
CS 208 : Automata Theory and Logic Spring 2024

Practice Problems 1

0. A Bit of Warm-Up
(a) A student has written the following propositional logic formula over variables x, y, z.

x→
(
(y → ⊥) ∨ (⊤ → z)

)
Is it possible to write a semantically equivalent formula using only the operators ¬ and ∨?

(b) Consider the following CNF formula over propositional variables p, q, r, s, t.

φ(p, q, r, s, t) = (p ∨ q ∨ r) ∧ (¬p ∨ q) ∧ (¬q ∨ r) ∧ (¬r ∨ s) ∧ (¬s ∨ t) ∧ (¬t ∨ p)

Write a semantically equivalent DNF formula with only one cube. Try to avoid application
of the distributive laws, as this can lead to a blow-up of intermediate formula sizes.

(c) We wish to show that φ |= (¬p ∨ (q ∧ r ∧ s ∧ t)). One way to show this is to show that
φ∧¬(¬p∨(q∧r∧s∧t)) is unsatisfiable. Since ¬(¬p∨(q∧r∧s∧t)) = (p)∧(¬q∨¬r∨¬s∨¬t),
our problem reduces to showing unsatisfiability of φ ∧ (p) ∧ (¬q ∨ ¬r ∨ ¬s ∨ ¬t). Show
using repeated application of resolution rules (and nothing else) that the above formula is
indeed unsatisfiable.

Solution:

1. Indeed, it’s possible. Here are suggested steps.

• Write every implication α → β as (¬α ∨ β). This gives us the formula

¬x ∨
(
(¬y ∨ ⊥) ∨ (¬⊤ ∨ z)

)
• Simplify every (α ∨ ⊥) to α. Similarly, ¬⊤ can be replaced by ⊥. This gives us

¬x ∨
(
(¬y) ∨ (z)

)
• Finally, apply DeMorgan’s laws to replace every α ∨ β with ¬(¬α ∧ ¬β). This
gives

¬
(
x ∧ (y ∧ ¬z)

)
2. Notice that φ can be written as

(p ∨ q ∨ r) ∧ (p→ q) ∧ (q → r) ∧ (r → s) ∧ (s→ t) ∧ (t→ p)

The five implications above force p, q, r, s, t to have the same value in any satisfying
assignment of φ (try to convince yourself why this is the case). Therefore, for φ to be
satisfied, we must have at least one of p, q, r to be true (because of the first clause of
φ), and all of p, q, r, s, t must have the same value (because of the remaining clauses
of φ). This implies that the only satisfying assignment of φ is p = q = r = s = t = 1.
Hence, the semantically equivalent DNF formula is p ∧ q ∧ r ∧ s ∧ t.

CS 208 Page 1 of 11 Practice Problems

3. We don’t even need all clauses of φ to show unsatisfiability by resolution. Here are
suggested resolution steps (alternative resolution steps are also possible).

Clause id Clause How obtained

1 ¬p ∨ q Given
2 p Given
3 q Resolvent of 1, 2
4 ¬q ∨ ¬r ∨ ¬s ∨ ¬t Given
5 ¬r ∨ ¬s ∨ ¬t Resolvent of 3, 4
6 ¬q ∨ r Given
7 r Resolvent of 3, 6
8 ¬s ∨ ¬t Resolvent of 7,5
9 ¬r ∨ s Given
10 s Resolvent of 7, 9
11 ¬t Resolvent of 8, 10
12 ¬s ∨ t Given
13 t Resolvent of 10, 12
14 Empty clause () Resolvent of 11, 13

CS 208 Page 2 of 11 Practice Problems

1. Core of unsatisfiability
A set S of propositional logic formulae is said to form a minimal unsatisfiable core if S is
unsatisfiable (i.e. there is no assignment of values to variables that satisfies all formulas in S),
but every proper subset of S is satisfiable.

1. Given an unsatisfiable set S of propositional logic formulae, the minimal unsatisfiable core
may not be unique. Give an example where S has at least two minimal unsatisfiable cores
C1 and C2 such that C1 ∩ C2 ̸= ∅.

