Training algorithms for Structured Learning

Sunita Sarawagi IIT Bombay

http://www.cse.iitb.ac.in/~sunita

Training

Given

- N input output pairs $\left(\mathbf{x}_{1}, \mathbf{y}_{1}\right),\left(\mathbf{x}_{2}, \mathbf{y}_{2}\right), \ldots,\left(\mathbf{x}_{N}, \mathbf{y}_{N}\right)$
- Features $\mathbf{f}(\mathbf{x}, \mathbf{y})=\sum_{c} \mathbf{f}\left(\mathbf{x}, \mathbf{y}_{c}, c\right)$
- Error of output: $E\left(\mathbf{y}_{i}, \mathbf{y}\right)$
- (Use short form: $E\left(\mathbf{y}_{i}, \mathbf{y}\right)=E_{i}(\mathbf{y})$)
- Also decomposes over smaller parts:

$$
E_{i}(\mathbf{y})=\sum_{c \in C} E_{i, c}\left(\mathbf{y}_{c}\right)
$$

Find \mathbf{w}

- Small training error
- Generalizes to unseen instances
- Efficient for structured models

Outline

(1) Likelihood based Training
(2) Max-margin training

- Decomposition-based approaches
- Cutting-plane approaches

Probability distribution from scores

- Convert scores into a probability distribution

$$
\begin{gathered}
\operatorname{Pr}(\mathbf{y} \mid \mathbf{x})=\frac{1}{Z_{\mathbf{w}}(\mathbf{x})} \exp (\mathbf{w} \cdot \mathbf{f}(\mathbf{x}, \mathbf{y})) \\
\text { where } Z_{\mathbf{w}}(\mathbf{x})=\sum_{\mathbf{y}^{\prime}} \exp \left(\mathbf{w} \cdot \mathbf{f}\left(\mathbf{x}, \mathbf{y}^{\prime}\right)\right)
\end{gathered}
$$

Probability distribution from scores

- Convert scores into a probability distribution

$$
\operatorname{Pr}(\mathbf{y} \mid \mathbf{x})=\frac{1}{Z_{\mathbf{w}}(\mathbf{x})} \exp (\mathbf{w} \cdot \mathbf{f}(\mathbf{x}, \mathbf{y}))
$$

where $Z_{\mathbf{w}}(\mathbf{x})=\sum_{\mathbf{y}^{\prime}} \exp \left(\mathbf{w} \cdot \mathbf{f}\left(\mathbf{x}, \mathbf{y}^{\prime}\right)\right)$

- When \mathbf{y} vector of variables, say y_{1}, \ldots, y_{n}, and decomposition parts c are subsets of variables we get a graphical model.
$\operatorname{Pr}(\mathbf{y} \mid \mathbf{x})=\frac{1}{Z_{\mathbf{w}}(\mathbf{x})} \exp \left(\sum_{c} \mathbf{w} \cdot \mathbf{f}\left(\mathbf{x}, \mathbf{y}_{c}, c\right)\right)=\frac{1}{Z} \prod_{c} \psi_{c}\left(\mathbf{y}_{c}\right)$
with clique potential $\psi_{c}\left(\mathbf{y}_{c}\right)=\exp \left(\mathbf{w} \cdot \mathbf{f}\left(\mathbf{x}, \mathbf{y}_{c}, c\right)\right)$

Probability distribution from scores

- Convert scores into a probability distribution

$$
\operatorname{Pr}(\mathbf{y} \mid \mathbf{x})=\frac{1}{Z_{\mathbf{w}}(\mathbf{x})} \exp (\mathbf{w} \cdot \mathbf{f}(\mathbf{x}, \mathbf{y}))
$$

where $Z_{\mathbf{w}}(\mathbf{x})=\sum_{\mathbf{y}^{\prime}} \exp \left(\mathbf{w} \cdot \mathbf{f}\left(\mathbf{x}, \mathbf{y}^{\prime}\right)\right)$

