ f(y/7 Xf) EXpW - f(Xg, y,)
> f(xeye) - >
Vi W(XZ)

= Z f(X@7 yg) - Epr(y/‘w)f(X(, y/) — 2W/C
14

VL(w)

—2w/C



Training algorithm

1: Initialize w® = 0



Training algorithm

1: Initialize w® = 0
2. fort=1...T do
33 for/=1...Ndo

ko = Tu(xe,¥e) — Epryrw) fk(xe,y') k=1...

4
5.  end for
6 gkzzggk’g k=1...K



Training algorithm

1: Initialize w® = 0
2. fort=1...T do
33 for/=1...Ndo

8kt = f(xe:ye) — Epr(ywyfu(xe,y) k=1...

4
5 end for

6: gkzzggk’g k=1...K

7 owh=w. "+ (e — 2w 1/ C)
8. Exitif ||g|| = zero

9: end for



Training algorithm

1: Initialize w® = 0
2. fort=1...T do
33 for/=1...Ndo

4 8o = f(xe,¥e) — Eprywy fu(xe,y) k=1...K
5. end for

6: gk:Zggk,é k=1...K

7 owi=wl (g — 2wt/ C)

8. Exitif ||g|| = zero
o: end for

Running time of the algorithm is O(/Nn(m? + K)) where
| is the total number of iterations.



Calculating Epy(y/w)fx(x¢,y’) using inference.



Likelihood-based trainer

@ Penalizes all wrong ys the same way, does not
exploit E;(y)

@ Requires the computation of sum-marginals, not
possible in all kinds of structured learning.

@ Collective extraction
@ Sentence Alignment
© Ranking



QOutline

@ Likelihood based Training

a Max-margin training
@ Decomposition-based approaches
@ Cutting-plane approaches



Two formulations
@ Margin scaling

1 C
. 2
v 3o

s.t. w’f(x;,y;) —w f(x;,y) > E(y) — & Vy,i

10



Two formulations
@ Margin scaling

1 C
. 2
T:,'QEHWH +N;§i

s.t. w’f(x;,y;) —w f(x;,y) > E(y) — & Vy,i

@ Slack scaling

1 C&
: 2
min I+ g 26

st w/f(xi,y;) —w f(xi,y) >1— =~ Vy,i

- Ei(y)

10



Max-margin loss surrogates

True error E; (argmaXyW-f(Xi, y))

Let W.5f(xi, y) = W.f(Xi, Yi) - W-f(XhY)

1. Margin Loss

maxy [E;(y) — w.0f (xi, y)]+
2. Slack Loss

maxy F;(y)[1 — w.6f (x3, )]+

E(y)=4

14 4

—Slack

—Margin

—Ideal

11



Max-margin training: margin-scaling
The Primal (P):

min —HWH2 ZEI

T(Sf,(y)ZE,( )—f, \V/y,l].N

12



Max-margin training: margin-scaling
The Primal (P):

1 C
: 2
min 5w +N;§i

)

st. wiofi(y) > E(y)—& Vy,i:1...N

@ Good news: Convex in w, ¢

@ Bad news: exponential number of constraints

@ Two main lines of attacks
@ Decomposition: polynomial-sized rewrite of objective in

terms of parts of y
© Cutting-plane: generate constraints on the fly.
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@ The Primal (P):

N
1. ., C
minliwll 3y 26

st. w/ofi(y) > E(y)— & Vy,i:1...

N
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@ The Primal (P):

N
o1 , C
minliwll 3y 26
st.w!ofi(y) > E(y)—¢& Vy,i:1...N

@ The Dual (D) of (P)

1
max — > aily)ofi(y) > ai(y)ofi(y') + > Ei(y)y
’ iy 5y

13



Properties of Dual

@ Strong duality holds: Primal (P) solution = Dual
(D) solution.

Q@ w=>, aiy)fi(y)

@ Dual (D) is concave in «, constraints are simpler.

@ Size of v is still intractably large = cannot solve
via standard libraries.

14



Decomposition-based approaches

Q fi(y) =D ofic(ye)
Q E(y) => . Eiclyc)



Decomposition-based approaches

Q ofi(y) = > ofic(yc)
Q Ei(y)=>_Eiyc)

Rewrite the dual as

max ——Z5f,c (¥e)ric(ye) Z(S d(Ya)i.a(Ya)

i,¢,¥c J.dy,
+ Z Ei,c Yc ,LLi,c(YC)
i,¢,¥c
5 2 ticlye) = 2 ly)
Y~Yc

Za;(y):%,a;(y)ZO it1...N

y
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ass as probabilities

Scale as with %

max o Z(Sf,c yo)uic(ye) D Fia(ya)mia(yy)
pic(ye) /CYC J>dyy
+ Z Eic(ye)pic(ye)

i,C,Ye¢

s.t. pic(ye) € Marginals of any valid distribution

16



ass as probabilities

Scale as with %

max o Zéf,c yo)uic(ye) D Fia(ya)mia(yy)
pic(ye) /CYC J>dyy
+ Z Eic(ye)pic(ye)

i,C,Ye¢

s.t. pic(ye) € Marginals of any valid distribution

Solve via the exponentiated gradient method.

