
CS208 Tutorial 3: Finite Automata Theory

1. Often, we are required to find ways to accept sets of strings with various properties. We’ve seen
in class that DFAs and NFAs are ways to achieve this, with an equivalence between NFAs and
DFAs. In this question and the next, we’ll specify some properties of sets of strings and you
will be required to construct (small) DFAs/NFAs to accept these sets (or languages). We aren’t
insisting that you should find the smallest (in terms of number of states) automata, but try to
use as few states as you can.

Let Σ = {0, 1, 2}. Construct DFAs for recognizing each of the following languages.

1. L1 = {w ∈ Σ∗ | w doesn’t have any pair of consecutive decreasing letters (numbers)}. For
example 010 ̸∈ L but 00012 ∈ L and 222 ∈ L.

2. L2 = {w ∈ Σ∗ | w = u.v, u ∈ Σ+, v ∈ Σ∗, n0(u) > n1(u) + 2 or n1(u) > n0(u) + 2},
where ni(u) denotes the count of i’s in u, for i ∈ {0, 1}. For example, 0010221020012 ∈ L
but 012012012 ̸∈ L.

3. L3 = {0n | n > 0, n3 + n2 + n + 1 = 0 mod 3}

Solution:

Possible DFAs are given below:

1.

q1, q2, q3 remember that we’ve not
seen any decreasing sequence of let-
ters so far, and the last letter seen
was 0, 1, 2, respectively. All of these
strings are accepted. q4 remembers
that we have seen a decreasing se-
quence, and hence anything we see
subsequently cannot make us accept
the string. So q4 is a sink or trap state
– once you reach there, you can’t es-
cape it.

2.

For a prefix u of w seen so far, we
need to remember if n0(u)− n1(u)
is 0, 1,−1, 2,−2 or greater than 2
or less than −2. Once the prefix
u satisfies n0(u) − n1(u) > 2 or
n0(u)− n1(u) < −2, we can imme-
diately accept the word, regardless
of what subsequent letters are seen.
States q0, q1, q2, q3, q4 remember
if n0(u) − n1(u) = 0,−1,−2, 1, 2
respectively, where u is the (pre-
fix of the) input word seen so far.
State q5 simply remembers whether
|n0(u)− n1(u)| > 2.

3. Notice that n3 + n2 + n + 1 = 0 mod 3 is equivalent to (n2 + 1) · (n + 1) = 0
mod 3. Therefore,

(
(n2 + 1) mod 3

)
·
(
(n + 1) mod 3

)
has to be equal to 0.

Given that n mod 3 ∈ {0, 1, 2}, it follows that we require n2 = 2 mod 3 or n = 2
mod 3. However, for no n is n2 = 2 mod 3. Why so? Because this would require

(
(n

mod 3)× (n mod 3)
)
= 2 mod 3. Since n mod 3 ∈ {0, 1, 2}, (n mod 3)× (n

mod 3) can only be in {0, 1} mod 3. Therefore, we must have n = 2 mod 3. The
DFA is now easily obtained as follows:

2. Let Σ = {a, b}. Construct NFAs, possibly with ε-transitions for each of the following languages.

1. L4 = {w ∈ Σ∗ | nab(w) is even}, where nab(w) denotes the count of times ab appears in
w as consecutive letters.

2. L5 = {w ∈ Σ∗ | w contains the ”pattern” abba (as consecutive letters) followed by the
”pattern” baba, possibly in an overlapping manner}. For example, abababbaabb, bababbabb ̸∈
L but abababbaba, ababbaabbaba ∈ L.

Now try constructing a DFA that recognizes L5 using the subset construction and ε-edge removal
on the NFA constructed above. Do you see an exponential blow-up in the count of states as you
do this conversion?

Solution: Possible NFAs are given below. These are not the only solutions. In fact, the first
subquestion has a fairly simple DFA that can be directly constructed as well.

1.

The solution given here illustrates the
convenience provided by NFAs with ε-
transitions. We have two copies of an
NFA that reads a sequence of as and
bs with a leading a, a single ab change
and possibly a trailing sequence of 0
or more as. These two NFAs can be
seen in the top row (read left to right)
and in the bottom row (read right to
left). We simply connect them using
ε-transitions, so that we read words
with an even count of ab changes.
The acceptance state of the overall
NFA is therefore the starting state of
the top copy of the NFA. The start
states of the overall NFA are chosen
so that we can accept a leading se-
quence of 0 or more as, or even such
a sequence of bs followed by as (i.e.
strings that don’t contain a single ab
change).

2.

The NFA is quite self-explanatory.
This clearly shows the convenience
of NFAs with ε-transitions. You can
capture the intent of the problem so
clearly that a look at the NFA tells
you what it’s designed to accept. This
is not (so easily) the case if you de-
terminize this NFA.

The NFA to DFA construction is left to you as a standard exercise.

3. Take-away question: Propositional formulas and NFAs

For a CNF formula φ with m variables and c clauses, show that you can construct in polynomial
time an NFA with O(cm) states that accepts all falsifying or non-satisfying assignments,
represented as boolean strings of length m. You can assume that the formula φ is over variables
x1x2 . . . xm, and you can assume that the NFA is fed as input the word v1 · v2 · · · · · vm, where
vi ∈ {0, 1} and vi is interpreted as the value of propositional variables xi, for all i ∈ {1, . . . m}.
Can you construct an NFA in time polynomial in c and m that accepts all and only satisfying
assignments of the CNF formula φ?

Solution:

1. On input ϕ, construct an NFA that non-deterministically picks one of the c clauses (via
ε-transitions), reads the input of length m, and accepts if it does not satisfy the clause.
For each clause, we need exactly m states, so the NFA has O(cm) states. It is clear
that we can construct the NFA in polynomial time, hence it is of polynomial size.

Now consider any falsifying assignment of φ. At least one clause must be falsified by
this assignment. Hence all literals of this clause must evaluate to 0. The NFA can
non-deterministically choose this clause and accept the assignment string. Conversely,
if the NFA accepts an assignment string, then there is a clause of φ that is falsified
by the assignment. So, the assignment is a falsifying assignment of φ. Hence, the
NFA accepts all and only the nonsatisfying assignments of φ. For example: let
ϕ = (x1 ∨ ¬x2 ∨ x3) ∧ (x2 ∨ ¬x1) ∧ (x1 ∨ ¬x3 ∨ x2), the corresponding NFA is as
shown below.

2. Unless we have a polynomial time algorithm for checking satisfiability of CNF formulas
(aka P vs NP problem), such a construction is not possible. Indeed, if we could do
this, then there would be a way to check in time polynomial in c and m whether φ is

(un)satisfiable. Why? Simply construct the NFA for φ and check in the graph
corresponding to the NFA whether any final state can be reached from any initial state

by any path. If so, there is a satisfying assignment, else the formula is unsatisfiable.
Note that searching for a path in the graph can be done using any graph search

algorithm like BFS or DFS in time that is polynomial in the size of the NFA (viewed as
a graph). If the NFA’s size is polynomial in c and m, this search (BFS/DFS) will also

take time polynomial in c and m.

	CS208 Tutorial 3: Finite Automata Theory

