Regular Languages: Regular Expressions and Finite Automata

Ashutosh Trivedi

CS208: Automata Theory and Logic

Department of Computer Science & Engineering, IIT Bombay.
(22nd January, 2013)
What are Regular Languages?

- A **language** is a set of strings over some **alphabet**
- An alphabet $\Sigma = \{a, b, c\}$ is a **finite** set of letters,
- Σ^* is the set of all strings over Σ, e.g. $aabbaa \in \Sigma^*$,
- A language L over Σ is then a subset of Σ^*,
 - $L_{\text{even}} = \{w \in \Sigma^* : w \text{ is of even length}\}$
 - $L_{a^*b^*} = \{w \in \Sigma^* : w \text{ is of the form } a^n b^m \text{ for } n, m \geq 0\}$
 - $L_{a^n b^n} = \{w \in \Sigma^* : w \text{ is of the form } a^n b^n \text{ for } n \geq 0\}$
 - $L_{\text{prime}} = \{w \in \Sigma^* : w \text{ has a prime number of } a\text{'s}\}$
- **Deterministic and Nondeterministic Finite automata** define languages that require finite resources (states) to recognize.
What are Regular Languages?

- A language is a set of strings over some alphabet
- An alphabet \(\Sigma = \{a, b, c\} \) is a finite set of letters,
- \(\Sigma^* \) is the set of all strings over \(\Sigma \), e.g. \(aabbaa \in \Sigma^* \),
- A language \(L \) over \(\Sigma \) is then a subset of \(\Sigma^* \),
 - \(L_{\text{even}} = \{ w \in \Sigma^* : w \text{ is of even length} \} \)
 - \(L_{ab^*} = \{ w \in \Sigma^* : w \text{ is of the form } a^n b^m \text{ for } n, m \geq 0 \} \)
 - \(L_{a^n b^n} = \{ w \in \Sigma^* : w \text{ is of the form } a^n b^n \text{ for } n \geq 0 \} \)
 - \(L_{\text{prime}} = \{ w \in \Sigma^* : w \text{ has a prime number of } a's \} \)
- Deterministic and Nondeterministic Finite automata define languages that require finite resources (states) to recognize.

Definition (Regular Languages)

We call a language regular if it can be accepted by a finite automaton.

Examples!
Why they are “Regular”

A number of widely different and equi-expressive formalisms precisely capture the same class of languages:

- Deterministic finite state automata
- Nondeterministic finite state automata (also with ε-transitions)
- Kleene’s regular expressions, also appeared as Type-3 languages in Chomsky’s hierarchy [Cho59].
- Monadic second-order logic definable languages [B60, Elg61, Tra62]
- Certain Algebraic connection (acceptability via finite semi-group) [RS59]
A number of widely different and equi-expressive formalisms precisely capture the same class of languages:

- Deterministic finite state automata
- Nondeterministic finite state automata (also with ε-transitions)
- Kleene’s regular expressions, also appeared as Type-3 languages in Chomsky’s hierarchy [Cho59].
- Monadic second-order logic definable languages [Bö60, Elg61, Tra62]
- Certain Algebraic connection (acceptability via finite semi-group) [RS59]

We have already seen that:

Theorem (DFA=NFA=\varepsilon-NFA)

A language is accepted by a deterministic finite automaton if and only if it is accepted by a non-deterministic finite automaton.
Why they are “Regular”

- A number of widely different and equi-expressive formalisms precisely capture the same class of languages:
 - Deterministic finite state automata
 - Nondeterministic finite state automata (also with ε-transitions)
 - Kleene’s regular expressions, also appeared as Type-3 languages in Chomsky’s hierarchy [Cho59].
 - Monadic second-order logic definable languages [B60, Elg61, Tra62]
 - Certain Algebraic connection (acceptability via finite semi-group) [RS59]

We have already seen that:

Theorem (DFA=\(\varepsilon\)-NFA)

A language is accepted by a deterministic finite automaton if and only if it is accepted by a non-deterministic finite automaton.

In this lecture we introduce Regular Expressions, and prove:

Theorem (REGEX=DFA)

A language is accepted by a deterministic finite automaton if and only if it is accepted by a regular expression.
Why they are “Regular”

A number of widely different and equi-expressive formalisms precisely capture the same class of languages:
- Deterministic finite state automata
- Nondeterministic finite state automata (also with ε-transitions)
- Kleene’s regular expressions, also appeared as Type-3 languages in Chomsky’s hierarchy [Cho59].
- Monadic second-order logic definable languages [B60, Elg61, Tra62]
- Certain Algebraic connection (acceptability via finite semi-group) [RS59]

We have already seen that:

Theorem (DFA=\equiv NFA=\equiv \varepsilon-NFA)

A language is accepted by a deterministic finite automaton if and only if it is accepted by a non-deterministic finite automaton.