- When \mathbf{y} vector of variables, say y_{1}, \ldots, y_{n}, and decomposition parts c are subsets of variables we get a graphical model.
$\operatorname{Pr}(\mathbf{y} \mid \mathbf{x})=\frac{1}{Z_{\mathbf{w}}(\mathbf{x})} \exp \left(\sum_{c} \mathbf{w} \cdot \mathbf{f}\left(\mathbf{x}, \mathbf{y}_{c}, c\right)\right)=\frac{1}{Z} \prod_{c} \psi_{c}\left(\mathbf{y}_{c}\right)$
with clique potential $\psi_{c}\left(\mathbf{y}_{c}\right)=\exp \left(\mathbf{w} \cdot \mathbf{f}\left(\mathbf{x}, \mathbf{y}_{c}, c\right)\right)$
- These are called Conditional Random Fields (CRFs).

Training via gradient descent

$$
L(\mathbf{w})=\sum_{\ell} \log \operatorname{Pr}\left(\mathbf{y}_{\ell} \mid \mathbf{x}_{\ell}, \mathbf{w}\right)=\sum_{\ell}\left(\mathbf{w} \cdot \mathbf{f}\left(\mathbf{x}_{\ell}, \mathbf{y}_{\ell}\right)-\log Z_{\mathbf{w}}\left(\mathbf{x}_{\ell}\right)\right)
$$

Add a regularizer to prevent over-fitting.

$$
\max _{\mathbf{w}} \sum_{\ell}\left(\mathbf{w} \cdot \mathbf{f}\left(\mathbf{x}_{\ell}, \mathbf{y}_{\ell}\right)-\log Z_{\mathbf{w}}\left(\mathbf{x}_{\ell}\right)\right)-\|\mathbf{w}\|^{2} / C
$$

Concave in $\mathbf{w} \Longrightarrow$ gradient descent methods will work.
Gradient:

$$
\begin{aligned}
\nabla L(\mathbf{w}) & =\sum_{\ell} \mathbf{f}\left(\mathbf{x}_{\ell}, \mathbf{y}_{\ell}\right)-\frac{\sum_{\mathbf{y}^{\prime}} \mathbf{f}\left(\mathbf{y}^{\prime}, \mathbf{x}_{\ell}\right) \exp \mathbf{w} \cdot \mathbf{f}\left(\mathbf{x}_{\ell}, \mathbf{y}^{\prime}\right)}{Z_{\mathbf{w}}\left(\mathbf{x}_{\ell}\right)}-2 \mathbf{w} / C \\
& =\sum_{\ell} \mathbf{f}\left(\mathbf{x}_{\ell}, \mathbf{y}_{\ell}\right)-E_{\operatorname{Pr}\left(\mathbf{y}^{\prime} \mid \mathbf{w}\right)} \mathbf{f}\left(\mathbf{x}_{\ell}, \mathbf{y}^{\prime}\right)-2 \mathbf{w} / C
\end{aligned}
$$

Training algorithm

1: Initialize $\mathbf{w}^{0}=\mathbf{0}$

Training algorithm

1: Initialize $\mathbf{w}^{0}=\mathbf{0}$
2: for $t=1 \ldots$ T do
3: \quad for $\ell=1 \ldots N$ do
4: $\quad g_{k, \ell}=f_{k}\left(\mathbf{x}_{\ell}, \mathbf{y}_{\ell}\right)-E_{\operatorname{Pr}\left(\mathbf{y}^{\prime} \mid \mathbf{w}\right)} f_{k}\left(\mathbf{x}_{\ell}, \mathbf{y}^{\prime}\right) \quad k=1 \ldots K$
5: end for
6: $\quad g_{k}=\sum_{\ell} g_{k, \ell} \quad k=1 \ldots K$

Training algorithm

1: Initialize $\mathbf{w}^{0}=\mathbf{0}$
2: for $t=1 \ldots$ T do
3: \quad for $\ell=1 \ldots N$ do
4: $\quad g_{k, \ell}=f_{k}\left(\mathbf{x}_{\ell}, \mathbf{y}_{\ell}\right)-E_{\operatorname{Pr}\left(\mathbf{y}^{\prime} \mid \mathbf{w}\right)} f_{k}\left(\mathbf{x}_{\ell}, \mathbf{y}^{\prime}\right) \quad k=1 \ldots K$
5: end for
6: $\quad g_{k}=\sum_{\ell} g_{k, \ell} \quad k=1 \ldots K$
7: $\quad w_{k}^{t}=w_{k}^{t-1}+\gamma_{t}\left(g_{k}-2 w_{k}^{t-1} / C\right)$
8: \quad Exit if $\|\mathbf{g}\| \approx$ zero
9: end for

