Propositional Logic: Syntax and Semantics

Supratik Chakraborty IIT Bombay

通 とう ほ とう ほう

Consider a formula φ with n variables. Let 0 represent "false" and 1 represent "true"

- $\bullet \ \llbracket \varphi \rrbracket : \{0,1\}^n \ \rightarrow \ \{0,1\}$
- Semantics is a function
 - Often represented in tabular form: Truth Table
- Indicates truth value of formula, given truth values of all variables

Rules of semantics

•
$$\llbracket \neg \varphi \rrbracket = 1$$
 iff $\llbracket \varphi \rrbracket = 0$.

•
$$\llbracket \varphi_1 \land \varphi_2 \rrbracket = 1$$
 iff $\llbracket \varphi_1 \rrbracket = \llbracket \varphi_2 \rrbracket = 1.$

• $\llbracket \varphi_1 \lor \varphi_2 \rrbracket = 1$ iff at least one of $\llbracket \varphi_1 \rrbracket$ or $\llbracket \varphi_2 \rrbracket$ evaluates to 1.

•
$$\llbracket \varphi_1 \to \varphi_2 \rrbracket = 1$$
 iff at least one of $\llbracket \varphi_1 \rrbracket = 0$ or $\llbracket \varphi_2 \rrbracket = 1$.

• $\llbracket \varphi_1 \leftrightarrow \varphi_2 \rrbracket = 1$ iff both $\llbracket \varphi_1 \rightarrow \varphi_2 \rrbracket = 1$ and $\llbracket \varphi_2 \rightarrow \varphi_1 \rrbracket = 1$.

• □ ▶ • □ ▶ • □ ▶ • □ ▶ • □ ▶

Э

$$\llbracket (p \lor s) \to (\neg q \leftrightarrow r) \rrbracket$$

<ロ> <同> <同> < 同> < 同>

æ

 $\llbracket (p \lor s) \to (\neg q \leftrightarrow r) \rrbracket$

Write out the truth table:

▲圖 ▶ ▲ 国 ▶ ▲ 国 ▶

 $\llbracket (p \lor s) \to (\neg q \leftrightarrow r) \rrbracket$

Write out the truth table:

р	q	r	s	$p \lor s$	$\neg q$	$ eg q \leftrightarrow r$	$(p \lor s) \to (\neg q \leftrightarrow r)$
0	0	0	0	0	1	0	1
						-	

イロン 不同 とくほど 不同 とう

 $\llbracket (p \lor s) \to (\neg q \leftrightarrow r) \rrbracket$

Write out the truth table:

p	q	r	s	$p \lor s$	$\neg q$	$ eg q \leftrightarrow r$	$(p \lor s) \to (\neg q \leftrightarrow r)$
0	0	0	0	0	1	0	1
0	0	0	1	1	1	0	0
							-

イロン 不同 とくほど 不同 とう

 $\llbracket (p \lor s) \to (\neg q \leftrightarrow r) \rrbracket$

Write out the truth table:

р	q	r	5	$p \lor s$	$\neg q$	$\neg q \leftrightarrow r$	$(p \lor s) \to (\neg q \leftrightarrow r)$
0	0	0	0	0	1	0	1
0	0	0	1	1	1	0	0
0	0	1	0	0	1	1	1
0	0	1	1	1	1	1	1
0	1	0	0	0	0	1	1
0	1	0	1	1	0	1	1
0	1	1	0	0	0	0	1
0	1	1	1	1	0	0	0
1	0	0	0	1	1	0	0
1	0	0	1	1	1	0	0
1	0	1	0	1	1	1	1
1	0	1	1	1	1	1	1
1	1	0	0	1	0	1	1
1	1	0	1	1	0	1	1
1	1	1	0	1	0	0	0
1	1	1	1	1	0	0	0

・ 回 ト ・ ヨ ト ・ ヨ ト

- satisfiable or consistent iff $[\![\varphi]\!]=1$ for some assign of vars
 - E.g. $p \lor q$, $p \land q$

(1日) (1日) (日)

3

• satisfiable or consistent iff $\llbracket \varphi \rrbracket = 1$ for some assign of vars

- E.g. $p \lor q$, $p \land q$
- Both φ and $\neg \varphi$ may be satisifable.