2. Show that for every n > 0, we can find a set of n propositional logic formulae that form
a minimal unsatisfiable core. Thus, we can have minimal unsatisfiable cores of arbitrary
finite size.

Solution:

1. This is fairly straightforward. Consider the set S = {p, p → q,¬q, p → r,¬r}. The
two minimal unsatisfiable cores are C1 = {p1, p1 → p2,¬p2} and C2 = {p1, p1 →
p3,¬p3}

2. The set of formulas Sn = {p1, p1 → p2, p2 → p3, . . . pn−2 → pn−1,¬pn−1} satisfies the
condition of the question. Why is the entire set Sn is unsatisfiable? This should be
easy to figure out.

Every proper subset of Sn either has p1 missing, ¬p3 missing or some implication
pi → pi+1 missing for 1 ≤ i ≤ n − 2. We show that in each of these cases, the
remaining subset of formulas is satisfiable.

• If p1 is missing, all the other formulas are satisfied by setting p2 = . . . = pn−1 = 0.

• If ¬pn−1 is missing, all the other formulas are satisfied by setting p1 = . . . =
pn−2 = 1.

• If pi → pi+1 is missing for 1 ≤ i ≤ n− 2, then all other formulas are satisfied by
setting p1 = . . . pi = 1 and pi+1 = . . . pn−1 = 0.

CS 208 Page 3 of 11 Practice Problems

2. Logical interpolation
Let φ and ψ be propositional logic formulas such that |= φ → ψ (i.e. φ → ψ is a tautology).
Let V ar(φ) and V ar(ψ) denote the set of propositional variables in φ and ψ respectively. Show
that there exists a propositional logic formula ζ with V ar(ζ) ⊆ V ar(φ) ∩ V ar(ψ) such that
|= φ → ζ and |= ζ → ψ. This result is also known as Craig’s interpolation theorem as applied
to propositional logic. The formula ζ is called an interpolant of φ and ψ.

As a specific illustration of the above result, consider the formulas φ = ((p → q) ∧ (q → ¬p))
and ψ = (r → (p → s)), where p, q, r, s are propositional variables. Convince yourself that
|= φ → ψ holds in this example. Note that V ar(φ) = {p, q} and V ar(ψ) = {p, r, s}. Let
ζ = ¬p. Then V ar(ζ) ⊆ V ar(φ) ∩ V ar(ψ). Convince yourself that |= φ → ζ and |= ζ → ψ
hold in this example.

Solution: Given a formula φ and a variable v ∈ V ar(φ), let φ[v = ⊤] denote the formula
obtained by replacing all occurrences of v in φ with ⊤, and then simplifying the resulting
formula. By simplification, we mean the obvious ones like α∧⊤ = α, α∨⊤ = ⊤, α∧¬⊤ = ⊥,
α ∨ ¬⊤ = α for all sub-formulas α of φ. In a similar manner, we define φ[v = ⊥].

Note that V ar(φ[v = ⊤]) = V ar(φ) \ {v} and similarly for φ[v = ⊥].

Now define the formula ζ =
∨
v∈V ars(φ)\V ars(ψ)

∨
a∈{⊥,⊤} φ[v = a]. Notice that V ars(ζ) ⊆

V ars(φ) ∩ V ars(ψ).
You should now be able to argue that (i) φ |= ζ, and (ii) ζ |= ψ. Proving (i) should be
straightforward from the definition of ζ. To prove (ii), take any satisfying assignment of ζ.
By definition of ζ, this gives an assignment of truth values to variables in V ars(φ)∩V ars(ψ)
such that this assignment can be augmented with an assignment of truth values to variables
in V ars(φ) \ V ars(ψ) to satisfy the formula φ. However, since φ → ψ is a tautology, this
(augmented) assignment also satisfies ψ. Recalling that satisfaction of ψ cannot depend
on the assignment of truth values to variables not present in ψ, we conclude that the
assignment of truth values to variables in V ars(φ)∩ V ars(ψ) itself satisfies the formula ψ.
Hence ζ |= ψ.