Training algorithm

1: Initialize $\mathbf{w}^{0}=\mathbf{0}$
2: for $t=1 \ldots$ T do
3: \quad for $\ell=1 \ldots N$ do
4: $\quad g_{k, \ell}=f_{k}\left(\mathbf{x}_{\ell}, \mathbf{y}_{\ell}\right)-E_{\operatorname{Pr}\left(\mathbf{y}^{\prime} \mid \mathbf{w}\right.} f_{k}\left(\mathbf{x}_{\ell}, \mathbf{y}^{\prime}\right) \quad k=1 \ldots K$
5: end for
6: $\quad g_{k}=\sum_{\ell} g_{k, \ell} \quad k=1 \ldots K$
7: $\quad w_{k}^{t}=w_{k}^{t-1}+\gamma_{t}\left(g_{k}-2 w_{k}^{t-1} / C\right)$
8: \quad Exit if $\|\mathbf{g}\| \approx$ zero
9: end for
Running time of the algorithm is $O\left(\operatorname{INn}\left(m^{2}+K\right)\right)$ where I is the total number of iterations.

Calculating $E_{\operatorname{Pr}\left(\mathbf{y}^{\prime} \mid \mathbf{w}\right)} f_{k}\left(\mathbf{x}_{\ell}, \mathbf{y}^{\prime}\right)$ using inference.

Likelihood-based trainer

(1) Penalizes all wrong ys the same way, does not exploit $E_{i}(\mathbf{y})$
(2) Requires the computation of sum-marginals, not possible in all kinds of structured learning.
(1) Collective extraction
(2) Sentence Alignment
(3) Ranking

Outline

(1) Likelihood based Training
(2) Max-margin training

- Decomposition-based approaches
- Cutting-plane approaches

Two formulations

(1) Margin scaling

$$
\begin{aligned}
& \min _{\mathbf{w}, \xi} \frac{1}{2}\|\mathbf{w}\|^{2}+\frac{C}{N} \sum_{i=1}^{N} \xi_{i} \\
& \text { s.t. } \mathbf{w}^{T} \mathbf{f}\left(\mathbf{x}_{i}, \mathbf{y}_{i}\right)-\mathbf{w}^{T} \mathbf{f}\left(\mathbf{x}_{i}, \mathbf{y}\right) \geq E_{i}(\mathbf{y})-\xi_{i} \quad \forall \mathbf{y}, i
\end{aligned}
$$

Two formulations

(1) Margin scaling

$$
\begin{aligned}
& \min _{\mathbf{w}, \xi} \frac{1}{2}\|\mathbf{w}\|^{2}+\frac{C}{N} \sum_{i=1}^{N} \xi_{i} \\
& \text { s.t. } \mathbf{w}^{T} \mathbf{f}\left(\mathbf{x}_{i}, \mathbf{y}_{i}\right)-\mathbf{w}^{T} \mathbf{f}\left(\mathbf{x}_{i}, \mathbf{y}\right) \geq E_{i}(\mathbf{y})-\xi_{i} \quad \forall \mathbf{y}, i
\end{aligned}
$$

(2) Slack scaling

$$
\begin{aligned}
& \min _{\mathbf{w}, \xi} \frac{1}{2}\|\mathbf{w}\|^{2}+\frac{C}{N} \sum_{i=1}^{N} \xi_{i} \\
& \text { s.t. } \mathbf{w}^{\top} \mathbf{f}\left(\mathbf{x}_{i}, \mathbf{y}_{i}\right)-\mathbf{w}^{\top} \mathbf{f}\left(\mathbf{x}_{i}, \mathbf{y}\right) \geq 1-\frac{\xi_{i}}{E_{i}(\mathbf{y})} \quad \forall \mathbf{y}, i
\end{aligned}
$$

