
CS206 Mid-Semster Examination

Max marks: 50 Time: 3 hours

• Be brief, complete and stick to what has been asked.

• If needed, you may cite results/proofs covered in class without reproducing them.

• If you need to make any assumptions, state them clearly.

• Do not copy solutions from others or indulge in unfair means.

1. [10 + 10 marks] In this question, we wish to use a propositional satisfiability solver (henceforth, called a SAT
solver) to help us win a board game, whenever possible. The game is as described below.

We have a 3 × 3 board, divided into 9 squares as shown in Figure 1. In this figure, squares on the board are
numbered (0, 0) through (2, 2). The game is to be played between you and an opponent. You are required to
insert A’s in the squares of the board, and your opponent must insert B’s, one at a time, and in alternation.

(0,0) (0,1) (0,2)
(1,0) (1,1) (1,2)
(2,0) (2,1) (2,2)

Figure 1:

Suppose you start the game by first inserting an A in one of the 9 squares. Your opponent then inserts a B in
one of the remaining 8 squares. You are now allowed to insert an A only in those remaining squares that cannot
be reached by a diagonal from the square in which a B has been placed by your opponent. If you cannot find
such an empty square, you lose the game. Otherwise, you can insert an A in an empty square not reachable
along a diagonal from the square containing B. Your opponent then inserts a B in one of the remaining 6
squares, and you are again required to insert an A in one of the remaining 5 squares that cannot be reached
along a diagonal from any of the squares containing B. If you can find such a square and insert the third A
in that square, you win the game. Otherwise, you lose the game. Thus, if you start the game, your goal at
each step is to insert an A in one of the unfilled squares that is not reachable along a diagonal from any of the
squares already containing a B. You win the game in this case if you can insert three A’s in this way.

If your opponent starts the game, however, by first filling in a B in one of the 9 squares, then your goal at each
step is to insert an A in one of the unfilled squares such that your opponent eventually can’t insert three B’s,
none of which are reachable along a diagonal from previously inserted A’s. In this case, you win the game, if
you can prevent the opponent from inserting three B’s.

We wish to solve the problem of determining your move in the above board game using propositional logic.
For this purpose, we will use 27 propositions named ai,j and bi,j and mi,j , where i, j ∈ {0, 1, 2}. We wish to
associate the following meanings with these propositions:

• ai,j is True iff an A has already been inserted in the ith row and jth column of the board in an earlier step.

• bi,j is True iff your opponent has already inserted a B in the ith row and jth column of the board in an
earlier move.

• If mi,j is True, then in the current move, you can place an A in the ith row and jth column to eventually
win the game.

(a) Give a propositional logic formula, φ1 using the above propositions such that if you start the game, and
wish to determine a move that will eventually lead you to a win (for all possible moves of the opponent),
you can use the following procedure.

• Simplify φ1 by assigning True and False values for ai,j and bi,j for depending on previous moves made
by you and the opponent.
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• Feed the simplified formula to a SAT solver
• If the SAT solver returns a satisfying assignment, you place an A in the (i, j)th square, if mi,j is set to

True in the satisfying assignment. Note that there could be several choices of (i, j) from the satisfying
assignment, and you can pick one at random.

• If the SAT solver says that the simplified formula is unsatisfiable, then you give up and declare yourself
to be a loser.

(b) Using only the above propositions, is it possible to give a propositional logic formula, φ2 that is to be
used exactly as in the previous subquestion to determine a move that will eventually lead you to a win,
but only if your opponent starts the game. Give justification if your answer is in the negative. Otherwise,
describe how would obtain the required formula φ2.

2. [10 marks] You are given (i) a set of propositional clauses C = {C1, C2, . . . Cr} on the propositions {p1, . . . pn},
and (ii) a fraction f such that 0 ≤ f ≤ 0.5.

Design an algorithm that takes the above two inputs and returns YES if there is at least one assignment of
truth values to {p1, . . . pn} that makes f.r or more clauses in C evaluate to True. The algorithm must return
NO if there no such assignment of truth values to {p1, . . . pn}.
Your algorithm must have no more than O(n) complexity, where n is the number of distinct propositions.

3. [10 marks] Let C = {C1, C2, . . . Cr} be a set of propositional clauses on the propositions {p1, . . . pn}. Let φC
denote the CNF formula

∧r
i=1 Ci.

You are given an algorithm RandSAT that takes as argument a set C of propositional clauses, and returns a
randomly chosen satisfying assignment of φC , if φC is satisfiable. Otherwise, RandSAT prints out NOT POSSIBLE.
Since the satisfying assignment returned by RandSAT is random, two invokations to RandSAT with the same set
C of propositional clauses can potentially return two different satisfying assignments of φC , if φC is satisfiable.

Given C, we now wish to use RandSAT as a black-box to check whether there are at least four satisfying
assignments of φC that differ only in the truth assignments of propositions p1 and p2.

Describe (in pseudo-code form) how you would design such an algorithm that invokes RandSAT exactly once
and uses its return value to answer the above question.

4. [2.5 × 4 marks] In this question, we wish to express statements about a directed acyclic graph (DAG) using
predicate logic. Thus, our domain (or universe) is the set of all nodes in a DAG.

Consider the following predicates and their interpretations

Predicate Arity Evaluates to True iff ...
Edge(x, y) 2 there is a directed edge from x to y
Path(x, y) 3 there is a directed path of at least one edge from x to y

Using the above predicates, express the following properties about DAGs in predicate logic.

(a) Whenever there is a path from one node to another, there is at least one edge along the path.

(b) There is a node that is part of two distinct cycles, one of which has exactly two nodes on it.

(c) There are no more than five rooted trees in the DAG.

(d) The DAG is a rooted tree.
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