CS 208 Page 4 of 11 Practice Problems

3. DPLL with horns
The Horn-Sat problem entails checking the satisfiability of Horn formulas. We say a formula is
a Horn formula if it is a conjunction (∧) of Horn clauses. A Horn clause has the form ϕ1 → ϕ2

where ϕ1 is either ⊤ or a conjunction (∧) of one or more propositional variables. ϕ2 is either
⊥ or a single propositional variable. In this context, answer the following questions

1. Let’s try to solve the Horn-Sat problem using DPLL. We can convert each Horn clause into
a CNF clause by simply rewriting (a → b) as (¬a ∨ b), which preserves the semantics of
the formula. The resultant formula is in CNF.
We have seen in class that if DPLL always chooses to assign 0 to a decision variable before
assigning 1 (if needed) to the variable, then DPLL will never need to backtrack when given
a Horn formula encoded in CNF as input.
Suppose our version of DPLL does just the opposite, i.e. it always assigns 1 to a decision
variable before assigning 0 (if needed). How many backtracks are needed if we run this
version of DPLL on the (CNF-ised version of) following Horn formulas, assuming DPLL
always chooses the unassigned variable with the smallest subscript when choosing a decision
variable?

(a) (
(
n−1∧
i=0

xi) → xn
)
∧
n−1∧
i=0

(xn → xi) ∧
(
(
n∧
i=0

xi) → ⊥
)

(b)
n−1∧
i=0

(
(xi → xn+i) ∧ (xn+i → xi) ∧ (xi ∧ xn+i → ⊥)

)
2. Since we have a polynomial time formula for Horn-Sat, the next question is if it will allow

us to solve the Boolean-SAT problem in polynomial time. Sadly, this is not the case. Find a
boolean function that cannot be expressed by a Horn formula. Prove that no Horn formula
can represent the given boolean function.

Solution:

1. It’s best to write out the implications as clauses when you are trying to apply DPLL.

In problem (a), no unit clauses or pure literals are obtained until all of x0 through
xn−1 are assigned the value 1, one at a time. Once xn−1 is assigned 1, unit propagation
leads to a conflict – xn must be assigned both 1 and 0 by unit propagation. This causes
a backtrack, which ends up setting xn−1 to 0. Once this happens, unit propagation
assigns the value 0 to xn, resulting in the partial assignment xn−1 = xn = 0, which
satisfies all clauses. Therefore, there is exactly one backtrack.

In part (b), every time a variable xi for 0 ≤ i ≤ n− 1 is assigned 1, unit propagation
causes xn+i to be in conflict (must be assigned both 0 and 1). This induces a backtrack
that sets xi to 0, followed by unit propagation setting xn+i to 0. DPLL will then choose
xi+1 as the next decision variables, assign it 1 and the above process repeats. So, in
this case, DPLL will incur n backtracks, one for each of x0, . . . xn−1.

2. F = (a ∨ b). Any formula ϕ which is equivalent to a Horn formula has the following
property: if v1 and v2 are two valuations that make ϕ evaluate to ⊤, then the valuation
v1∧ v2 also makes ϕ evaluate to ⊤. Now consider F = (a∨ b). F is satisfied by (⊤,⊥)
and (⊥,⊤) but not (⊥,⊥). Hence, no Horn Formula can represent F.

CS 208 Page 5 of 11 Practice Problems

4. A Game of Sudoku
Sudoku is a logic-based, combinatorial number-placement puzzle. In classic Sudoku, the ob-
jective is to fill a 9 × 9 grid with digits so that each column, each row, and each of the nine
3× 3 subgrids that compose the grid (also called ”boxes”, ”blocks”, or ”regions”) contains all
of the digits from 1 to 9 (and as one can naturally deduce; contain each of the digits exactly
once). The puzzle setter provides a partially completed grid, which has a single solution for
a well-posed puzzle. Encode the puzzle as a CNF formula. You are free to play around with
different encodings; use auxiliary variables and attempt to make succinct (read; ”optimised”)
formulae.