Max-margin loss surrogates

True error $E_{i}\left(\operatorname{argmax}_{\mathbf{y}} \mathbf{w} . \mathbf{f}\left(\mathbf{x}_{\mathbf{i}}, \mathbf{y}\right)\right)$
Let $\mathbf{w} . \delta \mathbf{f}\left(\mathbf{x}_{\mathbf{i}}, \mathbf{y}\right)=\mathbf{w . f}\left(\mathbf{x}_{\mathbf{i}}, \mathbf{y}_{\mathbf{i}}\right)-\mathbf{w . f}\left(\mathbf{x}_{\mathbf{i}}, \mathbf{y}\right)$

1. Margin Loss
$\max _{\mathbf{y}}\left[E_{i}(\mathbf{y})-\mathbf{w} . \delta \mathbf{f}\left(\mathbf{x}_{\mathbf{i}}, \mathbf{y}\right)\right]_{+}$
2. Slack Loss
$\max _{\mathbf{y}} E_{i}(\mathbf{y})\left[1-\mathbf{w} . \delta \mathbf{f}\left(\mathbf{x}_{\mathbf{i}}, \mathbf{y}\right)\right]_{+}$

Max-margin training: margin-scaling The Primal (P):

$$
\begin{aligned}
& \min _{\mathbf{w}, \xi} \frac{1}{2}\|\mathbf{w}\|^{2}+\frac{C}{N} \sum_{i=1}^{N} \xi_{i} \\
& \text { s.t. } \mathbf{w}^{T} \delta \mathbf{f}_{i}(\mathbf{y}) \geq E_{i}(\mathbf{y})-\xi_{i} \quad \forall \mathbf{y}, i: 1 \ldots N
\end{aligned}
$$

Max-margin training: margin-scaling

 The Primal (P):$$
\begin{aligned}
& \min _{\mathbf{w}, \xi} \frac{1}{2}\|\mathbf{w}\|^{2}+\frac{C}{N} \sum_{i=1}^{N} \xi_{i} \\
& \text { s.t. } \mathbf{w}^{T} \delta \mathbf{f}_{i}(\mathbf{y}) \geq E_{i}(\mathbf{y})-\xi_{i} \quad \forall \mathbf{y}, i: 1 \ldots N
\end{aligned}
$$

- Good news: Convex in w, ξ
- Bad news: exponential number of constraints
- Two main lines of attacks
(1) Decomposition: polynomial-sized rewrite of objective in terms of parts of \mathbf{y}
(2) Cutting-plane: generate constraints on the fly.
(1) The Primal (P):

$$
\begin{aligned}
& \min _{\mathbf{w}, \xi} \frac{1}{2}\|\mathbf{w}\|^{2}+\frac{C}{N} \sum_{i=1}^{N} \xi_{i} \\
& \text { s.t. } \mathbf{w}^{T} \delta \mathbf{f}_{i}(\mathbf{y}) \geq E_{i}(\mathbf{y})-\xi_{i} \quad \forall \mathbf{y}, i: 1 \ldots N
\end{aligned}
$$

(1) The Primal (P):

$$
\begin{aligned}
& \min _{\mathbf{w}, \xi} \frac{1}{2}\|\mathbf{w}\|^{2}+\frac{C}{N} \sum_{i=1}^{N} \xi_{i} \\
& \text { s.t. } \mathbf{w}^{T} \delta \mathbf{f}_{i}(\mathbf{y}) \geq E_{i}(\mathbf{y})-\xi_{i} \quad \forall \mathbf{y}, i: 1 \ldots N
\end{aligned}
$$

