Training algorithms for Structured Learning

Sunita Sarawagi
IIT Bombay
http://www.cse.iitb.ac.in/~sunita

Training

Given

- N input output pairs $(\mathbf{x}_1, \mathbf{y}_1), (\mathbf{x}_2, \mathbf{y}_2), \dots, (\mathbf{x}_N, \mathbf{y}_N)$
- Features $\mathbf{f}(\mathbf{x}, \mathbf{y}) = \sum_{c} \mathbf{f}(\mathbf{x}, \mathbf{y}_{c}, c)$
- Error of output : $E(\mathbf{y}_i, \mathbf{y})$
 - (Use short form: $E(\mathbf{y}_i, \mathbf{y}) = E_i(\mathbf{y})$)
 - Also decomposes over smaller parts: $E_i(\mathbf{y}) = \sum_{c \in C} E_{i,c}(\mathbf{y}_c)$

Find w

- Small training error
- Generalizes to unseen instances
- Efficient for structured models

Outline

Likelihood based Training

- Max-margin training
 - Decomposition-based approaches
 - Cutting-plane approaches

Probability distribution from scores

• Convert scores into a probability distribution

$$Pr(\mathbf{y}|\mathbf{x}) = \frac{1}{Z_{\mathbf{w}}(\mathbf{x})} \exp(\mathbf{w}.\mathbf{f}(\mathbf{x},\mathbf{y}))$$

where
$$Z_{\mathbf{w}}(\mathbf{x}) = \sum_{\mathbf{y}'} \exp(\mathbf{w}.\mathbf{f}(\mathbf{x},\mathbf{y}'))$$

Probability distribution from scores

• Convert scores into a probability distribution

$$Pr(\mathbf{y}|\mathbf{x}) = \frac{1}{Z_{\mathbf{w}}(\mathbf{x})} \exp(\mathbf{w}.\mathbf{f}(\mathbf{x},\mathbf{y}))$$

where $Z_{\mathbf{w}}(\mathbf{x}) = \sum_{\mathbf{v}'} \exp(\mathbf{w}.\mathbf{f}(\mathbf{x},\mathbf{y}'))$

• When **y** vector of variables, say y_1, \ldots, y_n , and decomposition parts c are subsets of variables we get a graphical model.

$$Pr(\mathbf{y}|\mathbf{x}) = \frac{1}{Z_{\mathbf{w}}(\mathbf{x})} \exp(\sum_{c} \mathbf{w}.\mathbf{f}(\mathbf{x}, \mathbf{y}_{c}, c)) = \frac{1}{Z} \prod_{c} \psi_{c}(\mathbf{y}_{c})$$

with clique potential $\psi_c(\mathbf{y}_c) = \exp(\mathbf{w}.\mathbf{f}(\mathbf{x},\mathbf{y}_c,c))$

Probability distribution from scores

Convert scores into a probability distribution

$$Pr(\mathbf{y}|\mathbf{x}) = \frac{1}{Z_{\mathbf{w}}(\mathbf{x})} \exp(\mathbf{w}.\mathbf{f}(\mathbf{x},\mathbf{y}))$$

where $Z_{\mathbf{w}}(\mathbf{x}) = \sum_{\mathbf{y}'} \exp(\mathbf{w}.\mathbf{f}(\mathbf{x},\mathbf{y}'))$

• When **y** vector of variables, say y_1, \ldots, y_n , and decomposition parts c are subsets of variables we get a graphical model.

$$Pr(\mathbf{y}|\mathbf{x}) = \frac{1}{Z_{\mathbf{w}}(\mathbf{x})} \exp(\sum_{c} \mathbf{w}.\mathbf{f}(\mathbf{x}, \mathbf{y}_{c}, c)) = \frac{1}{Z} \prod_{c} \psi_{c}(\mathbf{y}_{c})$$

with clique potential $\psi_c(\mathbf{y}_c) = \exp(\mathbf{w}.\mathbf{f}(\mathbf{x},\mathbf{y}_c,c))$

with clique potential $\psi_c(\mathbf{y}_c) = \exp(\mathbf{w}.\mathbf{f}(\mathbf{x}, \mathbf{y}_c, c))$ • These are called Conditional Random Fields (CRFs).

