
CS 208 : Automata Theory and Logic Spring 2024

Homework 2 Solutions

1. The Case of Dr. Equisemantic and Mr. Irredundant 15 points
Assume we have a countably infinite list of propositional variables p1, p2, . . .. For this problem,
by “formula”, we always mean a finite string representing “syntactically-correct formula”. Let
Σ be a set of formulae. For any formula φ, we say Σ |= φ (read as Σ semantically entails φ) if
for any assignment α of the propositional variables that makes all the formulae contained in Σ
true, α also makes φ true.
Let us call two sets of formulae Σ1 and Σ2 equisemantic if for every formula φ, we have Σ1 |= φ
if and only if Σ2 |= φ. Furthermore, let us call a non-empty set of formulae Σ irredundant if
no formula σ in Σ is semantically entailed by Σ \ {σ}.
1. [5 points] Show that any set of formulae Σ must always be countable. This implies that

we can enumerate the elements of Σ. Assume from now on that Σ = {σ1, σ2, σ3, . . .}.
2. Suppose we define Σ′ as follows:

Σ′ = {σ1,

(σ1) → σ2,

(σ1 ∧ σ2) → σ3,

(σ1 ∧ σ2 ∧ σ3) → σ4,

...

}

Suppose we remove all the tautologies from Σ′ and call this reduced set Σ′′. Prove that Σ′′

is irredundant and equisemantic to Σ. You can proceed as follows:

(a) [5 points] Show that a non-empty satisfiable set Γ with |Γ| ≥ 2 is irredundant if and
only if (Γ \ {γ}) ∪ {¬γ} is satisfiable for every γ ∈ Γ.

(b) [5 points] Use the above result to show that Σ′′ is irredundant and equisemantic to Σ.

Solution:

1. Recall from your course on Discrete Structures that a set is countable if either it
is finite, or if there is a bijection between the set and the set of natural numbers.
Equivalently, a set is countable if there is an injective function from the set to the set
of natural numbers. Recall also that the Cartesian product of two countable sets is
countable, and the countable union of countable sets is also countable.

Now, consider the set S of all finite strings. This set must be countable. To see why
this is so, take the set S1 of all strings of length 1. This set is countable because the
number of propositional variables is countable and we only have an additional finite
set of non-variable symbols (parentheses, logical and symbol, etc.). Now consider the
set S2 of all strings of length 2. Being the Cartesian product of two countable sets
(S1 × S1), this set must also be countable. Inductively, the set Sn of all strings of
length n, for any n ≥ 2, is the Cartesian product of two countable sets (Sn−1×S1), and
hence must be countable. Clearly S = ∪∞

n=1Sn. Being a countable union of countable
sets, the set S must therefore be countable.
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The set of all syntactically-correct formulas is a (strict) subset of the set of all possible
finite strings. Being a subset of a countable set, it must be countable. Σ, in turn, is
a subset of the set of all syntactically-correct formulas. Being a subset of a countable
set, Σ must be countable.

2. (a) Note first that since Γ is satisfiable, so is Γ \ {γ} (every α that satisfies all
formulas in Γ certainly satisfies all formulas in Γ \ {γ}). Now, if γ is not seman-
tically entailed by Γ \ {γ}, there must be some assignment α that makes each
formula in Γ \ {γ} true but makes γ false. This same assignment α would thus
make ¬γ true, and hence would be a satisfying assignment for (Γ \ {γ})∪ {¬γ}.
If this holds for every γ ∈ Γ, this means that no element of Γ is semantically
entailed by the rest of the elements. Hence Γ is irredundant.

To prove the other direction, suppose Γ is irredundant. By definition, no formula
γ ∈ Γ is semantically entailed by Γ \ {γ}. In other words, for every γ ∈ Γ,
there exists an assignment α (dependent on γ in general) that satisfies every
formula in Γ \ {γ}, but does not satisfy γ. Hence, this α satisfies all formulas in
(Γ \ {γ}) ∪ {¬γ}. Since the above argument holds for all γ ∈ Γ, this proves the
statement.