(2) The Dual (D) of (P)

$$
\begin{aligned}
& \max _{\alpha_{i}(\mathbf{y})}-\frac{1}{2} \sum_{i, \mathbf{y}} \alpha_{i}(\mathbf{y}) \delta \mathbf{f}_{i}(\mathbf{y}) \sum_{j, \mathbf{y}^{\prime}} \alpha_{j}\left(\mathbf{y}^{\prime}\right) \delta \mathbf{f}_{j}\left(\mathbf{y}^{\prime}\right)+\sum E_{i}(\mathbf{y}) \alpha_{i} \\
& \text { s.t. } \sum_{\mathbf{y}} \alpha_{i}(\mathbf{y})=\frac{C}{N} \\
& \alpha_{i}(\mathbf{y}) \geq 0 \quad i: 1 \ldots N
\end{aligned}
$$

Properties of Dual

(1) Strong duality holds: Primal (P) solution $=$ Dual (D) solution.
(3) $\mathbf{w}=\sum_{i, \mathbf{y}} \alpha_{i}(\mathbf{y}) \delta \mathbf{f}_{i}(\mathbf{y})$
(3) Dual (D) is concave in α, constraints are simpler.
(9) Size of α is still intractably large \Longrightarrow cannot solve via standard libraries.

Decomposition-based approaches

(3) $\delta \mathbf{f}_{i}(\mathbf{y})=\sum_{c} \delta \mathbf{f}_{i, c}\left(\mathbf{y}_{c}\right)$
(2) $E_{i}(\mathbf{y})=\sum_{c} E_{i, c}\left(\mathbf{y}_{c}\right)$

Decomposition-based approaches

(1) $\delta \mathbf{f}_{i}(\mathbf{y})=\sum_{c} \delta \mathbf{f}_{i, c}\left(\mathbf{y}_{c}\right)$
(2) $E_{i}(\mathbf{y})=\sum_{c} E_{i, c}\left(\mathbf{y}_{c}\right)$

Rewrite the dual as

$$
\begin{aligned}
& \max _{\mu_{i, c}\left(\mathbf{y}_{c}\right)}-\frac{1}{2} \sum_{i, c, \mathbf{y}_{c}} \delta \mathbf{f}_{i, c}\left(\mathbf{y}_{c}\right) \mu_{i, c}\left(\mathbf{y}_{c}\right) \sum_{j, d, \mathbf{y}_{d}^{\prime}} \delta \mathbf{f}_{j, d}\left(\mathbf{y}_{d}^{\prime}\right) \mu_{j, d}\left(\mathbf{y}_{d}^{\prime}\right) \\
& +\sum_{i, c, \mathbf{y}_{c}} E_{i, c}\left(\mathbf{y}_{c}\right) \mu_{i, c}\left(\mathbf{y}_{c}\right) \\
& \text { s.t. } \sum_{\mathbf{y}} \mu_{i, c}\left(\mathbf{y}_{c}\right)=\sum_{\mathbf{y} \sim \mathbf{y}_{c}} \alpha_{i}(\mathbf{y}) \\
& \sum_{\mathbf{y}} \alpha_{i}(\mathbf{y})=\frac{C}{N}, \alpha_{i}(\mathbf{y}) \geq 0 \quad i: 1 \ldots N
\end{aligned}
$$

α s as probabilities

Scale α s with $\frac{C}{N}$.

$$
\begin{aligned}
& \max _{\mu_{i, c}\left(\mathbf{y}_{c}\right)}-\frac{C}{2 N} \sum_{i, c, \mathbf{y}_{c}} \delta \mathbf{f}_{i, c}\left(\mathbf{y}_{c}\right) \mu_{i, c}\left(\mathbf{y}_{c}\right) \sum_{j, d, \mathbf{y}_{d}^{\prime}} \delta \mathbf{f}_{j, d}\left(\mathbf{y}_{d}^{\prime}\right) \mu_{j, d}\left(\mathbf{y}_{d}^{\prime}\right) \\
& +\sum_{i, c, \mathbf{y}_{c}} E_{i, c}\left(\mathbf{y}_{c}\right) \mu_{i, c}\left(\mathbf{y}_{c}\right) \\
& \text { s.t. } \mu_{i, c}\left(\mathbf{y}_{c}\right) \in \text { Marginals of any valid distribution }
\end{aligned}
$$

α s as probabilities

Scale as with $\frac{C}{N}$.

