
CS 208 : Automata Theory and Logic Spring 2024

Homework 1 Solutions

Question 1 : Implication ”Equations” 15 points
In this question, we will consider “implications” in the same spirit as “equations” between
unspecified propositional formulas. You can think of these as “equations” where the unknowns
are propositional formulas themselves, and the = symbol has been replaced by →.

Let φ1 and φ2 be unknown propositional formulas over x1, x2, . . . xn. Consider the following
implications labelled (1a), (1b) through (na), (nb). A solution to this set of simultaneous
implications is a pair of specific propositional formulas (φ1, φ2) such that all implications are
valid, i.e. evaluate to true for all assignments of variables.

(1a) (x1 ∧ φ1) → φ2 (1b) (x1 ∧ φ2) → φ1

(2a) (x2 ∧ φ1) → φ2 (2b) (x2 ∧ φ2) → φ1
...

...
(na) (xn ∧ φ1) → φ2 (nb) (xn ∧ φ2) → φ1

In each of the following questions, you must provide complete reasoning behind your answer.
Answers without reasoning will fetch 0 marks.

1. [5 marks] Suppose we are told that φ1 is ⊥. How many semantically distinct formulas φ2

exist such that implications (1a) through (nb) are valid?

2. [2 marks] Answer the above question, assuming now that φ1 is ⊤.

3. [5 marks] If we do not assume anything about φ1, how many semantically distinct pairs of
formulas (φ1, φ2) exist such that all the implications are valid?

4. [3 marks] Does there exist a formula φ1 such that there is exactly one formula φ2 (modulo
semantic equivalence) that can be paired with it to make (φ1, φ2) a solution of the above
implications?

Solution: First note that the entire space of assignments of x1, . . . xn can be partitioned
into sub-spaces where x1 is true, ¬x1 ∧ x2 is true, ¬x1 ∧ ¬x2 ∧ x3 is true, and so on until
¬x1 ∧ · · · ¬xn is true.

1. All implications in the left column reduce to ⊥ → φ2. Every such implication is
trivially valid (since ¬⊥ ∨ φ2 is true for all φ2 for all assignments of variables). All
implications in the right column reduce to (xi ∧φ2) → ⊥. This implication is valid iff
(xi ∧φ2) evaluates to false for all assignments of the variables. Using the partitioning
of variable assignments mentioned above, φ2 must evaluate to false whenever any of
the variables x1, . . . xn evaluates to true. Hence, the semantics of φ2 is determined
for all assignments other than x1 = · · ·xn = 0. Since φ2 can have two different truth
values (0 or 1) for this assignment, only 2 distinct formulas φ2 are possible.

2. The right column of implications are trivially valid if ϕ1 ↔ ⊤ is valid. Using reason-
ing similar to that above for the left column, once again only 2 distinct formulas φ2

are possible.

3. Note that (xi ∧ ϕj) → ϕk is semantically equivalent to xi → (ϕj → ϕk). This can be
easily checked through truth tables. Therefore, if implications (1a) and (1b) are both
valid, then x1 → (φ1 ↔ φ2) must also be valid. Similarly, for implications (2a) and

CS 208 Page 1 of 3 Homework 1 Solutions



(2b), and so on until (na) and (nb). Thus, if all the implications are to be valid, then
φ1 ↔ φ2 must evaluate to true for all assignments of variables where at least one of
x1, . . . xn is true. In other words, for every φ1, the semantics of φ2 can potentially
differ from that of φ1 only for the assignment x1 = · · ·xn = 0. Therefore, there are
only two possible φ2 for every φ1. Since the total number of semantically distinct
formulas φ1 on n variables is 22

n
(why?), the total count of semantically distinct pairs

(φ1, φ2) is 2× 22
n
= 22

n+1.

4. The above implications allow φ2 to evaluate to any value in {0, 1} when x1 = x2 =
· · ·xn = 0, regardless of what φ1 is. Therefore, there are always at least two solutions
to the given implications.

Question 2 : Balanced Parentheses 25 points
A decision problem is a computational problem that has a ”yes” or ”no” answer for every given
input. An input to a decision problem is often encoded simply as a string of 0’s and 1’s. Not
surprisingly, we can encode some decision problems P in propositional logic. Specifically, we
construct a propositional logic formula φP over as many propositional variables as the count
of letters (0s and 1s) in the binary string encoding the input, such that if the binary string is
interpreted as an assignment to the propositional variables, then the ”yes”/”no” answer to P
is obtained from the value given by the semantics of φP . If the semantics of φP evaluates to 0
(or ”false”) for the given input, then the output of P for that input is “no”; else, the output is
“yes”.

