
CS 208 : Automata Theory and Logic Spring 2024

Homework 4
Due: 20th Apr, 2024 Max Marks: 30

Instructions:

• Please start writing your solution to each homework question on a fresh page. Do
not share a page between solutions to two different questions.

• Please scan the pages containing your solutions and create a single consolidated PDF file
containing all solutions.

• Please upload this consolidated PDF file on gradescope after logging in using your IITB LDAP
id. After uploading, please also mark in gradescope the pages of your scan that
contain the solution to each question in the homework. Please check gradescope for
detailed instructions in this regard.

• Be brief, complete, and stick to what has been asked.

• Untidy presentation of answers, and random ramblings will be penalized by negative marks.

• Unless asked for explicitly, you may cite results/proofs covered in class without reproducing
them.

• If you need to make any assumptions, state them clearly.

• Do not copy solutions from others. All detected cases of copying will be reported
to DADAC with names and roll nos. of all involved. The stakes are high if
you get reported to DADAC, so you are strongly advised not to risk this.

1. Turing machines and natural numbers 10 points
We have studied in class that every natural number i can be thought of as encoding a Turing
machine, say Mi. Similarly, every natural number j can be thought of as encoding a string, say
wj, over an alphabet Σ.

Choose any one of the languages Li (i ∈ {1, 2}) defined below and determine whether Li

is recursive. If your answer is ”Yes”, you must describe how to construct a halting Turing
machine (i.e. halts on all inputs) that decides Li. Otherwise, you must give a proof why Li

is not recursive (i.e. undecidable). Answers without a Turing machine or proof will fetch no
marks.

Choose any one of the languages below to answer this question. Indicate clearly in your answer
which language you are choosing.

(a) L1 = {n ∈ N | ∃m ∈ N s.t. Mn halts on wm}.
(b) L2 = {m ∈ N | ∃ infinitely many n ∈ N s.t. Mn halts on wm}.

2. Post’s Correspondence Problem (PCP) and grammars 10 points
We’ve seen that the halting problem for Turing machines is undecidable. Another very well-
known undecidable problem is Post’s Correspondence Problem, also popularly call PCP. An
instance of PCP consists of two finite (ordered) lists, say A and B, of strings over an al-
phabet Σ, such that the lists are of equal length. Let the lists be A = (w1, w2, . . . wk) and
B = (v1, v2, . . . vk), where each wi, vi ∈ Σ∗. For each i ∈ {1, . . . k}, the strings wi and vi are

CS 208 Page 1 of 2 Homework 4



called corresponding strings. A solution to the PCP instance is a finite sequence of integers
(i1, i2, . . . im) such that the concatenated strings wi1wi2 · · ·wim and vi1vi2 · · · vim are identical.

As an example, suppose Σ = {0, 1} and let A = (01, 10, 101, 101), B = (0101, 101, 1, 01). In
other words, w1 = 01, w2 = 10, w3 = w4 = 101, while v1 = 0101, v2 = 101, v3 = 1, v4 = 01.
One solution to this instance of PCP is (3, 1, 2, 4), since w3w1w2w4 = 1010110101 = v3v1v2v4.
On the other hand, if A = (011, 1101, 110, 111) and B = (001, 001, 00, 010) you can convince
yourself that this instance of PCP doesn’t have a solution, since every wi has more 1s than the
corresponding vi.

The decision version of PCP can be stated as follows: Given an instance of PCP, does it have
a solution?

It is known that PCP is undecidable. In other words, there does not exist any halting Turing
machine that takes as input an instance of PCP, and halts in a designated ”Yes” state if the
instance has a solution, and halts in a designated ”No” state otherwise. For those interested,
you can look up Section 9.4 of Hopcroft, Motwani and Ullman’s book for a detailed proof of
this result. In this problem, we won’t use the details of the proof. Instead, we will simply
appeal to the undecidability of PCP.

Show by using a reduction from PCP that the following problem is undecidable:
Given a context-free grammar G, does there exist a terminal string w ∈ L(G) such that wR ∈
L(G) as well, where wR denotes the string w reversed?

You must explain clearly how having a Turing machine that decides the above problem about
CFGs would enable you to construct a Turing machine that decides PCP.

Answers without explanations will fetch no marks.

[Hint: Take an arbitrary instance of PCP and show how to construct a CFG G out of it such
that both w and wR are in L(G) iff the PCP instance has a solution.]

3. Co-recursively enumerable languages 10 points
A language L ⊆ Σ∗ is said to be co-recursively enumerable if its complement (i.e. Σ∗ \ L) is
recursively enumerable. We have seen examples of co-recursively enumerable languages in class.
For example, the diagonalization language Ld is co-recursively enumerable.

Let F = {Li | Li ⊆ Σ∗, i ∈ N} be an (infinite) family of languages over an alphabet Σ such
that

• For every i ∈ N, Li is not recursively enumerable

• For every i ∈ N, Li ⊆ Σ∗ is co-recursively enumerable.

• For every i, j s.t. i ̸= j, Li ̸⊆ Lj.

Answer any one of the following questions. Indicate clearly in your answer which question
you are choosing to answer.

(a) Prove that the (infinite) intersection of all languages in F , i.e. {w | ∀i ∈ N, w ∈ Li}, is
co-recursively enumerable.

(b) Give an example of F such that the (infinite) union of all languages in F , i.e. {w | ∃i ∈
N, w ∈ Li}, is not recursively enumerable but is co-recursively enumerable.
You must clearly state what the language Li is for each i ∈ N, show that these languages
satisfy the three properties listed above, and prove that the infinite union is not recursively
enumerable, although its complement is recursively enumerable.

Answers without proofs will not fetch any marks.

CS 208 Page 2 of 2 Homework 4


