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Tutorial 1

1. Determine if the following formulae are tautology.

a) (p → q) ∧ (q → r) → (p → r)

b) (p → q) ∧ (q → r) → (r → p)

c) (p1 ∧ p2 . . . pn) → (p1 ∨ p2 . . . pn)

Solution:

a) Yes. We can show this by using truth table as follows.

p q r p → q q → r (p → q) ∧ (q → r) → (p → r)
true true true true true true
true true false true false true
true false true false true true
true false false false true true
false true true true true true
false true false true false true
false false true true true true
false false false true true true

b) No. Its not tautology as for p as false and q as true and r as true, we can show that
(p → q) ∧ (q → r) → (r → p) is false

c) Yes. It is a tautology. However, we cannot verify this by drawing a truth table as it will
become excessively cumbersome. Let us assume it is not a tautology, which means there
exists an assignment for which (p1 ∧ p2 . . . pn) evaluates to ⊤ and (p1 ∨ p2 . . . pn)
evaluates to ⊥. Any assignment for which (p1 ∧ p2 . . . pn) evaluates to ⊤ must assign
p1 as ⊤. If p1 is ⊤, then (p1 ∨ p2 . . . pn) must also evaluate to ⊤. Hence, we have a
contradiction. Hence, the given formula is a tautology

Key Takeaway: Truth Tables act as the first principle for proving certain properties of (a)
given formula(e). However, using truth tables for verification becomes cumbersome, and
hence, we desire a proof system. A proof system is a set of rules for constructing proofs,
which will be covered in the next part of the course.

2. Consider a set S of size n. Recall that for a relation over S to be a partial order we require the
following to hold:

i Reflexive: x ⪯ x for all x ∈ S

ii Transitive: x ⪯ y and y ⪯ z implies x ⪯ z for all x, y, z ∈ S

iii Antisymmetric: x ⪯ y and y ⪯ x implies x = y for all x, y ∈ S.

Moreover, x ∈ S is called a maximal element in ⪯ if x ⪯ y holds only for y = x.
Consider n2 propositional variables {pij}1≤i,j≤n for an enumeration of S = (x1, x2, . . . , xn) where
pij is set to 1 iff xi ⪯ xj.
Give a formula over these variables which evaluates to ⊤ iff ⪯ is a partial order. Also give a
formula which evaluates to ⊤ only when ⪯ has a maximal element.



Solution: For reflexivity the formula is

R = p11 ∧ p22 . . . ∧ pnn.

For transitivity, the formula is

T =
∧

1≤i,j,k≤n

pij ∧ pjk → pik =
∧

1≤i,j,k≤n

¬pij ∨ ¬pjk ∨ pik.

Observe that we don’t really need to consider the cases when any 2 of i, j, k are the same
since if the reflexivity clauses are satisfied:

(i = j) pii ∧ pik → pik ≡ ⊤∧ pik → pik ≡ ⊤
(j = k) pij ∧ pjj → pij ≡ pij ∧⊤ → pij ≡ ⊤
(i = k) pij ∧ pji → pii ≡ pij ∧ pji → ⊤ ≡ ⊤

Antisymmetric nature is captured by

A =
∧

1≤i,j≤n,i ̸=j

¬(pij ∧ pji) =
∧

1≤i,j≤n,i ̸=j

¬pij ∨ ¬pji.

The final formula to check for a partial order then is: R ∧ T ∧ A.
If say xi is a maximal element, we have

∧
1≤j≤n,j ̸=i ¬pij.

Hence, “has a maximal element” is encoded as

M =
∨

1≤i≤n

 ∧
1≤j≤n,j ̸=i

¬pij

 .

Let us look at a concrete example with n = 3.

R = p11 ∧ p22 ∧ p33

T = (¬p12 ∨ ¬p23 ∨ p13)

∧ (¬p13 ∨ ¬p32 ∨ p12)

∧ (¬p21 ∨ ¬p13 ∨ p23)

∧ (¬p23 ∨ ¬p31 ∨ p21)

∧ (¬p31 ∨ ¬p12 ∨ p32)

∧ (¬p32 ∨ ¬p21 ∨ p31)

A = (¬p12 ∨ ¬p21)

∧ (¬p23 ∨ ¬p32)

∧ (¬p13 ∨ ¬p31)

M = (¬p12 ∧ ¬p13)

∨ (¬p21 ∧ ¬p23)

∨ (¬p31 ∧ ¬p32)

Consider the following relation which is not a partial order and doesn’t have a maximal
element.