Consider the following decision problem of checking if a given string of parentheses is balanced.
Given a binary string of length n, n ≥ 1, where 0 encodes ‘(’ and 1 encodes ‘)’, we say that the
string has balanced parentheses if and only if:

• The number of open parentheses, represented by 0s, in the entire string equals the number
of closing parentheses, represented by 1s.

• In every proper prefix of the string, the number of open parentheses is at least as much as
the number of closing parentheses.

We wish to encode the above problem in propositional logic. Recall from your data structures
and algorithms course that checking balanced parentheses can be solved in polynomial time
(in fact, with linear time complexity). We want this to be reflected in some aspects of your
solution to this problem.

In class, we saw that every propositional formula φ can be represented by a parse tree whose
internal nodes are labelled by connectives and whose leaves are labelled by propositional vari-
ables. Sometimes, two different sub-trees in a parse tree may be identical. In such cases, it
makes sense to represent the formula as a directed acyclic graph (DAG), where syntactically
common sub-formulas are represented exactly once. As an example, consider the parse tree
and corresponding DAG in Fig. 1, both representing the formula (r ∨ (p ∨ q)) ∧ (p ∨ q). Note

h

∧

∨

r ∨

p q

∨

p q

∧

∨

r ∨

p q

Figure 1: A parse tree and corresponding DAG

CS 208 Page 2 of 3 Homework 1 Solutions



that a DAG representation of a formula can be exponentially smaller than a parse tree repre-
sentation. Furthermore, a DAG representation suffices to evaluate the semantics of a formula,
since the semantics of a shared sub-formula needs to be evaluated only once. Thus, if the DAG
representation of a formula is small, its semantics can be evaluated efficiently. We define the
DAG size of a formula to be the number of nodes in its DAG representation. This is also the
number of syntactically distinct sub-formulas in the formula.

(a) [10 marks] Encode the problem of checking balanced parentheses in a binary string of
length n as a propositional logic formula whose DAG size is at most O(n3). You must use
only n propositional variables corresponding to the n bits in the input string, and the only
connectives allowed in your formula are two-input ∨,∧ and ¬. Express the DAG size of
your formula as a function of n using big-O notation, with a clear justification of how you
obtained the size expression.

(b) [5 marks] Prove that your formula is unsatisfiable for all odd values of n.

(c) [10 (+ bonus 5) marks] Suppose your formula is represented as a DAG, as discussed above.
Given an input string of 0s and 1s, there is a simple way to evaluate the semantics of the
formula. Specifically, we evaluate DAG nodes bottom-up, starting from the leaves (these
represent propositional variables whose values are given by the input string) and moving
upwards until we reach the root. The value of the root gives the semantics of the formula.
Normally, a DAG node (labelled ∧,∨ or ¬) can be evaluated only after all its children have
been evaluated. However, if a ∨ (resp. ∧) labelled node has a child that has evaluated
to 1 (resp. 0), then the node itself can be evaluated to 1 (resp. 0) without evaluating its
other child. This can allow us to find the value of the root without evaluating all nodes in
the DAG.
What is the worst-case number of DAG nodes (as a function of n in big-O notation) that
need to be evaluated for your formula in part (a), in order to find the value at the root
node for any input string of length n? You must give justification for why you really need
these many nodes to be evaluated in the worst-case. Answers without justification will
fetch 0 marks.
You will be awarded bonus 5 marks if you can show that your formula requires evaluating
only O(n)) DAG nodes.

Solution: Let Ti,j represent the subformula, which evaluates to ⊤ if the number of open
brackets exceeds the number of closed brackets by j in the first i characters of the string.
Our formula for balanced parenthesis becomes Tn,0.
To make this formula well-defined, we must define the complete set of Ti,j for all values of
i, j. For all values of i > 0, j < 0, we have Ti,j = ⊥ and for all values of j ̸= 0, we have T0,j

as ⊥ and T0,0 = ⊤ For all other values of i, j, we have Ti,j = (xi∧Ti−1,j+1)∨ (¬xi∧Ti−1,j−1).
This makes the formula well-defined.
Lemma (well-defined): The complete set of propositional variables in the above formula is
contained in {xi}. We prove this by induction. (Base Cases are T0,j and induction over i)
Lemma (Size): The number of distinct subformulae is in O(n3). We prove this by explicitly
upper bounding the number of distinct subformulae.
Lemma (Correctness): If Tn,0 evaluates to ⊤ if and only if the string is balanced. We prove
this using induction over even values of n.
(b) In the same way, for part b, we do induction over odd values of n and show that the
formula is unsat.
(c) Claim: This formula can be evaluated in O(n) time.
Evaluation Algorithm: We evaluate xn and, based on whether it is ⊤ or ⊥, evaluate the
appropriate branch in the formula.

We prove the above evaluation is correct using induction and has O(n) time complexity.

CS 208 Page 3 of 3 Homework 1 Solutions