Training via gradient descent

$$L(\mathbf{w}) = \sum_{\ell} \log \Pr(\mathbf{y}_{\ell} | \mathbf{x}_{\ell}, \mathbf{w}) = \sum_{\ell} (\mathbf{w} \cdot \mathbf{f}(\mathbf{x}_{\ell}, \mathbf{y}_{\ell}) - \log Z_{\mathbf{w}}(\mathbf{x}_{\ell}))$$

Add a regularizer to prevent over-fitting.

$$\max_{\mathbf{w}} \sum_{\ell} (\mathbf{w} \cdot \mathbf{f}(\mathbf{x}_{\ell}, \mathbf{y}_{\ell}) - \log Z_{\mathbf{w}}(\mathbf{x}_{\ell})) - ||\mathbf{w}||^{2} / C$$

Concave in $\mathbf{w} \implies$ gradient descent methods will work. Gradient:

$$\nabla L(\mathbf{w}) = \sum_{\ell} \mathbf{f}(\mathbf{x}_{\ell}, \mathbf{y}_{\ell}) - \frac{\sum_{\mathbf{y}'} \mathbf{f}(\mathbf{y}', \mathbf{x}_{\ell}) \exp \mathbf{w} \cdot \mathbf{f}(\mathbf{x}_{\ell}, \mathbf{y}')}{Z_{\mathbf{w}}(\mathbf{x}_{\ell})} - 2\mathbf{w}/C$$
$$= \sum_{\ell} \mathbf{f}(\mathbf{x}_{\ell}, \mathbf{y}_{\ell}) - E_{\mathsf{Pr}(\mathbf{y}'|\mathbf{w})} \mathbf{f}(\mathbf{x}_{\ell}, \mathbf{y}') - 2\mathbf{w}/C$$

1: Initialize $\mathbf{w}^0 = \mathbf{0}$

.

- 1: Initialize $\mathbf{w}^0 = \mathbf{0}$
- 2: **for** t = 1 ... T **do**
- for $\ell = 1 \dots N$ do
- $g_{k,\ell} = f_k(\mathbf{x}_\ell, \mathbf{y}_\ell) E_{\mathsf{Pr}(\mathbf{y}'|\mathbf{w})} f_k(\mathbf{x}_\ell, \mathbf{y}') \quad k = 1 \dots K$ 4:
- 5:
 - end for
- 6: $g_k = \sum_{\ell} g_{k,\ell}$ $k = 1 \dots K$

```
1: Initialize \mathbf{w}^0 = \mathbf{0}
2: for t = 1 ... T do
        for \ell = 1 N do
             g_{k,\ell} = f_k(\mathbf{x}_\ell, \mathbf{y}_\ell) - E_{\mathsf{Pr}(\mathbf{y}'|\mathbf{w})} f_k(\mathbf{x}_\ell, \mathbf{y}') \quad k = 1 \dots K
4:
       end for
5:
6: g_k = \sum_{\ell} g_{k,\ell} k = 1 \dots K
7: w_{k}^{t} = \overline{w}_{k}^{t-1} + \gamma_{t}(g_{k} - 2w_{k}^{t-1}/C)
         Exit if ||\mathbf{g}|| \approx zero
8:
9. end for
```

9. end for

- 1: Initialize $\mathbf{w}^{0} = \mathbf{0}$ 2: **for** t = 1 ... T **do** 3: **for** $\ell = 1 ... N$ **do** 4: $g_{k,\ell} = f_k(\mathbf{x}_{\ell}, \mathbf{y}_{\ell}) - E_{\text{Pr}(\mathbf{y}'|\mathbf{w})} f_k(\mathbf{x}_{\ell}, \mathbf{y}')$ k = 1 ... K5: **end for** 6: $g_k = \sum_{\ell} g_{k,\ell}$ k = 1 ... K7: $w_k^t = w_k^{t-1} + \gamma_t (g_k - 2w_k^{t-1}/C)$ 8: **Exit** if $||\mathbf{g}|| \approx zero$
- Running time of the algorithm is $O(INn(m^2 + K))$ where I is the total number of iterations.

