
Tutorial 2

1. A literal is a propositional variable or its negation. A clause is a disjunction of literals such that
a literal and its negation are not both in the same clause, for any literal. Similarly, a cube is
a conjunction of literals such that a literal and its negation are not both in the same cube, for
any literal. A propositional formula is said to be in Conjunctive Normal Form (CNF) if it is a
conjunction of clauses. A formula is said to be in Disjunctive Normal Form (DNF) if it is a
disjunction of cubes.

Let P, Q, R, S, T be propositional variables. An example DNF formula is (P ∧ ¬Q) ∨ (¬P ∧ Q),
and an example CNF formula is (P ∨ Q) ∧ (¬P ∨ ¬Q). Are they semantically equivalent?

For the propositional formula (P ∨ T) → (Q ∨ ¬R) ∨ ¬(S ∨ T), find semantically equivalent
formulas in CNF and DNF. Show all intermediate steps in arriving at the final result.

Hint: Use the following semantic equivalences, where we use φ ⇔ ψ to denote semantic
equivalence of φ and ψ:

• φ1 → φ2 ⇔ (¬φ1 ∨ φ2)

• Distributive laws:

– φ1 ∧ (φ2 ∨ φ3) ⇔ (φ1 ∧ φ2) ∨ (φ1 ∧ φ3)

– φ1 ∨ (φ2 ∧ φ3) ⇔ (φ1 ∨ φ2) ∧ (φ1 ∨ φ3)

• De Morgan’s laws

– ¬(φ1 ∧ φ2) ⇔ (¬φ1 ∨ ¬φ2)

– ¬(φ1 ∨ φ2) ⇔ (¬φ1 ∧ ¬φ2)

Solution: Propositional formula (P ∨ T) → (Q ∨ ¬R) ∨ ¬(S ∨ T).

Transformation steps

1. Eliminate Implications:

¬(P ∨ T) ∨
(
(Q ∨ ¬R) ∨ ¬(S ∨ T)

)
2. Apply De Morgan’s Laws:

(¬P ∧ ¬T) ∨
(
(Q ∨ ¬R) ∨ (¬S ∧ ¬T)

)
Transformation into DNF
Distribute Conjunction over Disjunction:

(¬P ∧ ¬T) ∨ (Q) ∨ (¬R) ∨ (¬S ∧ ¬T)

Transformation into CNF
Distribute Disjunction over Conjunction:

(¬P ∨ Q ∨ ¬R ∨ ¬S) ∧ (¬P ∨ Q ∨ ¬R ∨ ¬T)

∧ (¬T ∨ Q ∨ ¬R ∨ ¬S) ∧ (¬T ∨ Q ∨ ¬R ∨ ¬T)

2. Consider the parity function, PARITY : {0, 1}n 7→ {0, 1}, where PARITY evaluates to 1 if and
only if an odd number of inputs is 1. In all of the CNFs below, we assume that each clause
contains any variable at most once, i.e. no clause contains expressions of the form p ∧ ¬p or
p ∨ ¬p. Furthermore, all clauses are assumed to be distinct.

1. Prove that any CNF representation of PARITY must have n literals (from distinct variables)
in every clause.

[Hint: Take a clause, and suppose the variable v is missing from it. What happens when
you flip v?]

2. Prove that any CNF representation of PARITY must have ≥ 2n−1 clauses.

[Hint: What is the relation between CNF/DNF and truth tables?]

PARITY is ubiquitous across Computer Science; for example, in Coding Theory (see Hadamard
codes), Cryptography (see the Goldreich-Levin theorem), and discrete Fourier Analysis (yes, that
is a thing)! PARITY is ubiquitous across Computer Science; for example, in Coding Theory (see
Hadamard codes), Cryptography (see the Goldreich-Levin theorem), and discrete Fourier Analysis
(yes, that is a thing)!

Solution: Let

PARITY :=
m∧

i=1

(
∨ni

j=1ℓij

)
be the CNF representation of PARITY. We want to prove that ni = n for every i, and
m ≥ 2n−1.

1. Suppose ni < n for some i. Negate the entire formula to convert the CNF into a DNF.
Now, choose an assignment of literals in the ith cube (of the DNF) such that the cube,
and hence the whole DNF formula, evaluates to 1. Now, consider a variable v, which
doesn’t appear in the ith cube, and flip its value. The LHS then becomes 0. However,
the ith clause stays 1, leading to a contradiction.