Solution: Let p(i, j, k) be a propositional variable that asserts if the cell in row i and
column j has the value n. One can clearly note that 1 ≤ i, j, k ≤ 9. We encode the
following constraints

• Every cell contains at least one number:

ϕ1 =
9∧
i=1

9∧
j=1

9∨
k=1

p(i, j, k)

• Every cell contains at most one number:

ϕ2 =
9∧
i=1

9∧
j=1

8∧
x=1

9∧
y=x+1

(¬p(i, j, x) ∨ ¬p(i, j, y))

• Every row contains every number:

ϕ3 =
9∧
i=1

9∧
n=1

9∨
j=1

p(i, j, k)

• Every column contains every number:

ϕ4 =
9∧
j=1

9∧
n=1

9∨
i=1

p(i, j, k)

• Every 3× 3 box contains every number:

ϕ5 =
2∧
r=0

2∧
s=0

9∧
n=1

3∨
i=1

3∨
j=1

p(3r + i, 3s+ j, n)

The final formula is as follows

ϕ = (ϕ1 ∧ ϕ2 ∧ ϕ3 ∧ ϕ4 ∧ ϕ5)

CS 208 Page 6 of 11 Practice Problems

5. Poring over proofs
A student has given the following proof of ⊤ ⊢ x → ¬x What are the sources of problem in
this proof (else we would be in serious trouble with true being equivalent to false).

1. top

--

2. | x assumption |

| -- |

3. | | neg x assumption | |

4. | | bot bot introduction rule on 2 and 3 | |

| -- |

5. | neg x bot elimination rule on 4 |

6. | bot bot intro rule on 2 and 5 |

--

7. neg x neg intro rule on 2 -- 6

--

8. | x assumption |

9. | bot bot intro rule on 7 and 8 |

10. | neg x bot elim rule on 9 |

--

11.x -> neg x impl intro rule on 8 to 10

Solution: Thankfully, there is an error in the proof.

Step 5 infers ¬x outside the inner box by applying ⊥-elimination rule on the result of Step
4. However, ⊥ was derived in the scope of the inner box in Step 4. Deriving ¬x inside the
inner box after Step 4 would have been fine, but ⊥-elimination doesn’t allow us to infer ¬x
outside the scope of the inner box.

CS 208 Page 7 of 11 Practice Problems

6. The Resolution Proof System

Consider the formula
n⊕
i=1

xi, where ⊕ represents xor. It can be shown by induction that this is

semantically equivalent to the PARITY function that evaluates to true if and only if an odd
number of variables are assigned true.

Show that
∧

S⊆{1,2...n}
|S|=1 mod 2

(∨
i∈S

xi ∨
∨
j /∈S

¬xj

)
is the only CNF equivalent to φ, upto adding tauto-

logical clauses and repeating variables.

Hint: If two CNFs φ and ψ are equivalent, then for every clause α in φ, we have ψ ⊢ α and
for every clause β in ψ, we have φ ⊢ β, where the proofs used are resolution proofs.

As a refresher, the resolution proof system is a system of proof rules for CNFs that is both
sound and complete, ie if φ and ψ are CNFs, then φ |= ψ if and only if φ ⊢ ψ. We say φ ⊢ ψ iff
for every clause c in ψ, we have φ ⊢ c. The proof rules that can be applied in resolution proofs
are:

1. (Assumption) For every clause c in φ, φ ⊢ c
2. (Resolution) If we have φ ⊢ p∨c1 and φ ⊢ ¬p∨c2 for any clauses c1 and c2 and propositional

variable p, then we can deduce φ ⊢ c1 ∨ c2.
3. (Or Introduction) For any clauses c1 and c2, if we have φ ⊢ c1, then we can deduce φ ⊢ c1∨c2

Other than these, we are implicitly allowed to reorder any of the literals within a clause and
any of the clauses within a CNF, and we can remove tautological clauses from the CNF (these
are the clauses that contain a variable as well as it’s negation).