(b) The fact that Σ′′ is equisemantic to Σ is easy to see. We will first show that an
assignment α satisfies all formulas in Σ iff it satisfies all formulas in Σ”. Clearly,
if each of the formulas in Σ evaluates to true for α, then both sides of each
implication in Σ′ evaluate to true for α. Hence, each of the formulas in Σ′ is also
true for the same assignment. Conversely, if each of the formulas in Σ′ is true
for assignment α, then σ1 is true, and since (σ1) → σ2 is true, this implies σ2

is true. Using the same reasoning, it follows by induction that σn is true for all
n ≥ 1. Thus, each formula in Σ is true for the assignment α.

Let S denote the set of satisfying assignments of Σ. We have just shown above
that S is also the set of satisfying assignments of Σ′. Now suppose Σ |= φ. This
is equivalent to saying that every assignment in S satisfies φ. Since S is also
the set of satisfying assignments of Σ′, this is equivalent to saying that Σ′ |= φ.
Hence, if Σ |= φ, then Σ′ |= φ too. A similar reasoning shows the result the
other way round. Hence, Σ and Σ′ are equisemantic.

Since Σ′′ is just Σ′ without the tautologies, and tautologies, being always true,
do not change equisemanticness, Σ′′ is equisemantic to Σ.
Let us now look at irredundancy. Let Σ′′ = {η1, η2, . . .} in order after removing
the tautologies from Σ′. Consider any ηn ∈ Σ′′. Since ηn is not a tautology, there
must be an assignment α that makes ηn false. By the semantics of→, this assign-
ment must make each of σ1, . . . , σn−1 true and σn false. Since α makes each of
σ1, . . . σn−1 true, it satisfies all implications η1, . . . ηn−1 (both sides of implication
having formulas in {σ1, . . . σn−1}, must evaluate to true). Similarly, α satisfies
all implications ηn+1, . . ., since the left side of each of these implications has σn

conjuncted with other formualas, and σn evaluates to false under assignment α.
Therefore, α is a satisfying assignment for Σ′′ \ {ηn}. Since α also falsifies ηn, it
immediately follows that α satisfies all formulas in (Σ′′ \ {ηn}) ∪ {¬ηn}. Since
the abov argument holds for every ηn ∈ Σ”, we conclude that Σ′′ has no element
that is semantically entailed by the others. Hence Σ” is irredundant.
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2. A follow-up of the take-away question of Tutorial 2 25 points
To recap from the take-away question of Tutorial 2, we will view the set of assignments satisfying
a set of propositional formulae as a language and examine some properties of such languages.

Let P denote a countably infinite set of propositional variables p0, p1, p2, . . . . Let us call these
variables positional variables. Let Σ be a countable set of formulae over these positional vari-
ables. Every assignment α : P → {0, 1} to the positional variable can be uniquely associated
with an infinite bitstring w, where the ith bit wi = α(pi). The language defined by Σ, also called
L(Σ), is the set of bitstrings w for which the corresponding assignment α, that has α(pi) = wi

for each i, satisfies Σ, that is, for each formula F ∈ Σ, α |= F . In this case, we say that α |= Σ.
Let us call the languages definable in this manner as PL-definable languages.
Example:
Let Σ = {p0 → p1, p1 → p2, p2 → p3, . . . }.
Then L(Σ) = {1111 . . . , 0111 . . . , 0011 . . . , 0001 . . . , . . . , 0000 . . . }, or, to be precise, if we de-
note the infinite bitstring containing only 1s by 1ω and the infinite bitstring containing only 0s
by 0ω, and the finite bitstring consisting of k 0s by 0k, then L(Σ) = {0k1ω : k ∈ N} ∪ {0ω}.
(a) [5 marks] Show that the language L consisting of all infinite bitstrings except 000 . . .

(the bitstring consisting only of zeroes) is not PL-definable. You may want to prove the
following lemma in order to solve this question:
Lemma:
For every PL-definable language L and bitstring x /∈ L there exists a finite prefix y of x
such that for any infinite bitstring w, yw /∈ L (yw refers to the concatenation of y and w).