$$
\begin{aligned}
& \max _{\mu_{i, c}\left(\mathbf{y}_{c}\right)}-\frac{C}{2 N} \sum_{i, c, \mathbf{y}_{c}} \delta \mathbf{f}_{i, c}\left(\mathbf{y}_{c}\right) \mu_{i, c}\left(\mathbf{y}_{c}\right) \sum_{j, d, \mathbf{y}_{d}^{\prime}} \delta \mathbf{f}_{j, d}\left(\mathbf{y}_{d}^{\prime}\right) \mu_{j, d}\left(\mathbf{y}_{d}^{\prime}\right) \\
& +\sum_{i, c, \mathbf{y}_{c}} E_{i, c}\left(\mathbf{y}_{c}\right) \mu_{i, c}\left(\mathbf{y}_{c}\right) \\
& \text { s.t. } \mu_{i, c}\left(\mathbf{y}_{c}\right) \in \text { Marginals of any valid distribution }
\end{aligned}
$$

Solve via the exponentiated gradient method.

Exponentiated gradient algorithm

(1) Initially $\mu_{i, c}\left(\mathbf{y}_{i, c}\right)=1$, for $\mathbf{y}_{i, c} \neq \mathbf{y}_{c}, \mu_{i, c}\left(\mathbf{y}_{c}\right)=0$
(2) For $t=1, \ldots, T$
(1) Choose a i from $1, \ldots, N$.

Exponentiated gradient algorithm

(1) Initially $\mu_{i, c}\left(\mathbf{y}_{i, c}\right)=1$, for $\mathbf{y}_{i, c} \neq \mathbf{y}_{c}, \mu_{i, c}\left(\mathbf{y}_{c}\right)=0$
(2) For $t=1, \ldots, T$
(1) Choose a i from $1, \ldots, N$.
(2) Ignore constraints and perform a gradient-based update:

$$
\begin{gathered}
s_{i, c}=\mu_{i, c}^{t}+\eta\left(E_{i, c}-\mathbf{w}^{t} \delta \mathbf{f}_{i}\left(\mathbf{y}_{c}\right)\right) \\
\text { where } \mathbf{w}^{t}=\sum_{i, c, \mathbf{y}_{c}} \mu_{i, c}^{t}\left(\mathbf{y}_{c}\right) \delta \mathbf{f}_{i, c}\left(\mathbf{y}_{c}\right)
\end{gathered}
$$

Exponentiated gradient algorithm

(1) Initially $\mu_{i, c}\left(\mathbf{y}_{i, c}\right)=1$, for $\mathbf{y}_{i, c} \neq \mathbf{y}_{c}, \mu_{i, c}\left(\mathbf{y}_{c}\right)=0$
(2) For $t=1, \ldots, T$
(1) Choose a i from $1, \ldots, N$.
(2) Ignore constraints and perform a gradient-based update:

$$
s_{i, c}=\mu_{i, c}^{t}+\eta\left(E_{i, c}-\mathbf{w}^{t} \delta \mathbf{f}_{i}\left(\mathbf{y}_{c}\right)\right)
$$

where $\mathbf{w}^{t}=\sum_{i, c, \mathbf{y}_{c}} \mu_{i, c}^{t}\left(\mathbf{y}_{c}\right) \delta \mathbf{f}_{i, c}\left(\mathbf{y}_{c}\right)$
(0) Define a distribution α by exponentiating the updates:

$$
\alpha_{i}(\mathbf{y})^{t+1}=\frac{1}{Z} \exp \left(\sum_{c} s_{i, c}\left(\mathbf{y}_{c}\right)\right)
$$

where $Z=\sum_{y} \exp \left(\sum_{c} s_{i, c}\left(\mathbf{y}_{c}\right)\right)$