In this lecture we introduce Regular Expressions, and prove:

Theorem (REGEX= DFA)

A language is accepted by a deterministic finite automaton if and only if it is accepted by a regular expression.

It will be totally exciting if this course can cover MSO-logic connection!
Regular Expressions (RegEx)

- textual (declarative) way to represent regular languages (compare automata)
- UNIX-based OS users will already be familiar with these expressions
 - `ls *DVDRIP*.avi`
 - `rm -rf *.*`
 - `grep automat* /usr/share/dict/words`
- Also used in AWK, expr, Emacs and vi searches,
- Lexical analysis tools like `flex` use it for defining tokens

Some useful String-set operations:

- **union**
 \[L \cup M \text{ def } = \{ w : w \in L \text{ or } w \in M \} \]

- **concatenation**
 \[L \cdot M \text{ def } = \{ u \cdot v : u \in L \text{ and } v \in M \} \]

- Self-concatenation
 \[L^2 \text{ def } = L \cdot L \text{, similarly } L^3, L^4, \ldots \]
 \[L^0 \text{ def } = \{ \varepsilon \} \]

- **closure**
 \[L^* \text{ def } = \bigcup_{i \geq 0} L^i \]

Examples

- \(L = \{ \varepsilon \} \)
- \(L = \{ 0, 1 \} \)
Regular Expressions (RegEx)

- textual (declarative) way to represent regular languages (compare automata)
- UNIX-based OS users will already be familiar with these expressions
 - `ls *DVDRIP*.avi`
 - `rm -rf *.*`
 - `grep automat* /usr/share/dict/words`
- Also used in AWK, expr, Emacs and vi searches,
- Lexical analysis tools like `flex` use it for defining tokens
- Some useful String-set operations:
 - **union** \(L \cup M \overset{\text{def}}{=} \{ w : w \in L \text{ or } w \in M \} \)
 - **concatenation** \(L.M \overset{\text{def}}{=} \{ u.v : u \in L \text{ and } v \in M \} \)
 - **self-concatenation** let \(L^2 \overset{\text{def}}{=} L.L \), similarly \(L^3, L^4, \ldots \). Also \(L^0 \overset{\text{def}}{=} \{ \varepsilon \} \).
 - S. C. Kleene cite proposed notation \(L^* \) to denote closure of self-concatenation operation, i.e. \(L^* \overset{\text{def}}{=} \bigcup_{i \geq 0} L^i \).
 - Examples \(L = \{ \varepsilon \} \) and \(L = \{0, 1\} \)
For a regular expression E we write $L(E)$ for its language. The set of valid regular expressions RegEx can be defined recursively as the following:

- **(empty string)** $\varepsilon \in \text{RegEx}$ \quad $L(\varepsilon) = \{\varepsilon\}$
- **(empty set)** $\emptyset \in \text{RegEx}$ \quad $L(\emptyset) = \emptyset$
- **(single letter)** $a \in \text{RegEx}$ \quad $L(a) = \{a\}$
- **(variable)** $L \in \text{RegEx}$ where L is a language variable.
- **(union)** $E + F \in \text{RegEx}$ \quad $L(E + F) = L(E) \cup L(F)$
- **(concatenation)** $E.F \in \text{RegEx}$ \quad $L(E.F) = L(E).L(F)$
- **(Kleene Closure)** $E^* \in \text{RegEx}$ \quad $L(E^*) = (L(E))^*$
- **(Parenthethic Expression)** $(E) \in \text{RegEx}$ \quad $L((E)) = L(E)$.

Precedence Rules: $\ast > . > +$

Example: $01^* + 1^*0^* \overset{\text{def}}{=} (0.(1^*)) + ((1^*).(0^*))$
Finite Automata to Regular Expressions

Theorem

For every deterministic finite automaton A there exists a regular expression E_A such that $L(A) = L(E_A)$.

Proof.

- Let states of automaton A be $\{1, 2, \ldots, n\}$.
- Consider $R_{i,j}^{(k)}$ be the regular expression whose language is the set of labels of path from i to j without visiting any state with label larger than k.
- **(Basis):** $R_{i,j}^{(0)}$ collects labels of direct paths from i to j,
 - $R_{i,j}^{(0)} = a_1 + a_2 + \cdots + a_n$ if $\delta(i, a_k) = j$ for $1 \leq k \leq n$
 - if $i = j$ then it also includes ε.
- **(Induction):** Compute $R_{i,j}^{(k)}$ using $R_{i,j}^{(k-1)}$'s.
Computing $R_{ij}^{(k)}$ using $R_{ij}^{(k-1)}$
Finite Automata to Regular Expressions

Theorem

For every deterministic finite automaton A there exists a regular expression E_A such that $L(A) = L(E_A)$.