(b) [5 + 5 points] Show that PL-definable languages are closed neither under countable union
nor under complementation.
Hint: Try using the result proven in part (a)

(c) [10 points] Show that a PL-definable language either contains every bitstring or does not
contain uncountably many bitstrings.
Hint: Try using the lemma proven in part (a)

(d) [Bonus 10 points] A student tries to extend the definition of PL-languages by allowing the
use of ”dummy” variables.
LetX = {x0, x1, . . . } denote a countably infinite set of ”dummy” variables and let Σ denote
a countable set of formulae over both positional and dummy variables. An infinite bitstring
w is in the language defined by Σ if and only if there exists an assignment α : P∪X → {0, 1}
such that α |= Σ and wi = α(pi) for each i. Note that the assignment of ”dummy” variables
in X are not represented in w. Let us call the languages definable this way extended PL-
definable languages, or EPL-definable languages.
Show that EPL and PL are equally expressive, ie every EPL-definable language is a PL
definable language and vice versa. This means our attempt to strengthen PL this way has
failed. You can use the following theorem without proof:
Theorem:
Let S0, S1, S2, . . . denote an infinite sequence of non-empty sets of finite bitstrings such
that for every i > 0 and for every bitstring x ∈ Si and every j ≤ i, there exists a prefix y
of x in Sj. Then there exists an infinite bitstring z such that every Si contains a prefix of
z.

Solution:

(a) Let us first prove the lemma mentioned in the question.
Lemma:
For every PL-definable language L and bitstring x /∈ L there exists a finite prefix y of
x such that for any infinite bitstring w, yw /∈ L (yw refers to the concatenation of y
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and w).
Proof:
Say L = L(Σ) for some countable set of formulae Σ. If x /∈ L(Σ), then there must be
some F ∈ Σ such that x ⊭ F . Since F is a formula, and all formulas are finite strings
by definition, F contains only a finite number of positional variables p ∈ P. Let the
largest index of any positional variable present in F be n. For any infinite bitstring
z with first n + 1 bits being the same as x, the values of all the positional variables
present in F are the same in both x and z, which means that z ⊭ F as well. This
means that, if we let y denote the finite prefix of x consisting of the first n + 1 bits
of x, then for any infinite bitstring w, yw ⊭ F , by the same argument. This means
that yw /∈ L, proving the lemma. In fact, by a similar argument, the lemma can be
strengthened to stating that for any infinite bitstring x /∈ L, there exists a finite set of
positions S, such that for any infinite bitstring y, such that bits of y at the positions
in S match those of x, y /∈ L as well.

Now, consider L as defined in the problem, ie consisting of every infinite bitstring,
except 000 . . . . Let x = 000 . . . . We will show that L is not PL-definable, by con-
tradiction. Assume L is PL-definable. By the lemma we just proved, there exists a
finite prefix y of x such that for any infinite bitstring w, yw /∈ L, ie there are infinitely
many bitstrings not in L. This contradicts the fact that 000 . . . is the only bitstring
not in L. Therefore, L cannot be defined in PL.

(b) Consider the language L = {000 . . . } (this language consists only of the infinite bit-
string 000 . . . ). This language can be defined in PL as L(Σ) where Σ = {¬p0,¬p1,¬p2 . . . }.
However, its complement is the language consisting of all infinite bitstrings other
than 000 . . . , which, as shown earlier, is not PL-definable. Therefore, PL-definable
languages are not closed under complementation.

Consider the countably infinite family of languages Li = L({pi}) for each i ∈ N. Each
Li consists of strings where the ith bit is 1, and clearly, each Li is PL-definable. Let

L =
∞⋃
i=0

Li. L is the language consisting of all infinite bitstrings other than 000 . . . ,

which, as shown earlier, is not PL-definable. Therefore, PL-definable languages are
not closed under countable union.

(c) This follows directly from the lemma that was proven earlier. If a PL-definable
language does not contain an infinite bitstring x, then there exists a finite prefix y of
x such that for every infinite bitstring w, yw is not in the language. Since there are
uncountably many infinite bitstrings w, there are uncountably many infinite bitstrings
not in the language

(d) Firstly, it is easy to see that every PL-definable is also EPL-definable: PL is a special
case of EPL where no dummy variables are used.