Exponentiated gradient algorithm

(1) Initially $\mu_{i, c}\left(\mathbf{y}_{i, c}\right)=1$, for $\mathbf{y}_{i, c} \neq \mathbf{y}_{c}, \mu_{i, c}\left(\mathbf{y}_{c}\right)=0$
(2) For $t=1, \ldots, T$
(1) Choose a i from $1, \ldots, N$.
(2) Ignore constraints and perform a gradient-based update:

$$
s_{i, c}=\mu_{i, c}^{t}+\eta\left(E_{i, c}-\mathbf{w}^{t} \delta \mathbf{f}_{i}\left(\mathbf{y}_{c}\right)\right)
$$

where $\mathbf{w}^{t}=\sum_{i, c, \mathbf{y}_{c}} \mu_{i, c}^{t}\left(\mathbf{y}_{c}\right) \delta \mathbf{f}_{i, c}\left(\mathbf{y}_{c}\right)$
(0) Define a distribution α by exponentiating the updates:

$$
\alpha_{i}(\mathbf{y})^{t+1}=\frac{1}{Z} \exp \left(\sum_{c} s_{i, c}\left(\mathbf{y}_{c}\right)\right)
$$

where $Z=\sum_{y} \exp \left(\sum_{c} s_{i, c}\left(\mathbf{y}_{c}\right)\right)$
(1) New feasible values are marginals of α

$$
\mu_{i, c}^{t+1}\left(\mathbf{y}_{c}\right)=\sum_{\mathbf{y} \sim \mathbf{y}_{c}} \alpha_{i}(\mathbf{y})^{t+1}
$$

Convergence results

Theorem
$J\left(\alpha^{t+1}\right)-J\left(\alpha^{t}\right) \geq \frac{1}{\eta} K L\left(\alpha^{t}, \alpha^{t+1}\right)$ where $\eta \leq \frac{1}{n R^{2}}$ where $R=\max \delta \mathbf{f}_{i}(\mathbf{y}) \delta \mathbf{f}_{j}\left(\mathbf{y}^{\prime}\right)$

Convergence results

Theorem
$J\left(\alpha^{t+1}\right)-J\left(\alpha^{t}\right) \geq \frac{1}{\eta} K L\left(\alpha^{t}, \alpha^{t+1}\right)$ where $\eta \leq \frac{1}{n R^{2}}$ where $R=\max \delta \mathbf{f}_{i}(\mathbf{y}) \delta \mathbf{f}_{j}\left(\mathbf{y}^{\prime}\right)$

Theorem

Let $\alpha^{*}=$ dual optimal. Then at the Tth iteration.

$$
J\left(\alpha^{*}\right)-\frac{1}{T \eta} K L\left(\alpha^{*} ; \alpha^{0}\right) \leq J\left(\alpha^{T+1}\right) \leq J\left(\alpha^{*}\right)
$$

Convergence results

Theorem
$J\left(\alpha^{t+1}\right)-J\left(\alpha^{t}\right) \geq \frac{1}{\eta} K L\left(\alpha^{t}, \alpha^{t+1}\right)$ where $\eta \leq \frac{1}{n R^{2}}$ where $R=\max \delta \mathbf{f}_{i}(\mathbf{y}) \delta \mathbf{f}_{j}\left(\mathbf{y}^{\prime}\right)$

Theorem
Let $\alpha^{*}=$ dual optimal. Then at the Tth iteration.

$$
J\left(\alpha^{*}\right)-\frac{1}{T \eta} K L\left(\alpha^{*} ; \alpha^{0}\right) \leq J\left(\alpha^{T+1}\right) \leq J\left(\alpha^{*}\right)
$$

Theorem

The number of iterations of the algorithm is at most $\frac{N^{2}}{\epsilon} R^{2} K L\left(\alpha^{*} ; \alpha^{0}\right)$

Cutting plane method

(1) Exponentiated gradient approach requires computation of sum-marginals and decomposable losses.
(2) Cutting plane - a more general approach that just requires MAP

Cutting-plane algorithm [TJHA05]

1: Initialize $\mathbf{w}^{0}=\mathbf{0}$, Active constraints=Empty.