・ 回 ト ・ ヨ ト ・ ヨ ト

• satisfiable or consistent iff $\llbracket \varphi \rrbracket = 1$ for some assign of vars

- E.g. $p \lor q$, $p \land q$
- Both φ and $\neg \varphi$ may be satisifable.
- unsatisfiable or contradiction iff [[φ]] = 0 for all assign of vars

• E.g.
$$p \land \neg p$$
,

イロト イヨト イヨト イヨト

- satisfiable or consistent iff $\llbracket \varphi \rrbracket = 1$ for some assign of vars
 - E.g. $p \lor q$, $p \land q$
 - Both φ and $\neg \varphi$ may be satisifable.
- **unsatisfiable** or **contradiction** iff $\llbracket \varphi \rrbracket = 0$ for all assign of vars

• E.g.
$$p \land \neg p$$
, $p \land ((p \rightarrow q) \land \neg q)$

イロン イヨン イヨン イヨン

- satisfiable or consistent iff $\llbracket \varphi \rrbracket = 1$ for some assign of vars
 - E.g. $p \lor q$, $p \land q$
 - Both φ and $\neg \varphi$ may be satisifable.
- unsatisfiable or contradiction iff $[\![\varphi]\!] = 0$ for all assign of vars

• E.g.
$$p \land \neg p$$
, $p \land ((p \rightarrow q) \land \neg q)$

• At most one of φ and $\neg \varphi$ can be unsatisfiable.

イロト イヨト イヨト イヨト

• satisfiable or consistent iff $\llbracket \varphi \rrbracket = 1$ for some assign of vars

- E.g. $p \lor q$, $p \land q$
- Both φ and $\neg \varphi$ may be satisifable.
- unsatisfiable or contradiction iff [[φ]] = 0 for all assign of vars
 - E.g. $p \land \neg p$, $p \land ((p \rightarrow q) \land \neg q)$
 - At most one of φ and $\neg\varphi$ can be unsatisfiable.
- valid or tautology iff $\llbracket \varphi \rrbracket = 1$ for all assign of vars
 - E.g. $p \lor \neg p$,

・ロ・ ・ 四・ ・ ヨ・ ・ ヨ・

• satisfiable or consistent iff $\llbracket \varphi \rrbracket = 1$ for some assign of vars

- E.g. $p \lor q$, $p \land q$
- Both φ and $\neg \varphi$ may be satisifable.
- unsatisfiable or contradiction iff [[φ]] = 0 for all assign of vars
 - E.g. $p \land \neg p$, $p \land ((p \rightarrow q) \land \neg q)$
 - At most one of φ and $\neg\varphi$ can be unsatisfiable.
- valid or tautology iff $\llbracket \varphi \rrbracket = 1$ for all assign of vars
 - E.g. $p \lor \neg p$, $p \lor \neg (p \land q)$

・ロ・ ・ 回 ・ ・ ヨ ・ ・ ヨ ・ ・

• satisfiable or consistent iff $\llbracket \varphi \rrbracket = 1$ for some assign of vars

- E.g. $p \lor q$, $p \land q$
- Both φ and $\neg \varphi$ may be satisifable.
- unsatisfiable or contradiction iff [[φ]] = 0 for all assign of vars

• E.g.
$$p \land \neg p$$
, $p \land ((p \rightarrow q) \land \neg q)$

- At most one of φ and $\neg\varphi$ can be unsatisfiable.
- valid or tautology iff $\llbracket \varphi \rrbracket = 1$ for all assign of vars
 - E.g. $p \lor \neg p$, $p \lor \neg (p \land q)$
 - φ is valid iff $\neg \varphi$ is unsatisfiable.