Calculating $E_{\Pr(\mathbf{y}'|\mathbf{w})}f_k(\mathbf{x}_\ell,\mathbf{y}')$ using inference.

Likelihood-based trainer

- Penalizes all wrong \mathbf{y} s the same way, does not exploit $E_i(\mathbf{y})$
- Requires the computation of sum-marginals, not possible in all kinds of structured learning.
 - Collective extraction
 - Sentence Alignment
 - Ranking

Outline

Likelihood based Training

- Max-margin training
 - Decomposition-based approaches
 - Cutting-plane approaches

ç

Two formulations

Margin scaling

$$\min_{\mathbf{w},\xi} \frac{1}{2} ||\mathbf{w}||^2 + \frac{C}{N} \sum_{i=1}^{N} \xi_i$$

s.t.
$$\mathbf{w}^T \mathbf{f}(\mathbf{x}_i, \mathbf{y}_i) - \mathbf{w}^T \mathbf{f}(\mathbf{x}_i, \mathbf{y}) \ge E_i(\mathbf{y}) - \xi_i \quad \forall \mathbf{y}, i$$

Two formulations

Margin scaling

$$\min_{\mathbf{w},\xi} \frac{1}{2} ||\mathbf{w}||^2 + \frac{C}{N} \sum_{i=1}^{N} \xi_i$$

s.t.
$$\mathbf{w}^T \mathbf{f}(\mathbf{x}_i, \mathbf{y}_i) - \mathbf{w}^T \mathbf{f}(\mathbf{x}_i, \mathbf{y}) \ge E_i(\mathbf{y}) - \xi_i \quad \forall \mathbf{y}, i$$

Slack scaling

$$\min_{\mathbf{w},\xi} \frac{1}{2} ||\mathbf{w}||^2 + \frac{C}{N} \sum_{i=1}^{N} \xi_i$$

s.t.
$$\mathbf{w}^T \mathbf{f}(\mathbf{x}_i, \mathbf{y}_i) - \mathbf{w}^T \mathbf{f}(\mathbf{x}_i, \mathbf{y}) \ge 1 - \frac{\xi_i}{E_i(\mathbf{y})} \quad \forall \mathbf{y}, i$$

Max-margin loss surrogates

True error $E_i(\operatorname{argmax}_{\mathbf{y}} \mathbf{w}.\mathbf{f}(\mathbf{x_i}, \mathbf{y}))$ Let $\mathbf{w}.\delta\mathbf{f}(\mathbf{x_i}, \mathbf{y}) = \mathbf{w}.\mathbf{f}(\mathbf{x_i}, \mathbf{y_i}) - \mathbf{w}.\mathbf{f}(\mathbf{x_i}, \mathbf{y})$

- 1. Margin Loss $\max_{\mathbf{y}}[E_i(\mathbf{y}) \mathbf{w}.\delta\mathbf{f}(\mathbf{x_i},\mathbf{y})]_+$
- 2. Slack Loss $\max_{\mathbf{v}} E_i(\mathbf{y})[1 \mathbf{w}.\delta\mathbf{f}(\mathbf{x_i}, \mathbf{y})]_+$

Max-margin training: margin-scaling

The Primal (P):

$$\min_{\mathbf{w},\xi} \frac{1}{2} ||\mathbf{w}||^2 + \frac{C}{N} \sum_{i=1}^{N} \xi_i$$

s.t.
$$\mathbf{w}^T \delta \mathbf{f}_i(\mathbf{y}) \geq E_i(\mathbf{y}) - \xi_i \quad \forall \mathbf{y}, i : 1 \dots N$$