Solution: An assignment α satisfies the formula if and only if the number of variables set
to 1 by α is odd. An assignment does not satisfy the CNF given in the problem (call it
φ) if and only if the some clause is falsified. This occurs if and only if an even number of
variables are set to true. Therefore, an assignment satisfies φ if and only if an odd number

of variables are set to 1. Therefore, φ in the question is semantically equivalent to
n⊕
i=1

xi.

Assume there is some other CNF ψ also equivalent to
n⊕
i=1

xi, where there are no tautological

clauses in ψ and no repeated variables in a single clause. φ and ψ will be equivalent CNFs,
ie φ |= ψ and ψ |= φ.

From the first condition, we can conclude that for any clause c in ψ, we have φ ⊢ c by a
resolution proof.

The key idea here is to note that when two clauses of χ are resolved, only tautological
clauses result. Say there are clauses c1 = x ∪ C1 and c2 = ¬x ∪ C2 being resolved with
respect to the variable x. There must be some other variable y such that y is present in C1

and ¬y is present in C2 (or vice versa). This is as the number of non-negated variables in
each clause in χ must be odd. Therefore, the resolvent C1 ∪C2, will contain both y and ¬y
and will therefore be a tautology.

Also note that since each clause of φ already contains every variable, applying or introduc-
tion on a clause either leaves it unchanged, or results in a tautology.

This means that the only proof rule that can be used to get non-tautological clauses is
Assumption. Hence, if φ ⊢ c, c must have been a clause of φ in the first place. This means
that all the clauses in ψ must have already been present in φ.

Now, we must also have ψ ⊢ c for every clause c in φ. Since every clause in ψ is also a
clause in φ, we can again conclude that resolution on them also produces only tautologies,

CS 208 Page 8 of 11 Practice Problems

and similarly or introduction is useless as well. Therefore, if ψ ⊢ c, then c must have been
a clause of ψ. Therefore, every clause in φ must also be present in ψ.

Hence the clauses of ψ and φ must be the same, ie ψ and φ must be the same, meaning
that the CNF obtained is unique.

CS 208 Page 9 of 11 Practice Problems

7. A flavour of DFAs
Consider a DFA M with the set of states Q, alphabet Σ = {0, 1}, transition function δ, and
accepting state F .

Draw the state diagram for the DFA M that accepts the language L = {0n1m | m+n is even}.
The DFA should recognize strings where the total number of ’0’s and ’1’s is even. Provide the
diagram along with the state transitions.

Note: L(M) represents the language accepted by DFA M , and ∼L is the equivalence relation
induced by the language.

Solution:

The state diagram for the DFA M is as follows:

q0start q1 q2 q3

q4q5

q6

trap

0
1

0
1

0

1

10 1

0

0

1
0

1

where the set of states Q = {q0, q1, . . . q6, trap}, alphabet Σ = {0, 1}, transition function δ,
and accepting state F = {q0, q5, q3} and initial state is q0.

State Input 0 Input 1
q0 q1 q2
q1 q0 q5
q2 trap q3
q3 trap q4
q4 trap q3
q5 trap q6
q6 trap q5

Explanation for the states:

• q0: Even no of 0’s

• q1: Odd no of 0’s

• q2: Odd no of 1’s after even 0’s

• q3: Even no of 1’s

• q4: Odd no of 1’s

• q5: Odd no of 1’s after odd 0’s

• q6: Even no of 1’s

• trap: If 0’s seen after 1’s

CS 208 Page 10 of 11 Practice Problems

8. More solved problems on DFA
Please look at some solved examples from the textbook Introduction to Automata Theory,
Languages and Computation by J.E. Hopcroft, R. Motwani and J.D. Ullman (2nd or later
editions). For example, you can look at Examples 2.2. 2.4, 2.5 to get a feel of DFAs for simple
languages.

CS 208 Page 11 of 11 Practice Problems