1

2 3

Here (p11 = 1, p12 = 0, p13 = 1, p21 = 1, p22 = 1, p23 = 0, p31 = 0, p32 = 1, p33 = 1).
Substituting in values, you can confirm that R, A evaluate to ⊤ while T, M evaluate to ⊥.



3. Let n and k be integers so that n > 0, k ≥ 0 and k ≤ n. You are given n booleans x1 through xn
and your goal is to come up with an efficient propositional encoding of the following constraint:

n

∑
i=1

xi ≤ k (1)

In the above equation, assume the booleans xi behaves as 0 when false and 1 when true. We can
arrive at the encoding by adding O(n·k) auxiliary variables and only need O(n·k) clauses. We try
to solve this problem iteratively.

• Let si,j denote that at least j variables among x1, ..., xi are assigned 1 (true). One can
deduce that si,j makes sense only when i ≥ j. We now try to represent this constraint in
propositional logic.

• Now given that you have represented si,j for all appropriate 1 ≤ i ≤ n and 0 ≤ j ≤ k; come
up with a propositional formula that represents the condition of the equation (1)

Solution:

• We start with simple observations; xi ↔ si,1 ∀ i s.t. 1 ≤ i ≤ n and that s1,j = 0 ∀ j
s.t. 1 < j ≤ k

• We recursively can notice that, si−1,1 → si,1 ∀ i s.t. 1 < n

• xi ∧ si−1,j−1 → si,j and si−1,j → si,j where i, j satisfy 1 < j ≤ k, 1 < i < n

• Now to represent the final constraint we must make sure the following, xi → ¬si−1,k
for all i such that 1 < i ≤ n

• This could be viewed as a logic circuit similar to an adder circuit taught in your Digital
Logic Design course

Note: For the constraint ∑n
i=1 xi ≥ k there is an interesting encoding that uses O(kn)

auxiliary variables and O(k2n) clauses using the Pigeon-Hole principle, as follows:
Let the xi’s define holes and let xi = 1 mean that the ith hole is fillable. Our aim is to define
pij for i ∈ [k], j ∈ [n] such that it is 1 when pigeon i is assigned to hole j. The constraints
we need to capture are:

[fillable holes]
∧

i∈[k]

∧
j∈[n]

(pij → xj)

[only one pigeon per hole]
∧

i1,i2∈[k]
i1 ̸=i2

∧
j∈[n]

¬(pi1 j ∧ pi2 j)

[each pigeon assigned to at least 1 hole]
∧

i∈[k]

∨
j∈[n]

pij

Let f be the conjunction of these clauses, then:

Satisfying assignment for f ⇐⇒ at least k holes fillable ≡
n

∑
i=1

xi ≥ k



Figure 1: Logic Gate

4. Two friends find themselves trapped in a room. There are three doors coloured - red, blue and
green respectively. Behind exactly one of the doors is a path to their home :-). The other two
doors lead to horrible places. The inscriptions on the three doors are as follows:
Red door: ”Your home town is not behind blue door”
Blue door: ”Your home town is behind red door”
Green door: ”Your home town is not behind blue door”
Given the fact that at LEAST ONE of the inscriptions is true and at LEAST ONE of them is
false, which door would lead the boys home?

Solution: Let us use the following three propositional variables

• r: home town is behind red door

• b: home town is behind blue door

• g: home town is behind green door

Let us encode whatever we know

• behind one of the doors is a path to home, behind the other two doors is a way to
ocean:

(r ∧ ¬b ∧ ¬g) ∨ (¬r ∧ b ∧ ¬g) ∨ (¬r ∧ ¬b ∧ g)

• at least one of the three statements is true:

r ∨ ¬b

• at least one of the three statements is false:

¬r ∨ b

r b g 2.5 2.6 2.5 ∧ 2.6
T F F T F F
F T F F T F
F F T T T T

Thus, the friends should rush to the green door to get back to their home !!
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