
Satisfiability of 2−CNF Formulae in Propositional Logic

February 18, 2007

Let φ be a 2−CNF formula in propositional logic, i.e. φ is a conjunction of clauses, with each clause having
at most two literals. We wish to determine if φ is satisfiable.
Clauses with exactly one literal represent unit literals and are easy to deal with. As discussed in class, we
must set all such literals to True in any satisfying assignment of φ. So we assign True to all unit literals and
simplify the formula φ. If the simplified formula has new unit literals, we assign True to them and continue
until all clauses in the final simplified formula have exactly two literals. It is not hard to see that the above
process must terminate in O(n.m) time, where n and m are the no. of propositions and no. of clauses,
respectively in the original 2−CNF formula φ.
In the following discussion, we will assume that the above simplification has been done, and so φ has exactly
two literals per clause.
In class, we discussed that each two-literal clause can be viewed as an implication, since (li∨ lj) is semantically
equivalent to (¬li → lj) as well as to (¬lj → li). Thus, we can view our formula φ as a conjunction of
implications, where two implications are obtained from each clause in the original 2−CNF formula.
We can now build an implication graph Gφ for Boolean Constraint Propagation (or BCP), as discussed in
class. Essentially, we build a graph, where there is a node for each literal (i.e. each proposition and its
negation). For each clause (li ∨ lj) in φ, we add two edges in this graph: one from the node representing ¬li
to the one representing lj , and the other from the node representing ¬lj to the one representing li. Note that
it is important that both these edges be drawn for each clause.
The graph Gφ may have cycles in general. If there is a cycle C such that for some literal lk, the nodes
corresponding to both lk and ¬lk are present in C, we will call C an inconsistent cycle. Note also that
whenever there is an edge from li to lj in Gφ, there must also be an edge from ¬lj to ¬li. Thus, if there is a
path from lr to ls in Gφ, then there also exists a path from ¬ls to ¬lr in Gφ, in which each node corresponds
to the negation of the corresponding node on the path from lr to ls. We will call this the reversible negated
paths property.
Theorem: A 2−CNF formula φ is unsatisfiable if and only if there is an inconsistent
cycle in Gφ.
Proof: [If part:] Let there be an inconsistent cycle C in Gφ. Let lC be a literal such that the nodes corresponding
to both lC and ¬lC are present in C (since C is inconsistent, there must exist at least one such literal). We
will now show that φ is unsatisfiable using proof by contraditction.

Assume for the time being that φ is satisfiable, and let A be a satisfying assignment of φ, i.e. an assignment
of truth values to all propositions in φ that makes φ evaluate to True. Since φ evaluates to true, each clause in
φ evaluates to true with assignment A. Thus, the implication corresponding to each edge in the inconsistent
cycle C evaluates to True with assignment A. Suppose assignment A sets lC to True and ¬lC to False. Since all
implications corresponding to edges in C are satisfied by assignment A, and since the node corresponding to
lC is in the cycle C, the literals corresponding to all nodes in C must be set to True by assignment A. However,
we know that ¬lC is in cycle C, and the assignment A sets ¬lC to False. Hence, we have a contradiction.
If assignment A had set lC to False and ¬lC to True, we arrive at a contradiction using the same reasoning.
Therefore, our assumption must be wrong, i.e., φ is not satisfiable, and there doesn’t exist any satisfying
assignment A of φ.

1



[Only if part:] In this part, we will show that if Gφ has no inconsistent cycles, then we can use the following
algorithm to derive a satisfying assignment of φ from Gφ.

1. GetSatisfyingAssignment(Gφ)
2. Let X = Set of literals li such that there is a path from ¬li to li in Gφ

3.
4. Insert new nodes > and ⊥ in Gφ;
5. Add an edge from > to every node in X;
6. Add an edge from every node in X to ⊥;
7. TrueNode := >;
8. while (TrueNode != ⊥)
9. Set all literals reachable (in Gφ) from TrueNode to True;

10. Set negations of above literals to False;
11. if (all literals not assigned truth value)
12. TrueNode := randomly chosen unassigned literal;
13. else
14. TrueNode := ⊥;

