
Tutorial 6: Context-Free Tutorial

1. Solve the following problems. Assume the alphabet to be Σ = {a, b, c}

(a) Consider the language of non-palindromes (words that are not palindromes). A palindrome is
a word that spells the same way forward and backwards. For example, ‘abcba’ is a palindrome
but ‘abbaa’ is not). Describe a PDA and a CFG for the language.

(b) Consider the language {w | w ̸= uu for any u ∈ Σ∗}. Describe a PDA and a CFG for the
language.



2. Determine if the following languages are context-free or not. If yes, provide a CFG and PDA for
the same, else prove, using the Pumping Lemma, that they are not Context Free

(a) L1 = {w | w = uu for any u ∈ Σ∗}
(b) L2 = {0p|p is prime}

For more on L2, look at the takeaway problems



3. Deterministic Context-Free Languages
We know that Context-Free Languages (CFL) are accepted by Push-Down Automata (NPDA),
where we had allowed non-determinism in PDA transitions. In this question, we will explore
Deterministic Push-Down Automata (DPDA). Recall that a (not necessarily deterministic) PDA
M can be defined as a 7-tuple:

M = (Q, Σ, Γ, q0, Z0, A, δ)

h where Q is a finite set of states. Σ is a finite set of input symbols. Γ is a finite set of stack
symbols. q0 ∈ Q is the start state. Z0 ∈ Γ is the starting stack symbol. A ⊆ Q, where A is the set
of accepting, or final, states δ is a transition function, where δ : (Q × (Σ ∪ ε)× Γ) → P(Q × Γ∗)
Here, P(X) is the power set of a set X, and ε denotes the empty string. We say that M is a
deterministic PDA (or DPDA) if it satisfies both the following conditions:

For any q ∈ Q, a ∈ Σ ∪ ε, x ∈ Γ, the set δ(q, a, x) has at most one element.

For any q ∈ Q, x ∈ Γ, if δ(q, ε, x) ̸= ∅, then δ(q, a, x) = ∅ for every a ∈ Σ.

We call the languages accepted by DPDAs as DCFLs (Deterministic Context Free Languages).
We have studied in class that PDAs can accept by empty stack or by final state, and that these
provide equivalent accepting power. Interestingly, this is not so for DPDAs, so we need to make
up our mind about which acceptance criterion to use. For purposes of this question, we will use
acceptance by final state. We investigate acceptance by empty stack in a takeaway question at
the end of this tutorial.

1. Consider the language of balanced parentheses. A string of parentheses is balanced if the
number of opening parentheses in any proper prefix is at least as much as the number
of closing parenthesis in the same prefix. Also, the total number of opening and closing
parenthesis in the entire string must be equal.

Draw a DPDA (accepting by final state) that accepts the language of balanced parentheses
strings.

2. Construct a deterministic PDA for the complement of the above language. Does this give you
an idea why DCFLs (recognized by DPDAs by final state) are closed under complementation?



4. Takeaway: The Curious Case of the Unary Alphabet Prove that any language over a unary
alphabet (the alphabet has exactly one element) is context-free if and only if it is regular.



5. Takeaway: Expressions in Intermediate Code
Consider the following language for expressions in some (familiar) programming languages

⟨expr⟩ ::= ⟨term⟩ ‘+’ ⟨term⟩
| ⟨term⟩

⟨term⟩ ::= ⟨factor⟩ ‘*’ ⟨factor⟩
| ⟨factor⟩

⟨factor⟩ ::= ‘(’ ⟨expr⟩ ‘)’
| ⟨number⟩

⟨number⟩ ::= [0-1]+

Now, though expressions can be a sum of as many terms, it is essential, during an intermediate
step of compilation, that every expression must be a sum of at most two terms and every term
must be a product of at most two terms. Draw a Deterministic PDA (Definition provided in
an earlier question) to recognise strings which are of the form as stated above. Note that the
alphabet is Σ = {0, 1, (, ), ∗,+}.



6. Takeaway: Null-stack DPDAs
In Problem 3, we used acceptance by final state for a DPDA. Let’s see what happens if we now
allow a DPDA to accept by emptying its stack (regardless of which state it is in, when the stack
becomes empty). We will call such a DPDA a null-stack DPDA, i.e. it’s a DPDA just like we had
earlier, but it accepts by emptying its stack.

1. Prove that no null-stack DPDA can accept the language of balanced parentheses. Recall
that a string of parentheses is balanced if the number of opening parenthesis in any prefix of
the string is at least as much as the number of closing parenthesis in the same prefix, and
the total number of opening and closing parenthesis ar equal.

[Hint:] Can a null-stack DPDA accept two strings u and u.v, where one is a proper prefix of
the other?

Note: This is quite damaging news in the DPDA world, since we saw in Problem 3 that the
language of balanced parentheses can be accepted by a DPDA accepting by final state. The
above proof should now convince you that unlike normal PDAs, acceptance by final state
and acceptance by empty stack are not equally powerful in the DPDA world.

2. A string is said to be minimally balanced parentheses if the number of opening parenthesis
in any proper prefix is strictly more than the number of closing parenthesis in the same
prefix, and the total number of opening and closing parenthesis in the entire string are equal.
Thus, (()()) is a minimally balanced parentheses string, but ()() and ε are not. Any string
of balanced parentheses can be written as either ε or a concatenation of a finite number
of minimally balanced parentheses strings. Show that for every given value of k > 0, we
can construct a null-stack DPDA that accepts the language of balanced parentheses strings
containing exactly k minimal valid parentheses substrings. Can we construct a null-stack
DPDA if we want to accept the language of balanced parentheses containing upto (instead
of exactly) k minimally valid parentheses substrings?


	Tutorial 6: Context-Free Tutorial