Max-margin training: margin-scaling

The Primal (P):

$$\min_{\mathbf{w}, \xi} \frac{1}{2} ||\mathbf{w}||^2 + \frac{C}{N} \sum_{i=1}^{N} \xi_i$$
s.t. $\mathbf{w}^T \delta \mathbf{f}_i(\mathbf{y}) \ge E_i(\mathbf{y}) - \xi_i \quad \forall \mathbf{y}, i : 1 ... N$

- Good news: Convex in \mathbf{w}, ξ
- Bad news: exponential number of constraints
- Two main lines of attacks
 - Decomposition: polynomial-sized rewrite of objective in terms of parts of y
 - Cutting-plane: generate constraints on the fly.

The Primal (P):

$$\min_{\mathbf{w},\xi} \frac{1}{2} ||\mathbf{w}||^2 + \frac{C}{N} \sum_{i=1}^{N} \xi_i$$

s.t. $\mathbf{w}^T \delta \mathbf{f}_i(\mathbf{y}) \geq E_i(\mathbf{y}) - \xi_i \quad \forall \mathbf{y}, i : 1 \dots N$

The Primal (P):

$$\min_{\mathbf{w},\xi} \frac{1}{2} ||\mathbf{w}||^2 + \frac{C}{N} \sum_{i=1}^N \xi_i$$

The Dual (D) of (P) $\max_{\alpha_i(\mathbf{y})} -\frac{1}{2} \sum_{i,\mathbf{v}} \alpha_i(\mathbf{y}) \delta \mathbf{f}_i(\mathbf{y}) \sum_{i,\mathbf{y}'} \alpha_i(\mathbf{y}') \delta \mathbf{f}_j(\mathbf{y}') + \sum_i E_i(\mathbf{y}) \alpha_i$

s.t. $\sum \alpha_i(\mathbf{y}) = \frac{C}{N}$

 $\alpha_i(\mathbf{y}) \geq 0$ i:1...N

s.t. $\mathbf{w}^T \delta \mathbf{f}_i(\mathbf{y}) \geq E_i(\mathbf{y}) - \xi_i \quad \forall \mathbf{y}, i : 1 \dots N$

Properties of Dual

- Strong duality holds: Primal (P) solution = Dual (D) solution.
- $\mathbf{v} = \sum_{i,\mathbf{v}} \alpha_i(\mathbf{y}) \delta \mathbf{f}_i(\mathbf{y})$
- **1** Dual (D) is concave in α , constraints are simpler.
- Size of α is still intractably large \implies cannot solve via standard libraries.

Decomposition-based approaches

- $\delta \mathbf{f}_{i}(\mathbf{y}) = \sum_{c} \delta \mathbf{f}_{i,c}(\mathbf{y}_{c})$ $E_{i}(\mathbf{y}) = \sum_{c} E_{i,c}(\mathbf{y}_{c})$

Decomposition-based approaches

$$\delta \mathbf{f}_{i}(\mathbf{y}) = \sum_{c} \delta \mathbf{f}_{i,c}(\mathbf{y}_{c})$$

$$E_{i}(\mathbf{y}) = \sum_{c} E_{i,c}(\mathbf{y}_{c})$$

Rewrite the dual as

$$\max_{\mu_{i,c}(\mathbf{y}_c)} -\frac{1}{2} \sum_{i,c,\mathbf{y}_c} \delta \mathbf{f}_{i,c}(\mathbf{y}_c) \mu_{i,c}(\mathbf{y}_c) \sum_{j,d,\mathbf{y}_d'} \delta \mathbf{f}_{j,d}(\mathbf{y}_d') \mu_{j,d}(\mathbf{y}_d')$$

$$+ \sum_{i,c,\mathbf{y}_c} E_{i,c}(\mathbf{y}_c) \mu_{i,c}(\mathbf{y}_c)$$
s.t.
$$\sum_{\mathbf{y}} \mu_{i,c}(\mathbf{y}_c) = \sum_{\mathbf{y} \sim \mathbf{y}_c} \alpha_i(\mathbf{y})$$

$$\sum_{i,c,\mathbf{y}_c} \alpha_i(\mathbf{y}) = \frac{C}{N}, \alpha_i(\mathbf{y}) \geq 0 \quad i:1...N$$

