Propositional Logic: Syntax and Semantics

Supratik Chakraborty IIT Bombay

通 とう ほ とう ほう

- Variables: p, q, r, \ldots
 - Represent propositions or declarative statements
- Constants: \top, \bot
- Operators or connectives:
 - $\bullet \ \land, \ \lor, \ \neg, \ \rightarrow, \ \leftrightarrow, \ (, \)$
 - $\bullet\,$ We don't need all of them, but convenient to have them $\ldots\,$

(4回) (4回) (4回)

Rules for formuling formulas

- Every variable constitutes a formula
- The constants \top and \bot are formulae.
- If φ is a formula, so are $\neg \varphi$ and (φ)
- If φ_1 and φ_2 are formulas, so is $\varphi_1 \land \varphi_2, \varphi_1 \lor \varphi_2, \varphi_1 \rightarrow \varphi_2, \varphi_1 \leftrightarrow \varphi_2$

・ 同 ト ・ ヨ ト ・ ヨ ト

Propositional formulas as strings and trees

- Alphabet (over which strings are constructed):
 - Set of variable names, e.g. $\{p_1, p_2, q_1, q_2, ...\}$
 - Set of constants $\{\top, \bot\}$
 - Fixed symbols $\{\neg, \lor, \land, \rightarrow, \leftrightarrow\}$
- Well-formed formula: string formed according to rules on prev. slide

•
$$(p_1 \vee \neg q_2) \land (\neg p_2 \rightarrow (q_1 \leftrightarrow \neg p_1))$$

•
$$p_1
ightarrow (p_2
ightarrow (p_3
ightarrow p_4))$$

- Well-formed formulas can be represented using trees
 - Consider the rules on prev. slide as telling how to construct a tree bottom-up
 - Parse trees: Obviate the need for '(' and ')'

(1日) (1日) (1日)

Consider a formula φ with n variables. Let 0 represent "false" and 1 represent "true"

- $\bullet \ \llbracket \varphi \rrbracket : \{0,1\}^n \ \rightarrow \ \{0,1\}$
- Semantics is a function
 - Often represented in tabular form: Truth Table
- Indicates truth value of formula, given truth values of all variables

Rules of semantics

•
$$\llbracket \neg \varphi \rrbracket = 1$$
 iff $\llbracket \varphi \rrbracket = 0$.

•
$$\llbracket \varphi_1 \land \varphi_2 \rrbracket = 1$$
 iff $\llbracket \varphi_1 \rrbracket = \llbracket \varphi_2 \rrbracket = 1.$

• $\llbracket \varphi_1 \lor \varphi_2 \rrbracket = 1$ iff at least one of $\llbracket \varphi_1 \rrbracket$ or $\llbracket \varphi_2 \rrbracket$ evaluates to 1.

•
$$\llbracket \varphi_1 \to \varphi_2 \rrbracket = 1$$
 iff at least one of $\llbracket \varphi_1 \rrbracket = 0$ or $\llbracket \varphi_2 \rrbracket = 1$.

• $\llbracket \varphi_1 \leftrightarrow \varphi_2 \rrbracket = 1$ iff both $\llbracket \varphi_1 \rightarrow \varphi_2 \rrbracket = 1$ or $\llbracket \varphi_2 \rightarrow \varphi_1 \rrbracket = 1$.

(ロ) (同) (E) (E) (E) (E)