・ロ・ ・ 回 ・ ・ ヨ ・ ・ ヨ ・ ・

A formula φ

semantically entails φ₁ iff [[φ]] ≤ [[φ₁]] for all assign of vars, where 0 (false) ≤ 1 (true)

・ 回 ト ・ ヨ ト ・ ヨ ト …

A formula φ

• semantically entails φ_1 iff $\llbracket \varphi \rrbracket \preceq \llbracket \varphi_1 \rrbracket$ for all assign of vars, where 0 (false) $\preceq 1$ (true)

• E.g.
$$p \models (p \lor q)$$
,

(4回) (4回) (日)

A formula φ

semantically entails φ₁ iff [[φ]] ≤ [[φ₁]] for all assign of vars, where 0 (false) ≤ 1 (true)

• E.g.
$$p \models (p \lor q), \neg p \models (p \to q)$$

(4回) (4回) (日)

A formula φ

- semantically entails φ₁ iff [[φ]] ≤ [[φ₁]] for all assign of vars, where 0 (false) ≤ 1 (true)
 - E.g. $p \models (p \lor q), \neg p \models (p \to q)$
 - Denoted $\varphi \models \varphi_1$
 - Equivalently, $\varphi
 ightarrow \varphi_1$ is valid

・日・ ・ ヨ・ ・ ヨ・

3

A formula φ

- semantically entails φ₁ iff [[φ]] ≤ [[φ₁]] for all assign of vars, where 0 (false) ≤ 1 (true)
 - E.g. $p \models (p \lor q), \neg p \models (p \to q)$
 - Denoted $\varphi \models \varphi_1$
 - Equivalently, $arphi
 ightarrow arphi_1$ is valid
- is semantically equivalent to φ_1 iff $\varphi \models \varphi_1$ and $\varphi_1 \models \varphi$
 - Identical truth tables, (obviously) an equivalence relation

(1) マント (1) マント

A formula φ

- semantically entails φ₁ iff [[φ]] ≤ [[φ₁]] for all assign of vars, where 0 (false) ≤ 1 (true)
 - E.g. $p \models (p \lor q), \neg p \models (p \to q)$
 - Denoted $\varphi \models \varphi_1$
 - Equivalently, $arphi
 ightarrow arphi_1$ is valid
- is semantically equivalent to φ_1 iff $\varphi \models \varphi_1$ and $\varphi_1 \models \varphi$
 - Identical truth tables, (obviously) an equivalence relation
 - E.g. $p \rightarrow q$ and $\neg p \lor q$

・ 同 ト ・ ヨ ト ・ ヨ ト

A formula φ

- semantically entails φ₁ iff [[φ]] ≤ [[φ₁]] for all assign of vars, where 0 (false) ≤ 1 (true)
 - E.g. $p \models (p \lor q), \neg p \models (p \to q)$
 - Denoted $\varphi \models \varphi_1$
 - Equivalently, $arphi
 ightarrow arphi_1$ is valid
- is semantically equivalent to φ_1 iff $\varphi \models \varphi_1$ and $\varphi_1 \models \varphi$
 - Identical truth tables, (obviously) an equivalence relation
 - E.g. $p \rightarrow q$ and $\neg p \lor q$
 - Equivalently, $\varphi \leftrightarrow \varphi_1$ is valid

・ 同 ト ・ ヨ ト ・ ヨ ト

A formula φ

- semantically entails φ_1 iff $\llbracket \varphi \rrbracket \preceq \llbracket \varphi_1 \rrbracket$ for all assign of vars, where 0 (false) $\preceq 1$ (true)
 - E.g. $p \models (p \lor q), \neg p \models (p \to q)$
 - Denoted $\varphi \models \varphi_1$
 - Equivalently, $\varphi
 ightarrow \varphi_1$ is valid
- is semantically equivalent to φ_1 iff $\varphi \models \varphi_1$ and $\varphi_1 \models \varphi$
 - Identical truth tables, (obviously) an equivalence relation
 - E.g. $p \rightarrow q$ and $\neg p \lor q$
 - Equivalently, $\varphi \leftrightarrow \varphi_1$ is valid
- is equisatisfiable to φ_1 iff either both φ and φ_1 are satisfiable or both are unsatisfiable
 - E.g. $p \land q$ and $r \lor s$