1.5

α s as probabilities

Scale α s with $\frac{C}{N}$.

$$\max_{\mu_{i,c}(\mathbf{y}_c)} -\frac{C}{2N} \sum_{i,c,\mathbf{y}_c} \delta \mathbf{f}_{i,c}(\mathbf{y}_c) \mu_{i,c}(\mathbf{y}_c) \sum_{j,d,\mathbf{y}_d'} \delta \mathbf{f}_{j,d}(\mathbf{y}_d') \mu_{j,d}(\mathbf{y}_d') + \sum_{i,c,\mathbf{y}_c} E_{i,c}(\mathbf{y}_c) \mu_{i,c}(\mathbf{y}_c)$$

s.t. $\mu_{i,c}(\mathbf{y}_c) \in \text{Marginals of any valid distribution}$

α s as probabilities

Scale α s with $\frac{C}{N}$.

$$\max_{\mu_{i,c}(\mathbf{y}_c)} -\frac{C}{2N} \sum_{i,c,\mathbf{y}_c} \delta \mathbf{f}_{i,c}(\mathbf{y}_c) \mu_{i,c}(\mathbf{y}_c) \sum_{j,d,\mathbf{y}_d'} \delta \mathbf{f}_{j,d}(\mathbf{y}_d') \mu_{j,d}(\mathbf{y}_d') + \sum_{i,c,\mathbf{y}_c} E_{i,c}(\mathbf{y}_c) \mu_{i,c}(\mathbf{y}_c)$$

s.t. $\mu_{i,c}(\mathbf{y}_c) \in Marginals$ of any valid distribution

Solve via the exponentiated gradient method.

- **1** Initially $\mu_{i,c}(\mathbf{y}_{i,c})=1$, for $\mathbf{y}_{i,c}
 eq \mathbf{y}_c$, $\mu_{i,c}(\mathbf{y}_c)=0$
- - Choose a i from $1, \ldots, N$.

- lacksquare Initially $\mu_{i,c}(\mathbf{y}_{i,c})=1$, for $\mathbf{y}_{i,c}
 eq \mathbf{y}_c$, $\mu_{i,c}(\mathbf{y}_c)=0$
- ② For t = 1, ..., T
 - Choose a i from $1, \ldots, N$.
 - Ignore constraints and perform a gradient-based update:

$$egin{aligned} s_{i,c} &= \mu_{i,c}^t + \eta(\mathcal{E}_{i,c} - \mathbf{w}^t \delta \mathbf{f}_i(\mathbf{y}_c)) \ \end{aligned}$$
 where $\mathbf{w}^t = \sum_{i,c,\mathbf{y}_c} \mu_{i,c}^t(\mathbf{y}_c) \delta \mathbf{f}_{i,c}(\mathbf{y}_c)$

- lacktriangle Initially $\mu_{i,c}(\mathbf{y}_{i,c})=1$, for $\mathbf{y}_{i,c}
 eq \mathbf{y}_c$, $\mu_{i,c}(\mathbf{y}_c)=0$
- ② For t = 1, ..., T
 - Choose a i from $1, \ldots, N$.
 - Ignore constraints and perform a gradient-based update:

$$s_{i,c} = \mu_{i,c}^t + \eta(E_{i,c} - \mathbf{w}^t \delta \mathbf{f}_i(\mathbf{y}_c))$$

where $\mathbf{w}^t = \sum_{i,c,\mathbf{y}_c} \mu_{i,c}^t(\mathbf{y}_c) \delta \mathbf{f}_{i,c}(\mathbf{y}_c)$