16



Exponentiated gradient algorithm

Q Initia”y Mi,c(ym) =1, for Yic ?é Yo ,ui,c(}'c) =0
Q@ Fort=1,.... T
@ Chooseaifroml, ... N.
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Exponentiated gradient algorithm

Q Initia”y Mi,c(}'hc) =1, for Yic ?é Yo ,ui,c(}'c) =0
Q@ Fort=1,.... T
@ Chooseaifroml, ... N.
@ Ignore constraints and perform a gradient-based update:

Sic = Hic + 1(Eic —wiofi(yc))
where wt = Zi,c,yc i (ye)ofic(ye)
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Exponentiated gradient algorithm

Q Initia”y ,ui,c(ym) =1, for Yic ?é Yo ,ui,c(}'c) =0
Q@ Fort=1,.... T
@ Chooseaifroml, ... N.
@ Ignore constraints and perform a gradient-based update:

Sie = i +1(Eic —w'ofi(yc))

where w' = Zi,qyc 115 (¥ )i c(ye)
© Define a distribution « by exponentiating the updates:

( t+1 eXp ZSI c YC
where Z =3 exp(D__ sic(Yc))

17



Exponentiated gradient algorithm

o Initia”y ,ui,c(YLC) - 1: for Yic 7£ Yo ,ui,c(}'c) =0
Q@ Fort=1,.... T
@ Chooseaifroml, ... N.
@ Ignore constraints and perform a gradient-based update:
Sie = Hijc +1(Eic — w'ofi(yc))

where w' = ZI,qu 115 (¥ )i c(ye)
© Define a distribution « by exponentiating the updates:

( t+1 eXp ZSI c YC
where Z =3 exp(D__ sic(Yc))

@ New feasible values are marginals of «
pE(ye) = ) aiy)™
Y~Yc

17



Convergence results

Theorem
J(at) — J(at) > %KL(ozt, a'™) where n < —L; where
R = max 5%,(y)3£,(y)
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Convergence results

Theorem
J(at) — J(at) > %KL(ozt, a'™) where n < —L; where
R = max 5%,(y)3£,(y)

Theorem
Let o* = dual optimal. Then at the T th iteration.
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Convergence results

Theorem
J(at) — J(at) > %KL(ozt, a'™) where n < —L; where
R = max 5%,(y)3£,(y)

Theorem
Let o* = dual optimal. Then at the T th iteration.
1
J(a™) — T—KL(a*; a®) < J(a™) < J(o¥)
n
Theorem

The number of iterations of the algorithm is at most
2
ER2KL(a*; a0)
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Cutting plane method

@ Exponentiated gradient approach requires
computation of sum-marginals and decomposable
losses.

@ Cutting plane — a more general approach that just
requires MAP

10



Cutting-plane algorithm [TJHAO5]

1. Initialize w® = 0, Active constraints=Empty.

20



Cutting-plane algorithm [TJHAO5]

1. Initialize w® = 0, Active constraints=Empty.
2 fort=1...T do

3 forl{=1...N do

4 y = argmax,(E/(y) +w" - f(x,y))

5: if wi.ofi(¥) < Ei(y) — &} — € then

6 Add (x¢,y) to set of active constraints.

N

w!, ¢f=solve QP with active constraints.
end if
90 end for
10 Exit if no new constraint added.
11: end for

®
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Efficient solution in the dual space

Solve QP in the dual space.

@ Initially af(y) = 0,¥y # y;, f(y;) = €
Q@ Fort=1,....T

o

2]
o
o

Choose a i/ from 1,... N,

y = argmax, (Eo(y) +w" - f(x;,y)) where

wh = Z;,y a;(y)ofi(y)

«;(§) = coordinate with highest gradient.

Optimize J(«) over set of ys in the active set (SMO
applicable here).

21



Convergence results
Let R? = max &f;(y)of;(y'), A = max;y Ei(y)

Theorem
J(at1) — J(at) > mln(m, —2

Theorem
The number of constraints that the cutting plane

algorithm adds is at most max(zNA, SCEAQRQ)




Single slack formulation [JFY09]

Theorem

The number of constraints that the cutting plane

algorithm adds in the single slack formulation is at most

CA  16CR?
max(log4R2C2, = )

bl



Summary

@ Two very efficient algorithms for training structured
models that avoids the problem of exponential
output space.

@ Other alternatives

@ Online training, example MIRA and Collins Trainer
@ Stochastic trainers: LARank.
© Local training: SEARN

© Extension to Slack-scaling and other loss functions.

24
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