2. Once again, consider the DNF. Note that a conjunction of n literals is satisfied by a
unique assignment of variables, and thus, the clauses in the DNF actually encode the
assignments that satisfy the formula. Since PARITY is satisfied by 2n−1 clauses, we’re
done.

3. We have already defined CNF and DNF formulas in Question 1. Recall the definition of equisatis-
fiable formulas taught in class. A stronger notion of equisatisfiability is as follows: A formula
F with variables { f1, f2 · · · fn} and a formula G with variables { f1, f2 · · · fn, g1, g2 · · · gm} are
strongly-equisatisfiable if:

• For any assignment to the fis which makes F evaluate to true there exists an assignment to
the gis such that G evaluates to true under this assignment with the same assignment to
the fis.

AND

• For any assignment setting G to true, the assignment when restricted to fis makes F evaluate
to true.

Why does this help us? A satisfying assignment for G tells us a satisfying assignment for F, and
if we somehow discover that G has no satisfying assignments, then we know that F also has no
satisfying assignments. In other words, the satisfiability of F can be judged using the satisfiability
of G. Satisfiability is a central problem in computer science (for reasons you will see in CS218
later), and such a reduction is very valuable. In particular, for a formula F in k-CNF we look for a
formula G that has a small number of literals in each clause, and the total number of clauses
itself is not too large - ideally a linear factor of k as compared to F.

Now consider an r-CNF formula, i.e a CNF formula with r literals per clause. To keep things
simple, suppose r = 2k, for some k > 0. We will start with the simplest case: a 2k-CNF formula
containing a single clause Ck = p0 ∨ p1 ∨ p2 · · · p2k−1 with 2k literals.

1. Let’s try using ’selector variables’ to construct another formula which is strongly-equisatisfiable
with Ck. The idea is to use these selector variables to ’select’ which literals in our clause are
allowed to be false. Use k selector variables s1, s2, s3 · · · sk and write a CNF formula that is
strongly-equisatisfiable with Ck, such that each clause has size O(k).
[Hint: If you consider the disjunction of s̃1 ∨ s̃2 ∨ s̃3 · · · s̃k, where s̃i denotes either si or ¬si,
it is true in all but one of the 2k possible assignments to the si variables]

2. What is the number of clauses in the CNF constructed in the above sub-question? How
small can you make the clauses by repeatedly applying this technique?

3. Consider a k-CNF formula with n clauses. When minimizing the clause size using the above
technique repeatedly, what is the (asymptotic) blowup factor in the number of clauses?
Observe that the factor is almost linear, upto some logarithmic factors.

[Hint: Apply the above reduction repeatedly and see how much net blowup occurs]

4. Can you think of a smarter way to do the reduction that only requires linear blowup?

[Hint: Consider using different and more auxiliary variables (like the ’selector variables’
above) to reduce the size of clauses.]

Solution:

1. The idea is very similar to a MUX (or multiplexer) from digital electronics. We consider
the 2k possible disjunctions: s1 ∨ s2 ∨ · · · sk; s1 ∨ s2 ∨ · · · ¬sk etc. We associate a
non-negative integer with each such disjunction, where the k-bit binary encoding of the
integer is obtained as b1b2 . . . bk, where bk = 1 if sk is in the disjunction and bk = 0
otherwise. For example, the integer associated with the disjunction (s1 ∨ s2 ∨ · · · sk)
is 11 · · · 1 or 2k − 1, and the integer associated with (¬s1 ∨ ¬s2 ∨ · · · ¬sk) is 00 · · · 0
or 0. Let the disjunction corresponding to the number 0 ≤ q ≤ 2k − 1 in binary be
denoted Dq. Consider the CNF formula:∧

i=0

(Di ∨ pi)

If any of the pis is true, the unique assignment setting Di to false satisfies all the other
2k − 1 clauses. On the other hand if all the pis are false, any assignment to the si
variables will dissatisfy atleast one Dq. Thus this formula is strongly equisatisfiable
- any assignment setting Ck to true has a satisfying assignment to the sis, and any
assignment setting our formula to true must have one of the pis true, which makes Ck
true.

