
CS206 End-Semester Examination

Max marks: 50 Time: 3 hours

• Please attach all your rough sheets.

• Be brief, complete and stick to what has been asked.

• Unless asked for explicitly, you may cite results/proofs covered in class without reproducing them.

• If you need to make any assumptions, state them clearly.

• Do not copy solutions from others. Penalty for offenders: FR grade.

1. [7.5 + 7.5 marks] Give proofs in natural deduction (within the number of steps specified) for each of
the following sequents. Each step should be either a premise or an application of a natural deduction
rule. Also indicate which rule you are applying at each step.

(a) ∃y∀x¬(f(x) = y) ` ∃x∃y ¬(x = y) (within 10 steps)

(b) ∀x¬(f(x) = x), ∀x∀y∀z (x = y) ∨ (y = z) ∨ (x = z) ` ∃x∃y (f(x) = y) ∧ (f(y) = x) (within 15
steps)

2. [7.5 + 7.5 marks] In this question, you will be given a pair of formulae, one in LTL and the other in
CTL. You are required to give two Kripke structures K1,K2, each containing no more than 5 states, for
every pair of formulae (φLTL, φCTL). Your Kripke structures should be such if s1 represents the initial
state of K1 and s2 represents the initial state of K2, then the following holds:

• K1, s1 |= φLTL but K1, s1 6|= φCTL.

• K2, s2 |= φLTL and K2, s2 |= φCTL.

For each Kripke structure, you may draw the state transition diagram and label each state with the
propositions that are true in each state. You must also indicate the starting state of each Kripke
structure. The set of atomic propositions for all subquestions is AP = {p, q}. The universal path
quantifier A is assumed to be present before all LTL formulae.

(a) φLTL: G(p → q), φCTL: AF(p ∧ q).

(b) φLTL: F(p ∧Gq), φCTL: AF(p ∧AGq).

3. [5 + 5 marks] If a first order logic sentence (i.e. formula without free variables) φ has a binary predicate
E(x, y) and no other predicates or functions, every model M of φ can be interpretted as a directed
graph GM . In particular, the domain (or universe) of M represents the set of nodes in GM , and the
edge relation in GM is given by the interpretation of predicate E in model M , i.e. if E(x, y) is True in
M , a directed edge exists in GM from the node corresponding to x to that corresponding to y.

Given a directed graph G, a clique is a subgraph C such that there is a directed edge in G between
every ordered pair of nodes in C. A clique is said to be maximal if there is no vertex outside the clique
that has an edge to and from all vertices in the clique. Two cliques are said to be disconnected if there
is no edge from any vertex in one clique to any vertex in the other.

We wish to know if there exists a first order logic sentence φ that uses only the binary predicate E in
addition to the equality predicate, such that:

1

(a) M |= φ if and only if GM has exactly two maximal disconnected cliques.
If you think such a formula exists, write the formula and provide some (informal) justifcation of
why you think your answer is correct. Otherwise, prove that such a first-order logic formula doesn’t
exist.

(b) If M |= φ, then GM has exactly two maximal cliques, not necessarily disconnected.
If you think such a formula exists, write the formula and provide some (informal) justifcation of
why you think your answer is correct. Otherwise, prove that such a first-order logic formula doesn’t
exist.

4. [10 marks] In class, we discussed how to convert non-CNF propositional logic formulae to equisatisfiable,
but not semantically equivalent CNF formulae in linear time. In this question, we wish to convert non-
CNF propositional logic formulae to semantically equivalent CNF formulae using a propositional SAT
solver. Towards this goal, we are allowed to use the following functions.

• For any propositional logic formula φ (not necessarily in CNF), function EquiSAT(φ) computes a
CNF formula ξ equisatisfiable to φ in time linear in the size of φ, as discussed in class. EquiSAT(φ)
returns the set of clauses of the resulting formula ξ. Recall from our discussion in class that clauses
in EquiSAT(φ) may have additional propositions beyond those used in φ.
As an example, if φ = ¬(q ∧ r), EquiSAT(φ) returns the set {¬t1 ∨ q,¬t1 ∨ r,¬q ∨ ¬r ∨ t1,¬t2 ∨
¬t1, t1 ∨ t2}, where t1 and t2 are the new propositions.

• For a given set of clauses C, function PropSAT(C) return a set µ of literals such that: (i) if µ is
non-empty, then setting all literals in µ to True causes every clause in C to evaluate to True, and
(ii) if µ is empty, then there is no assignment of truth values to literals appearing in C that causes
every clause in C to evaluate to True.
As an example, PropSAT({p ∨ q,¬p ∨ r}) can return µ = {p, r} or µ = {¬p, q}, etc.

• For a given set of literals S and a propositional logic formula φ, function Filter(S, φ) returns
the (possibly empty) set of literals obtained by removes all literals in S that do not correspond to
propositions in φ.
As an example, if S = {t2,¬t1,¬q, r} and φ = ¬(q∧ r), then Filter(S, φ) returns the singleton set
{¬q, r}.

• For a given set of literals S, function NegateSet(S) returns the set of literals obtained by negating
each literal in S.
As an example, if S = {t2,¬t1,¬q, r}, NegateSet(S) returns {¬t2, t1, q,¬r}.

• For a given set of literals S, function Clausify(S) returns a singleton set containing a clause
obtained by disjuncting all literals in S.
As an example, if S = {t2,¬t1,¬q, r}, Clausify(S) returns the singleton set {t2 ∨ ¬t1 ∨ ¬q ∨ r}.

You are required to use the above functions to fill in the blank and at most 7 lines of pseudocode in the
template below to convert a formula φ to a set of clauses result, such that conjuncting all clauses in
result gives a CNF formula semantically equivalent to φ.

• The blank must be filled with a propositional logic formula.

• In each line of pseudo-code, you are allowed to invoke atmost one of the above functions, or perform
some set operation like ∪, ∩, set complementation, set difference, etc.

• You may introduce at most two new program variables (like result, curr formula etc) in the
part of the pseudocode that you write.

Violating these restrictions will lead to deduction of marks.

function CNFize(phi) {
result := empty_set;

2

curr_formula := ___________;
curr_clause_set := EquiSAT(curr_formula);
do {
mu := PropSAT(curr_clause_set);

/* Fill in at most 7 lines of pseudocode here */

} while (mu != empty_set);
return(result);

}

3

