
CS206 Homework #1

Max marks: 75 Due Feb 7, 2006

• Be brief, complete and stick to what has been asked.

• Do not copy solutions from others.

1. [5 + 10 + 10 marks] In this question, we will reason about a proof system for propositional logic
assuming that the only propositional connective is → , and that the only propositional constant is ⊥.
For example, if x, y, z are propositional variables, then (x→ (y → ⊥)) → (⊥ → z) is a propositional
logic formula using only the allowed connective and constant.

(a) Let φ1 and φ2 be propositional logic formulae using → as the only connective and ⊥ as the only
constant. Give semantically equivalent formulae for φ1 ∧ φ2 and ¬φ1, such that → is the only
connective and ⊥ is the only constant in the resulting formulae. You must give justification for
your claim of semantic equivalence.

(b) Your solution to the previous subquestion should convince you that any propositional logic
formula can be converted to a semantically equivalent one using only → and ⊥. A student now
claims that it is possible to prove sequents in this version of propositional logic (with → as the
only connective and ⊥ as the only constant) using rules → i, → e, ⊥e of the natural deduction
system studied in class, in addition to the following special rule, called (→ ⊥)e rule:

(→ ⊥)e :
(φ→⊥)→ψ, φ→ ζ, ψ→ ζ

ζ

Using only the above four rules, prove the following sequent:
(φ→ ⊥) → ψ, φ→ ζ ` (ψ → ⊥) → ζ

(c) Do you think a proof system with only the above four rules, i.e. →i, →e, ⊥e and (→ ⊥)e, is
complete for the version of propositional logic that uses → as the only binary connective and ⊥
as the only constant? In other words, given two formulas φ and ψ, each involving only → and
⊥, such that φ |= ψ, is it always possible to prove the sequent φ ` ψ using only the above four
rules? Answers without justification will fetch zero marks.

2. [10 + 10 + 10 marks] Use natural deduction to prove the following sequents. You must use only the
basic rules of natural deduction (no derived rules, including LEM, are allowed). Your proof using
the basic rules must not exceed the number of steps mentioned alongside each sequent. The number
of steps includes the statement of the premises. You must also annotate each step of your proof with
the basic rule applied at that step.

(a) φ ∨ ψ, ¬φ ∨ ψ ` ψ [within 15 basic steps].
This rule is also popularly known among logicians as the “Resolution Rule”.

(b) φ ∨ ψ, ¬(φ ∧ ψ) ` (φ ∧ ¬ψ) ∨ (ψ ∧ ¬φ) [within 19 basic steps]

(c) ¬(φ ∧ ¬ψ), ¬(ψ ∨ ¬φ) ` φ ∧ ψ [within 16 basic steps]
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3. [20 marks] In this question, we wish to investigate how to build a naive automated propositional
prover. Given a set of formulae {ψ1, . . . , ψn, φ}, our prover’s task is to either show that ψ1, . . . , ψn ` ψ
or demonstrate that ψ1, . . . , ψn 6|= ψ

Let P = {p1, . . . pk} be the set of propositions in {ψ1, . . . ψn, φ}. Let O = {∨,∧,¬,→ , (, )} be the set
of symbols representing operators and connectives in propositional logic. We will assume that P is
disjoint from O, and does not contain any numeral, i.e. symbol in {0, . . . 9}, nor any symbol in { #,
[, ]} (which we will soon need for special purposes).

Every propositional logic formula over P is a concatenation of symbols, or string, from P ∪ O,
constructed according to the syntax studied in class. A possible proof, as studied in class, is a
sequence of propositional logic formulae along with some annotations. For purposes of this question,
we will assume that each formula φ in the proof is annotated as follows:
## num0 # opt [ φ opt ] # rule num # num1 # ... # numk ##
In the above annotated formula, num0 is a non-negative integer used to refer to the current formula
φ, opt [ is an optional [ denoting the start of scope of an assumption, and opt ] is an optional ]
denoting the end of scope of the last assumption whose scope is not yet closed. We assume that
the small set of natural deduction rules (and-introduction, or-elimination, etc.) studied in class are
indexed, so that we can refer to a rule by its rule number. Rule numbers are assumed to start from 1.
In the annotated formula, rule num is a number indicating which rule is used to infer φ, and num1,
... numk are numbers used to refer to other formulae from which the current formula φ is obtained
by application of rule rule num . If φ is a premise or an assumption, we use the special rule number
0, i.e. rule num = 0, without any num1, ... numk. Note that every annotated formula begins and
ends with ##, and the various parts of the annotation and the formula itself are separated from each
other by #. Such a format makes it easy to write a parser that can separate the different parts of an
annotated formula.