3 Define a distribution α by exponentiating the updates:

$$\alpha_i(\mathbf{y})^{t+1} = \frac{1}{Z} \exp(\sum_c s_{i,c}(\mathbf{y}_c))$$

where
$$Z = \sum_{\mathbf{y}} \exp(\sum_{c} s_{i,c}(\mathbf{y}_{c}))$$

- lacktriangle Initially $\mu_{i,c}(\mathbf{y}_{i,c})=1$, for $\mathbf{y}_{i,c}
 eq \mathbf{y}_c$, $\mu_{i,c}(\mathbf{y}_c)=0$
- **2** For t = 1, ..., T
 - Choose a i from $1, \ldots, N$.
 - Ignore constraints and perform a gradient-based update:

$$s_{i,c} = \mu_{i,c}^t + \eta(E_{i,c} - \mathbf{w}^t \delta \mathbf{f}_i(\mathbf{y}_c))$$

where $\mathbf{w}^t = \sum_{i,c,\mathbf{y}_c} \mu_{i,c}^t(\mathbf{y}_c) \delta \mathbf{f}_{i,c}(\mathbf{y}_c)$

3 Define a distribution α by exponentiating the updates:

$$\alpha_i(\mathbf{y})^{t+1} = \frac{1}{Z} \exp(\sum_c s_{i,c}(\mathbf{y}_c))$$

where $Z = \sum_{\mathbf{y}} \exp(\sum_{c} s_{i,c}(\mathbf{y}_{c}))$

1 New feasible values are marginals of α

$$\mu_{i,c}^{t+1}(\mathbf{y}_c) = \sum_{\mathbf{y} \sim \mathbf{y}_c} \alpha_i(\mathbf{y})^{t+1}$$

Theorem

$$J(\alpha^{t+1}) - J(\alpha^t) \ge \frac{1}{\eta} KL(\alpha^t, \alpha^{t+1})$$
 where $\eta \le \frac{1}{nR^2}$ where $R = \max \delta \mathbf{f}_i(\mathbf{y}) \delta \mathbf{f}_j(\mathbf{y}')$

Theorem

$$J(\alpha^{t+1}) - J(\alpha^t) \ge \frac{1}{\eta} KL(\alpha^t, \alpha^{t+1})$$
 where $\eta \le \frac{1}{nR^2}$ where $R = \max \delta \mathbf{f}_i(\mathbf{y}) \delta \mathbf{f}_j(\mathbf{y}')$

Theorem

Let $\alpha^* = dual$ optimal. Then at the Tth iteration.

$$J(\alpha^*) - \frac{1}{Tn} KL(\alpha^*; \alpha^0) \le J(\alpha^{T+1}) \le J(\alpha^*)$$

Theorem

$$J(\alpha^{t+1}) - J(\alpha^t) \ge \frac{1}{\eta} KL(\alpha^t, \alpha^{t+1})$$
 where $\eta \le \frac{1}{nR^2}$ where $R = \max \delta \mathbf{f}_i(\mathbf{y}) \delta \mathbf{f}_j(\mathbf{y}')$

Theorem

Let $\alpha^* = dual$ optimal. Then at the Tth iteration.

$$J(\alpha^*) - \frac{1}{Tn} KL(\alpha^*; \alpha^0) \le J(\alpha^{T+1}) \le J(\alpha^*)$$

Theorem

The number of iterations of the algorithm is at most $\frac{N^2}{2}R^2KL(\alpha^*;\alpha^0)$

Cutting plane method

- Exponentiated gradient approach requires computation of sum-marginals and decomposable losses.
- Cutting plane a more general approach that just requires MAP

Cutting-plane algorithm [TJHA05]

1: Initialize $\mathbf{w}^0 = \mathbf{0}$, Active constraints=Empty.