Proof.

- Let states of automaton A be $\{1, 2, \ldots, n\}$.
- Consider $R_{i,j}^{(k)}$ be the regular expression whose language is the set of labels of path from i to j without visiting any state with label larger than k.
- (Basis): $R_{i,j}^{(0)}$ collects labels of direct paths from i to j,

 $R_{i,j}^{(0)} = a_1 + a_2 + \cdots + a_n$ if $\delta(i, a_k) = j$ for $1 \leq k \leq n$

 if $i = j$ then it also includes ε.
- (Induction): Compute $R_{i,j}^{(k)}$ using $R_{i,j}^{(k-1)}$'s.

\[
R_{i,j}^{(k)} = R_{i,j}^{(k-1)} + R_{i,k}^{(k-1)}(R_{k,k}^{(k-1)})^* R_{k,j}^{(k-1)}.
\]

- E_A is $R_{i_0,f_1}^{(n)} + R_{i_0,f_2}^{(n)} + \cdots + R_{i_0,f_k}^{(n)}$.

A. Trivedi

Regular Languages
Alternative Method—Eliminating States

Shortcomings of previous reduction:

- The previous method works in all the settings, but is expensive (up to n^3 expressions, with a factor of 4 blowup in each step).
- For each i, j, i', j', both $R_{i,j}^{(k+1)}$ and $R_{i',j'}^{(k+1)}$ store expression $(R^{(k)}_{k,k})^\ast$. This duplication can be avoided.

Alternative (more intuitive) method:

- A “beast” in the middle: Finite automata with regular expressions
- Remove all states except final and initial states in an “intuitive” way.
- Trivial to write regular expressions for DFA with only two states: an initial and a final one.
- The regular expression is union of this construction for every final state.
- Example
Theorem

For every regular expression E there exists a deterministic finite automaton A_E such that $L(E) = L(A_E)$.

Proof.

- Via induction on the structure of the regular expressions we show a reduction to nondeterministic finite automata with ε-transitions.
- Result follows from the equivalence of such automata with DFA.
Regular Expressions to Finite Automata

Regular Languages
Regular Expressions to Finite Automata

Regular Languages
Syntactic Sugar for Regular Expressions in Unix

\[
\begin{align*}
[a_1a_2a_3 \ldots a_k] \quad & \text{for} \quad a_1 + a_2 + \cdots + a_k \\
. \quad & \text{for} \quad a + b + \cdots + z + A + \ldots \\
| \quad & \text{for} \quad + \\
R\{5\} \quad & \text{for} \quad RRRRR \\
R+ \quad & \text{for} \quad \cup_{i \geq 1} R\{i\} \\
R? \quad & \text{for} \quad \varepsilon + R
\end{align*}
\]

Also \([A-za-z0-9], [:digits:], \) etc.

Applications:
Check the man page of “grep” (regular expression based search tool) and “lex” (A tool to generate regular expressions based pattern matching tool) to learn more about regular expressions on UNIX based systems.
Algebraic Laws for Regular Expressions

Associativity:
- \(L + (M + N) = (L + M) + N \) and \(L.(M.N) = (L.M).N \).

Commutativity:
- \(L + M = M + L \). However, \(L.M \neq M.L \) in general.

Identity:
- \(\emptyset + L = L + \emptyset = L \) and \(\varepsilon.L = L.\varepsilon = L \)

Annihilator:
- \(\emptyset.L = L.\emptyset = \emptyset \)

Distributivity:
- left distributivity \(L.(M + N) = L.M + L.N \).
- right distributivity \((M + N).L = M.L + N.L \).

Idempotent \(L + L = L \).

Closure Laws:
- \((L^*)^* = L^* \), \(\emptyset^* = \varepsilon \), \(\varepsilon^* = \varepsilon \), \(L^+ = LL^* = L^*L \), and \(L^* = L^+ + \varepsilon \).