Cutting-plane algorithm [TJHA05]

1: Initialize $\mathbf{w}^{0}=\mathbf{0}$, Active constraints=Empty.
2: for $t=1 \ldots$ T do
3: \quad for $\ell=1 \ldots N$ do
4: $\quad \hat{\mathbf{y}}=\operatorname{argmax}_{\mathbf{y}}\left(E_{\ell}(\mathbf{y})+\mathbf{w}^{t} \cdot \mathbf{f}\left(\mathbf{x}_{\ell}, \mathbf{y}\right)\right)$
5: \quad if $\mathbf{w}^{t} . \delta \mathbf{f}_{\ell}(\hat{\mathbf{y}})<E_{\ell}(\hat{\mathbf{y}})-\xi_{\ell}^{t}-\epsilon$ then
6: \quad Add $\left(\mathbf{x}_{\ell}, \hat{\mathbf{y}}\right)$ to set of active constraints.
7: $\mathbf{w}^{t}, \xi^{t}=$ solve QP with active constraints.
8: \quad end if
9: end for
10: Exit if no new constraint added.
11: end for

Efficient solution in the dual space

Solve QP in the dual space.
(3) Initially $\alpha_{i}^{t}(\mathbf{y})=0, \forall \mathbf{y} \neq \mathbf{y}_{i}, \alpha_{i}^{t}\left(\mathbf{y}_{i}\right)=\frac{C}{N}$
(2) For $t=1, \ldots, T$
(1) Choose a i from $1, \ldots, N$.
(2) $\hat{\mathbf{y}}=\operatorname{argmax}_{\mathbf{y}}\left(E_{\ell}(\mathbf{y})+\mathbf{w}^{t} \cdot \mathbf{f}\left(\mathbf{x}_{\ell}, \mathbf{y}\right)\right)$ where $\mathbf{w}^{t}=\sum_{i, \mathbf{y}} \alpha_{i}(\mathbf{y}) \delta \mathbf{f}_{i}(\mathbf{y})$
(3) $\alpha_{i}(\hat{\mathbf{y}})=$ coordinate with highest gradient.
(4) Optimize $J(\alpha)$ over set of $\mathbf{y s}$ in the active set (SMO applicable here).

Convergence results

Let $R^{2}=\max \delta \mathbf{f}_{i}(\mathbf{y}) \delta \mathbf{f}_{j}\left(\mathbf{y}^{\prime}\right), \Delta=\max _{i, \mathbf{y}} E_{i}(\mathbf{y})$
Theorem
$J\left(\alpha^{t+1}\right)-J\left(\alpha^{t}\right) \geq \min \left(\frac{C \epsilon}{2 N}, \frac{\epsilon^{2}}{8 R^{2}}\right)$

Theorem

The number of constraints that the cutting plane algorithm adds is at most $\max \left(\frac{2 N \Delta}{\epsilon}, \frac{8 C \Delta R^{2}}{\epsilon^{2}}\right)$

Single slack formulation [JFY09]

Theorem

The number of constraints that the cutting plane algorithm adds in the single slack formulation is at most $\max \left(\log \frac{C \Delta}{4 R^{2} C^{2}}, \frac{16 C R^{2}}{\epsilon}\right)$

Summary

(1) Two very efficient algorithms for training structured models that avoids the problem of exponential output space.
(2) Other alternatives
(1) Online training, example MIRA and Collins Trainer
(2) Stochastic trainers: LARank.
(3 Local training: SEARN
(3) Extension to Slack-scaling and other loss functions.
(Peter L. Bartlett, Michael Collins, Ben Taskar, and David McAllester.

Exponentiated gradient algorithms for large-margin structured classification.
In Lawrence K. Saul, Yair Weiss, and Léon Bottou, editors, Advances in Neural Information Processing Systems 17, pages 113-120. MIT Press, Cambridge, MA, 2005.
[Michael Collins, Amir Globerson, Terry Koo, Xavier Carreras, and Peter L. Bartlett.

Exponentiated gradient algorithms for conditional random fields and max-margin markov networks.
J. Mach. Learn. Res., 9:1775-1822, 2008.

回 Thorsten Joachims, Thomas Finley, and Chun-Nam John Yu. Cutting-plane training of structural svms.
Machine Learning, 77(1):27-59, 2009.
I. Tsochantaridis, T. Joachims, T. Hofmann, and Y. Altun.

Large margin methods for structured and interdependent output variables.

Journal of Machine Learning Research (JMLR), 6(Sep):1453-1484, 2005.

