Some Computational Problems

Supratik Chakraborty
Dept of CSE, IIT Bombay

Prob 1: Counting #1's modulo k

- Given a stream of 0's and 1's, output whether the count of 1's seen so far is a multiple of k
- Example: k = 3

Prob 1: Counting #1's modulo k

Repeat until no symbols to read
Read next input symbol;

Intuitive
"code" view

if (input == 1)
cm3 = (cm3 + 1) mod 3;

if (cm3 == 0) output Y

else output N

cm3 = 0; // cm3 : count of 1's mod 3

Prob 2: Checking for product triple

• Given a stream of 0's, 1's and 2's in following format

- Output Y if a x b = c and N otherwise
- Assume a and b are always k bits long and c is 2k bits long
- Example, k = 5

Prob 2: Checking for product triple

Output N

a=31,b=31,c=1023

Output Y

a=0,b=0,c=0

Intuitive ..code" view

Get value of a: Read next k symbols after 2; Get value of b; Read next k symbols after 3; Get value of c;

If $(a \times b == c)$ output Y else output N

Prob 2: Checking for product triple

Entire circuit representable by logic formula of size quadratic in n, mimics intuitive code view

Logic and Automata

- State transition centric view: Automata theory
- Logic formula centric view: Logical reasoning
- Both important, and also deeply connected
 - At times, it helps to view computation through lens of automata
 - See Prob 1 in earlier slides
 - At other times, through lens of logic
 - See Prob 2 in earlier slides