DeMorgan Type Law: \((L + M)^* = (L^*M^*)^* \)
Verifying laws for regular expressions

Theorem

- Let E be some regular expressions with variables $L_1 L_2, \ldots, L_m$.
- Let C be a regular expression where each L_i is concretized to some letters $a_1 a_2, \ldots a_m$.
- Then for any languages L_1, L_2, \ldots, L_m every string in w in $L(E)$ can be written as $w_1 w_2 \ldots w_k$ where w_i is in some language L_{j_i}. Then $a_{j_1} a_{j_2} \ldots a_{j_k}$ is in $L(C)$.
- In other words, the set $L(E)$ can be constructed by taking strings $a_{j_1} a_{j_2} \ldots a_{j_k}$ from $L(C)$ and replacing a_{j_i} with L_{j_i}.

Proof.

A simple induction over the structure of regular expression E. \qed
Proof of a concretized law carries over to abstract law.

Example

Prove that \((\varepsilon + L)^* = L^*\).

We can concretize the rule as \((\varepsilon + a)^* = a^*\). Let’s prove the concretized law, and we know that the result will carry over to the abstract law.

\[
(\varepsilon + a)^* = (\varepsilon . a^*)^* = (\varepsilon . a^*)^* = (a^*)^* = a^*.
\]

First equality holds since \((L + M)^* = (L^* . M^*)^*\). The second equality holds since \(\varepsilon^* = \varepsilon\). The third equality holds as \(\varepsilon\) is identity for concatenation, while the last equality follows from \((L^*)^* = L^*\).
Example

\[
\begin{array}{c|c|c|c|c|c|c|c|c}
0 & R_{1,1} & R_{1,2} & R_{1,3} & R_{2,1} & R_{2,2} & R_{2,3} & R_{3,1} & R_{3,2} & R_{3,3} \\
\hline
0 & 1 + \varepsilon & 0 & \emptyset & \emptyset & 0 + \varepsilon & 1 & \emptyset & 1 & 0 + \varepsilon \\
1 & 1^* & 1^*0 & \emptyset & \emptyset & 0 + \varepsilon & 1 & \emptyset & 1 & 0 + \varepsilon \\
2 & 1^* & 1^*00^* & 1^*00^*1 & \emptyset & 0^* & 0^*1 & \emptyset & 10^* & (0 + \varepsilon) + 10^*1 \\
\end{array}
\]

\[
R_{1,1}^{(1)} = R_{1,1}^{(0)} + R_{1,1}^{(0)}(R_{1,1}^{(0)})^* R_{1,1}^{(0)} \\
= (1 + \varepsilon) + (1 + \varepsilon)(1 + \varepsilon)^*(1 + \varepsilon) \\
= (1 + \varepsilon)\varepsilon + (1 + \varepsilon)(1 + \varepsilon)^*(1 + \varepsilon) \\
= (1 + \varepsilon)\varepsilon + (1 + \varepsilon)1^*(1 + \varepsilon) \\
= (1 + \varepsilon)(\varepsilon + 1^*(1 + \varepsilon)) = (1 + \varepsilon)(\varepsilon + 1^*1 + 1^*\varepsilon) \\
= (1 + \varepsilon)(\varepsilon + 1^+ + 1^*) = (1 + \varepsilon)(1^* + 1^*) = (1 + \varepsilon)1^* \\
= 11^* + 1^* = 1^+ + 1^* = 1^+ + 1^+ + \varepsilon = 1^+ + \varepsilon = 1^*.
\]
Example

\[R_{1,1}^{(3)} = R_{1,1}^{(2)} + R_{1,1}^{(3)}(R_{3,3}^{(2)})(R_{3,3}^{(2)}) \]

= \[1^*00*1 + 1^*00*1(0 + \varepsilon + 10^*1)(0 + \varepsilon + 10^*1) \]

= \[1^*00*1\varepsilon + 1^*00*1(0 + \varepsilon + 10^*1)(0 + \varepsilon + 10^*1) \]

= \[1^*00*1(\varepsilon + (0 + \varepsilon + 10^*1)(0 + \varepsilon + 10^*1)) \]

= \[1^*00*1(\varepsilon + (0 + 10^*1)(0 + \varepsilon + 10^*1)) \]

= \[1^*00*1(\varepsilon + (0 + 10^*1)^+ + (0 + 10^*1)^*) \]

= \[1^*00*1((0 + 10^*1)^* + (0 + 10^*1)^*) = 1^*00*1(0 + 10^*1)^* \]
J. R. Büchi.
Weak second-order arithmetic and finite automata.

Noam Chomsky.
On certain formal properties of grammars.

C. C. Elgot.
Decision problems of finite automata design and related arithmetics.

M. O. Rabin and D. Scott.
Finite automata and their decision problems.

B. A. Trakhtenbrot.
Finite automata and monadic second order logic.