Cutting-plane algorithm [TJHA05]

```
1: Initialize \mathbf{w}^0 = \mathbf{0}, Active constraints=Empty.
 2: for t = 1 ... T do
          for \ell = 1 \dots N do
               \hat{\mathbf{y}} = \operatorname{argmax}_{\mathbf{v}}(E_{\ell}(\mathbf{y}) + \mathbf{w}^t \cdot \mathbf{f}(\mathbf{x}_{\ell}, \mathbf{y}))
 4:
               if \mathbf{w}^t \cdot \delta \mathbf{f}_{\ell}(\hat{\mathbf{y}}) < E_{\ell}(\hat{\mathbf{y}}) - \xi_{\ell}^t - \epsilon then
 5:
                   Add (\mathbf{x}_{\ell}, \hat{\mathbf{y}}) to set of active constraints.
 6:
                   \mathbf{w}^t, \xi^t=solve QP with active constraints.
 7:
               end if
 8:
          end for
 9:
           Exit if no new constraint added.
10:
11: end for
```

Efficient solution in the dual space

Solve QP in the dual space.

- Initially $\alpha_i^t(\mathbf{y}) = 0, \forall \mathbf{y} \neq \mathbf{y}_i, \alpha_i^t(\mathbf{y}_i) = \frac{C}{N}$
- ② For t = 1, ..., T
 - Choose a i from $1, \ldots, N$.
 - ② $\hat{\mathbf{y}} = \operatorname{argmax}_{\mathbf{y}}(E_{\ell}(\mathbf{y}) + \mathbf{w}^{t} \cdot \mathbf{f}(\mathbf{x}_{\ell}, \mathbf{y}))$ where $\mathbf{w}^{t} = \sum_{i, \mathbf{y}} \alpha_{i}(\mathbf{y}) \delta \mathbf{f}_{i}(\mathbf{y})$
 - $\alpha_i(\hat{\mathbf{y}}) = \hat{\mathbf{y}}$ coordinate with highest gradient.
 - **1** Optimize $J(\alpha)$ over set of **y**s in the active set (SMO applicable here).

Let $R^2 = \max \delta \mathbf{f}_i(\mathbf{y}) \delta \mathbf{f}_j(\mathbf{y}'), \Delta = \max_{i,\mathbf{y}} E_i(\mathbf{y})$

Theorem

$$J(\alpha^{t+1}) - J(\alpha^t) \ge \min(\frac{C\epsilon}{2N}, \frac{\epsilon^2}{8R^2})$$

Theorem

The number of constraints that the cutting plane algorithm adds is at most $\max(\frac{2N\Delta}{\epsilon}, \frac{8C\Delta R^2}{\epsilon^2})$

Single slack formulation [JFY09]

Theorem

The number of constraints that the cutting plane algorithm adds in the single slack formulation is at most $\max(\log \frac{C\Delta}{4R^2C^2}, \frac{16CR^2}{\epsilon})$

Summary

- Two very efficient algorithms for training structured models that avoids the problem of exponential output space.
- Other alternatives
 - Online training, example MIRA and Collins Trainer
 - Stochastic trainers: LARank.
 - Output
 Local training: SEARN
- Extension to Slack-scaling and other loss functions.

- Peter L. Bartlett, Michael Collins, Ben Taskar, and David McAllester.
 - Exponentiated gradient algorithms for large-margin structured classification.
 - In Lawrence K. Saul, Yair Weiss, and Léon Bottou, editors, *Advances in Neural Information Processing Systems 17*, pages 113–120. MIT Press, Cambridge, MA, 2005.
- Michael Collins, Amir Globerson, Terry Koo, Xavier Carreras, and Peter L. Bartlett.
 - Exponentiated gradient algorithms for conditional random fields and max-margin markov networks.
 - J. Mach. Learn. Res., 9:1775-1822, 2008.
- Thorsten Joachims, Thomas Finley, and Chun-Nam John Yu.
 - Cutting-plane training of structural svms.

Machine Learning, 77(1):27–59, 2009.

I. Tsochantaridis, T. Joachims, T. Hofmann, and Y. Altun.

Large margin methods for structured and interdependent output variables.

Journal of Machine Learning Research (JMLR), 6(Sep):1453–1484, 2005.

References