Using the above notation, a potential proof is a string over P ∪O∪{0, . . . 9}∪{ [,], #}. Of course,
not every string over P ∪O∪{0, . . . 9}∪{ [,], #} constitutes a valid natural deduction proof. There
are additional checks to be made (and you must figure these out) before a string w can be considered
a valid natural deduction proof of ψ1, . . . ψn ` φ.

As examples, the following is a valid natural deduction proof of a ` b→ a, where the set of propo-
sitions is P = {a, b}, rule 1 is the copy rule (i.e. any formula that is not within a closed box can be
copied), and rule 5 is the implication introduction rule:
## 10 # a # 0 ## 2 # [ b # 0 ## 5 # a ] # 1 # 10 ## 6 # b -> a # 5 # 2 # 5 ##
However, the following is not a valid proof in natural deduction.
## 10 # a # 0 ## 2 # b -> a # 5 # 10 ##

In building our naive automated prover, we are allowed to use a library of functions, with the following
descriptions.

(a) Functions InitGenerateString() and GenerateNextString(): None of these functions take
any argument. Successive invokations of GenerateNextString() generate the strings over
P ∪O∪{0, . . . 9}∪{ [,], #} in lexicographic order. Each invokation of GenerateNextString()
returns a string that is lexicographically next to the string generated by the last invoka-
tion of GenerateNextString(). The first invokation of GenerateNextString() after invoking
InitGenerateString() returns the lexicographically first string over P ∪O∪{0, . . . 9}∪{ [,],
#}.

(b) Function CheckSyntax(w): Takes a string, w, over P ∪O ∪ {0, . . . 9} ∪ { [,], #} as input, and
outputs True if w is the concatenation of one or more annotated propositional logic formulae,
and False otherwise.
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(c) Function PropSATSolve(r, f1, ... fr): Takes a positive integer r, and r formulae f1, . . . fr

as inputs and returns an empty set if the conjunction of the fi’s is unsatisfiable. Otherwise,
it returns a set of pairs {(p, tp) | p is a proposition in f, tp ∈ {True,False}} giving a satisfying
assignment of the conjunction of the fi’s.

(d) Function GeneratePremises(r, f1, ... fr): Takes a positive integer r, and r formulae
f1, . . . fr as inputs and returns the string ## 1 # f1 # 0 ## 2 # f2 # 0 ... ## r # fr #
0 ##. Note that this string is a valid (though useless) proof in natural deduction containing only
the premises (recall that rule num = 0 means that the formula is a premise or assumption).

(e) Function Concatenate(w1, w2): Takes two strings w1 and w2 over P ∪O ∪ {0, . . . 9} ∪ { [,],
#} and returns the string w1w2 obtained by concatenating w2 to w1.

(f) Function IsEmptySet(S): Takes a set S as input, and returns True if the set is empty, else it
returns False.

(g) Function Parse(w): Takes a string, w, over P ∪O ∪ {0, . . . 9} ∪ { [,], #} as input and parses
it. It returns 0 if CheckSyntax(w) returns False. Otherwise, it returns the number of annotated
formulae in w. In the latter case, Parse(w) also has the side effect of filling in seven global
arrays, RefNum, OpenAssume, Form, CloseAssume, Rule, AntecNum and Antec as follows. If ##
num0 # opt [ f opt ] # rule num # num1 # ... # numk ## is the ith annotated formula
in w, then num0 is stored in RefNum[i], f in Form[i], rule num in Rule[i], k in AntecNum[i],
and an array of k integers in Antec[i]. For j ∈ {1, . . . k}, the number numj is stored as the jth

integer in array Antec[i], i.e. Antec[i][j] = numj. All the arrays are assumed to be indexed
from 1 upwards. In addition, if the optional [ is present before f , OpenAssume[i] is set to True,
else it is set to False. Similarly, if the optional ] is present after f , CloseAssume[i] is set to
True, else it is set to False.

(h) Function CheckRule(i): Takes a non-negative index i, and returns True if the formula in
Form[i] is indeed obtained by applying Rule[i] to the AntecNum[i] formulae with reference
numbers Antec[i][1] ... Antec[i][AntecNum[i]]. Otherwise, it returns False.

Using the above library of functions, describe in C-style pseudocode how you would design an auto-
mated propositional prover that takes as input a set of propositional logic formulae {ψ1, . . . ψn, φ}
and constructs a proof of ψ1, . . . ψn ` φ using natural deduction, if such a proof exists. Otherwise,
it returns an assignment of True/False values to the propositions in {ψ1, . . . ψn, φ} that demonstrate
the impossibility of a proof of ψ1, . . . ψn ` φ
Briefly justify why your pseudocode gives the correct answer for any set of formulae {ψ1, . . . ψn, φ},
with at least one premise formula ψ1 and one inferred formula φ.
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