・ロ・ ・ 回 ・ ・ ヨ ・ ・ ヨ ・ ・

A formula φ

- semantically entails φ₁ iff [[φ]] ≤ [[φ₁]] for all assign of vars, where 0 (false) ≤ 1 (true)
 - E.g. $p \models (p \lor q), \neg p \models (p \to q)$
 - Denoted $\varphi \models \varphi_1$
 - Equivalently, $arphi
 ightarrow arphi_1$ is valid
- is semantically equivalent to φ_1 iff $\varphi \models \varphi_1$ and $\varphi_1 \models \varphi$
 - Identical truth tables, (obviously) an equivalence relation
 - E.g. $p \rightarrow q$ and $\neg p \lor q$
 - Equivalently, $\varphi \leftrightarrow \varphi_1$ is valid
- is equisatisfiable to φ_1 iff either both φ and φ_1 are satisfiable or both are unsatisfiable
 - E.g. $p \land q$ and $r \lor s$
 - Semantic equivalence implies equisatisfiability, not vice versa

イロン 不同 とくほど 不同 とう

Two syntactically different formulas may be semantically equivalent!

E.g. $\varphi_1: p \to (q \to r), \varphi_2: (p \land q) \to r$, and $\varphi_3: (q \land \neg r) \to \neg p$

(日) (モン・モン・モ

Two syntactically different formulas may be semantically equivalent!

E.g. $\varphi_1 : p \to (q \to r), \ \varphi_2 : (p \land q) \to r, \ \text{and} \ \varphi_3 : (q \land \neg r) \to \neg p$

Truth table way of checking equivalence (or not):

・ 同 ト ・ ヨ ト ・ ヨ ト

Two syntactically different formulas may be semantically equivalent!

E.g. $\varphi_1: p \to (q \to r), \ \varphi_2: (p \land q) \to r, \ \text{and} \ \varphi_3: (q \land \neg r) \to \neg p$

Truth table way of checking equivalence (or not):

・ 何 ト ・ ヨ ト ・ ヨ ト

Э

Two syntactically different formulas may be semantically equivalent!

E.g. $\varphi_1: p \to (q \to r), \varphi_2: (p \land q) \to r$, and $\varphi_3: (q \land \neg r) \to \neg p$

Truth table way of checking equivalence (or not):

р	q	r	$q \rightarrow r$	$p \wedge q$	$q \wedge \neg r$	¬ <i>p</i>	φ_1	φ_2	$arphi_{3}$
0	0	0	1	0	0	1	1	1	1
0	0	1	1	0	0	1	1	1	1
0	1	0	0	0	1	1	1	1	1
0	1	1	1	0	0	1	1	1	1
1	0	0	1	0	0	0	1	1	1
1	0	1	1	0	0	0	1	1	1
1	1	0	0	1	1	0	0	0	0
1	1	1	1	1	0	0	1	1	1

向下 イヨト イヨト

Two syntactically different formulas may be semantically equivalent!

E.g. $\varphi_1 : p \to (q \to r), \varphi_2 : (p \land q) \to r$, and $\varphi_3 : (q \land \neg r) \to \neg p$

Truth table way of checking equivalence (or not):

р	q	r	$q \rightarrow r$	$p \wedge q$	$q \wedge \neg r$	¬ <i>p</i>	φ_1	φ_2	$arphi_{3}$
0	0	0	1	0	0	1	1	1	1
0	0	1	1	0	0	1	1	1	1
0	1	0	0	0	1	1	1	1	1
0	1	1	1	0	0	1	1	1	1
1	0	0	1	0	0	0	1	1	1
1	0	1	1	0	0	0	1	1	1
1	1	0	0	1	1	0	0	0	0
1	1	1	1	1	0	0	1	1	1

Works, but doesn't scale! 2^n rows for *n* propositions

Supratik Chakraborty IIT Bombay Propositional Logic: Syntax and Semantics

• • = • • = •

Semantic reasoning without truth tables?

Yes, proof rules

・ 回 ト ・ ヨ ト ・ ヨ ト