2. The size of clauses is now k + 1. The number of clauses is 2k. Thus, we have obtained
an exponential reduction in the size of a clause for a linear factor (the initial size was 2k

blowup in number of clauses. We can reduce the size as long as ⌈log2(size)⌉+ 1 < size,
which is true as small as size 3. The size CANNOT be reduced below 3 with this
method.

3. We obtain logarithmic reduction for linear blowup. Hence, the factor of blowup will
look like k · log(k) · log log(k) · log log log(k) · · · loglog∗(k)(k). The factors after the
k are all logarithmic factors and can be bounded by a polynomial of any degree > 0.

4. Indeed, we do not need to introduce so many selectors for a clause! We can simply use
an indicator si to indicate that a clause after pi is satisfied. Thus, the equisatisfiable
formula:

(p1 ∨ p2 ∨ s2) ∧ (¬s2 ∨ p3 ∨ s3) ∧ (¬s3 ∨ p4 ∨ s4) · · ·

works and has a linear blowup! Think about Tseitin encoding covered in class.

However this method also fails to lower the size below 3. Indeed we should suspect
that it is not possible to reduce the size below 3, because 2-SAT has a linear time
solution while 3-SAT is NP-Complete!

4. [Take-away question – solve in your rooms]

In this question we will view the set of assignments satisfying a set of propositional formulae as a
language and examine some properties of such languages.

Let P denote a countably infinite set of propositional variables p0, p1, p2, Let us call these
variables positional variables. Let Σ be a countable set of formulae over these positional variables.
Every assignment α : P → {0, 1} to the positional variable can be uniquely associated with an
infinite bitstring w, where wi = α(pi). The language defined by Σ - denoted by L(Σ) - is the set
of bitstrings w for which the corresponding assignment α, that has α(pi) = wi for each natural i,
satisfies Σ, that is, for each formula F ∈ Σ, α |= F. In this case, we say that α |= Σ. Let us call
the languages definable this way PL-definable languages.

(a) Show that PL-definable languages are closed under countable intersection, ie if L is a
countable set of PL-languages, then

⋂
L∈L

L is also PL-definable.

(b) Show that PL-definable languages are closed under finite union, ie if L is a finite set of
PL-languages, then

⋃
L∈L

L is also PL-definable.

[Hint: Try proving that the union of two PL-definable languages is PL-definable. The general
case can then be proven via induction. If F = {F1, F2, . . . } and G = {G1, G2, . . . } are two
countable sets of formulae, then an infinite bitstring w ∈ L(F) ∪ L(G) if and only if either
w |= every Fi or w |= every Gi.]

Solution:

a) Let S denote the family of sets of propositional formulae such that L = {L(σ) : σ ∈ S}.
Consider Σ =

⋃
σ∈S

σ. Since each σ ∈ S is countable, and a countable union of countable

sets is countable, Σ is countable as well. Now, for any infinite bitstring w, w ∈ L(Σ) if
and only if w |= F for each F ∈ σ, for each σ ∈ S (we abuse notation and denote the
assignment corresponding to w by w). This happens if and only if w ∈ L(σ) for each
σ ∈ S , ie w ∈ ⋂

L∈L
L.

b) We show that the union of two PL-definable languages is PL-definable. The general
case can then be handled via induction. Let F and G be two countable sets of formulae.
Let H = {F ∨ G : F ∈ F, G ∈ G} (note that this set is countable since F and G
are countable). An infinite bitstring w lies in L(H) if and only if, for every F ∈ F
and G ∈ G, w |= F ∨ G. Now, if w ∈ L(F), then w |= F for every F ∈ F, hence,
w |= F ∨ G for every F ∈ F and every G ∈ G and so w ∈ L(H). Similarly, if
w ∈ L(G), then w ∈ L(H), ie for any w ∈ L(F) ∪ L(G), we have w ∈ L(H). Let
us show that these are the only bitstrings in L(H). Assume some infinite bitstring
w is such that w /∈ L(F) and w /∈ L(G). This means that there is some F ∈ F and
G ∈ G such that w ⊭ F and w ⊭ G. This means that w ⊭ F ∨ G, which is a member
of H. Hence w /∈ L(H). This means that for any infinite bitstring w, w ∈ L(H) if
and only if w ∈ L(F) ∪ L(G), ie L(H) = L(F) ∪ L(G), showing that L(F) ∪ L(G) is
PL-definable.

	Tutorial 2