It is not hard to see that when the while loop terminates, all literals are assigned truth values. We now claim
that as the algorithm proceeds, it is never the case that the graph Gφ has an edge from a literal assigned
True to a literal assigned False. Thus, the assignment of truth values to literals given by the above algorithm
satisfies all implications represented by the edges of Gφ, and hence satisfies the formula φ.
In the above algorithm, if a literal l ∈ X, then there exists a path from ¬l to l in Gφ. This means that ¬l → l
must be satisfied in any satisfying assignment of φ. This is possible only if l is set to True in the satisfying
assignment. Thus, all literals in X must be assigned True and their negations assigned False in any satisfying
assignment of φ. This fact is captured by introducing the implications (> → l) and (¬l → ⊥) for each l in X.
Thus, in the graph, we introduce the nodes > and ⊥ (representing the logical formulae > and ⊥ respectively),
and insert edges from > to every l ∈ X, and from every l ∈ X to ⊥. Note that if we regard the node ⊥ as
¬>, the reversible negated paths property of Gφ is preserved even after adding these edges.
The variable TrueNode represents a literal (or the formula > in the very first iteration of the while loop)
that can be assigned True to get a satisfying assignment of φ.
The step that sets all literals reachable from TrueNode to True essentially captures the fact that for an
implication to be satisfied, whenever the antecedent is True, the consequent must be True as well.
So how do we show that there is never an edge from a literal assigned True to a literal assigned False? We
show this by contradiction.
As the algorithm executes, suppose an edge of the above type appears for the first time when TrueNode is
some literal li. Let this edge be from literal lj to lk, where lj has been set to True and lk to False. From the
reversible negated paths property of Gφ, there must also be an edge from ¬lk to ¬lj as well, where ¬lk is set
to True and ¬lj to False.
It is clear from the above algorithm that the only way that a literal can be set to True is if there is a path to
the literal from li (the current TrueNode) or from a literal (or the formula >) that was TrueNode prior to li.
Since this is the first time that an edge from True to False appears in the graph, there must be a path from
li (current TrueNode) to at least one of lj and ¬lk. Without loss of generality, suppose there is a path from
li to lj , and a path from lh to ¬lk, where lh is either li or some literal (or >) that was TrueNode prior to li
(this is the only way that a literal can be assigned True by the above algorithm). By the reversible negated
paths property of Gφ, we can now infer that there exists a path from ¬lj to ¬li, and a path from lk to ¬lh.
It follows immediately that Gφ has a path from li to ¬lh and a path from lh to ¬li.
Recall that both lh and li are TrueNodes at some time during the execution of the algorithm. We now consider
the different possibilities of lh and li.

• Suppose li 6= >. If lh = li, then the existence of a path from li to ¬lh = ¬li must put ¬li in the set X at
the start of the algorithm. Therefore, li can never become a TrueNode, contradicting our assumption

2



that li is the current TrueNode. If lh 6= li, then since li is the current TrueNode, lh must have been
TrueNode prior to li. But then the existence of a path from lh to ¬li would have set ¬li to True and
hence li to False, when considering literals reachable from lh. In this case too, li could not have been
the current TrueNode.

• Suppose li = >. Since > is the very first TrueNode in the above algorithm, we must have lh = li = >.
The paths from li to ¬lh and from lh to ¬li are therefore paths in Gφ from > to ⊥. Let the first edge
in the path from li to ¬lh be from > to lr, and the last edge in this path be from ls to ⊥. Therefore,
the first edge in the path from lh to ¬li must be from > to ¬ls, and the last edge in this path must be
from ¬lr to ⊥. From the way edges are added to and from > and ⊥ at the beginning of the algorithm,
we can now infer that there must be a path from ¬lr to lr and similarly, there must be a path from ls
to ¬ls. However, this gives rise to a path from lr to ls, continuing through ¬ls and ¬lr, back to lr. This
is an inconsistent cycle, since it contains both lr and ¬lr. This violates our assumption that there are
no inconsistent cycles in Gφ.

This establishes the validity of the theorem we mentioned earlier. Note that the above algorithm is required
only to find a satisfying assignment of φ in case there are no inconsistent cycles. However, the satisfiability
question can be answered simply by checking for inconsistent cycles.
Given a graph, the set of cycles (strongly connected components) in the graph can be computed in O(n2) time
using Tarjan’s algorithm, where n is the no. of propositions (giving rise to 2n nodes in the graph). Once these
are computed, all we need to do is to check whether any cycle contains both a literal and its complement.

3


