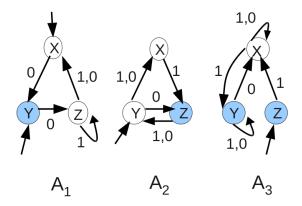
CS208 In-class Quiz 2 (Spring 2013)

Time: 55 mins

Date: Jan 21, 2013

- The exam is open book.
- Be brief, complete and stick to what has been asked. If needed, you may cite results/proofs covered in class without reproducing them.
- Do not copy solutions from others
- Penalty for copying: FR grade (and you know we mean it!)
- 1. [10 marks] Let L be defined as $\{w \mid w \in \{0,1\}^* \text{ and } w \text{ cannot be written as } u.v.u, \text{ for any strings } u, v \in \{0,1\}^*, \text{ where } |u| \leq 2\}$. Give a DFA or NFA (with or without ε transitions) that accepts the language L.
- 2. [15 marks] Let A_0, A_1 and A_2 be the NFAs shown in Fig. 2.



For $i \in \{0, 1, 2\}$, we will represent each NFA A_i as $(Q, \Sigma, Q_{0,i}, \delta_i, F_i)$, where $Q = \{X, Y, Z\}$, $\Sigma = \{0, 1\}$, $\delta_i : Q \times \Sigma \to 2^Q$ is the state transition function of A_i , $Q_{0,i}$ is the set of starting states of A_i and $F_i \subseteq Q$ is the set of final states of A_i (shown shaded). Given a string $w_1 \dots w_r \in \Sigma^*$, we will say that $w_1 \dots w_r$ is accepted by the *interleaving of* (A_1, A_2, A_3) iff there exists a sequence of states $(q_0, q_1, q_2, \dots, q_r)$, where each $q_i \in Q$ and satisfies the following three conditions: (i) $q_o \in Q_{0,0}$, (ii) $q_i \in \delta_{(i-1) \mod 3}(q_{i-1}, w_i)$ for $1 \leq i \leq r$, and (iii) $p_r \in F_{r \mod 3}$. We will also say ε is accepted by the interleaving of (A_1, A_2, A_3) iff $Q_{0,0} \cap F_0 \neq \emptyset$. Construct an NFA (with or without ε -transitions) accepting every string accepted by the interleaving of (A_1, A_2, A_3) . You must clearly indicate what each state of the NFA represents, its initial and final states, its transitions and their labels. You may choose to either represent the NFA as a diagram or represent it using

the five-tuple notation studied in class.

- 3. [10 marks] We have mentioned in class that the language $L = \{0^n 1^n \mid n \ge 0\}$ cannot be accepted by any NFA (although we haven't covered its proof yet). Using the above fact, show that there exists an infinite family of languages $\mathcal{L} = \{L_i \mid i \ge 0\}$ such that all the following conditions hold:
 - Each L_i can be accepted by an NFA
 - The set $\bigcap_{i>0} L_i = \{w \mid w \in L_i \text{ for all } i \ge 0\}$ cannot be accepted by any NFA