We will now show that every EPL-definable language is PL-definable. Say Σ =
{F0, F1, . . . } is a countable set of formulae over the variables in P ∪X.

Consider Σ′ = {
i∧

j=0

Fj : i ∈ N} = {F0, F0 ∧ F1, F0 ∧ F1 ∧ F2, . . . }. We will show that

L(Σ) = L(Σ′).

For any word w, w ∈ L(Σ) if and only if there exists an assignment α : P∪X → {0, 1}
such that wi = α(pi) for each natural i and for each F ∈ Σ, α |= F , ie α |= F0, α |= F1,
and so on. This is equivalent to saying α |= F0, α |= F0 ∧F1, α |= F0 ∧F1 ∧F2, so on,
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ie w ∈ L(Σ′). Therefore, L(Σ) ⊆ L(Σ′). In a similar manner, if w ∈ L(Σ′), then there
cannot be any Fi such that the corresponding assignment α ̸|= Fi. Hence, w |= Σ′,
and L(Σ) ⊆ L(Σ′). From the two inclusions proved above, we have L(Σ) = L(Σ′).
We will henceforth work with Σ′, and denote F0∧F1 · · ·∧Fi as F

′
i . F

′
i satisfy a special

property - for any assignment α, if α |= F ′
i , then for every j ≤ i, α |= F ′

j .

Some Notation:

• Let V arsd(F ) denote the set of dummy variables whose indices are at most
the largest index of a dummy variable in the formula F - for example, if F =
p0 ∨ x0 ∨ x2, then V arsd(F ) = {x0, x1, x2}. We have V arsd(F

′
i ) ⊆ V arsd(F

′
i+1)

for every natural i.

• For any EPL formula F , let Assd(F ) denote the set of possible assignments to
the set V arsd(F ) of dummy variables

• For any formula F and assignment α to the dummy variables in F , let F (α)
denote the formula obtained by substituting each dummy variable x with its
value α(x). Note that F (α) no longer contains any dummy variables and only
has positional variables, ie it is a formula in PL.

Define Σ′′ = {
∨

α∈Assd(F
′
i )

F ′
i (α) : F

′
i ∈ Σ′}. This is a countable set of PL-formulae. We

will show that L(Σ′′) = L(Σ′), which will imply that L(Σ′′) = L(Σ).

Say some word w ∈ L(Σ′). This means there exists some assignment α : P ∪ X →
{0, 1} such that α(pi) = wi and α |= F ′

i for each natural i. Now, since α |= F ′
i , we

have α |= F ′
i (α), which implies that α |=

∨
α∈Assd(F

′
i )

F ′
i (α) for each natural i, which

means w ∈ L(Σ′′).

On the other hand, say w ∈ L(Σ′′). This means that w |=
∨

α∈Ass(V arsd(F
′
i ))

F ′
i (α) for

each i, ie for each i, there exists an assignment αi : V arsd(F
′
i ) → {0, 1} such that

w |= F ′
i (α). Let Si denote the set of such assignments, interpreted as finite bitstrings

(eg: x0 → 0, x1 → 1, x2 → 0 is interpreted as the bitstring 010). Now, for any α ∈ Si,
w |= F ′

i (α), which means that for any j ≤ i, w |= F ′
j(α) as well. This means there

is a prefix of the bitstring corresponding to α in each Sj, for each j ≤ i. Therefore,
the theorem can be applied, and hence there is an infinite bitstring such that every Si

contains a prefix of it. This infinite bitstring denotes an assignment to the entire set
of dummy variables, and hence there exists an assignment α : X → {0, 1} such that
w |= F ′

i (α) for each i, ie there exists an assignment α′ : P ∪ X → {0, 1} such that
α′(pi) = wi and α′(xi) = α(xi) for each i, and, as we have seen, such an α will have
α |= F ′

i for each i. Therefore, w ∈ L(Σ′). This means that w ∈ L(Σ′′) if and only if
w ∈ L(Σ′), and hence L(Σ′′) = L(Σ′) = L(Σ).

Therefore, every EPL-definable language can also be defined in PL.
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