Tutorial 7: Turing machines all around

1. Turing machines and halting programs
Let ¥ = {a,b} and L C =* be a language over X.

 Define PREFIX(L) := {w | 3y € L* such that wy € L}. Thus, PREFIX(L) is the the set
of all prefixes of all words in L.

* Define HALF(L) := {w | 3y € X* such that |w| = |y| and wy € L}. Thus, HALF(L) is
the set of all first-halves of words of even length in L.

(a) Your best friend has constructed a Turing machine M, such that its halting language
H(M) = L. Show how to build a Turing machine that has PREFIX(L) as its halting
language. Your Turing machine can use M as a sub-machine.

(b) Your second best friend has constructed a Turing machine M’ that enumerates all and only
the words in L on an output tape. Show how to build an enumerator for HALF(L) using M.

[Hint: Try to construct a simple pseudo-code (with loops, if statements, assignments, jump
statements etc.) that achieves the desired task. Then think about whether every construct in this
pseudo-code can be converted into a (possibly multi-tape) Turing machine, all of which can then
be "strung” together to give you an overall Turing machine that achieves the desired task.]



2. Closure properties of languages accepted by Turing machines

Recall from our discussion in class that a language L is recursively enumerable if there exists a
Turing machine M such that its halting language H(M) equals L. Recall also that we discussed
that for every such language, we can build another Turing machine that takes no input, but
enumerates all and only the strings in L on an output tape.

Finally, recall from our class discussions that language L is recursive if there is a Turing machine
M’ with two designated states gy and gy such that (a) H(M') = £*, (b) for all w € L, the
machine M’ halts in state gy when it is started with w on its tape, and (c) for all w & L, the
machine M’ halts in state gy when it is started with w. In other words, M’ halts on all inputs,
but it halts in gy for every string in L, and halts in gx for every string not in L.

Let RE be the class of all recursively enumerable languages, and let R be the class of recursive
languages.

(a) Is RE closed under Kleene closure? Is R closed under Kleene closure?

(b) A homomorphism is defined by a mapping h : ¥ — %*. With abuse of notation, we use /i to
also denote a mapping from strings to strings as follows: h(e) = € and h(aj.az....a;) =
h(ay).h(az)....h(ag), where each a; € £ and ay.ap....a; € *.

Is RE closed under homomorphisms? Is R closed under homomorphisms?
[Food for thought: Define the inverse homomorphism of a language L C ¥* as ht (L) =
{w|w e X* h(w) € L)}. Is RE closed under inverse homomorphism? What about R?]



3. Let’s decide (if we can)

Find whether the following problems are decidable.

® Given a Turing machine M, a state q and a string w, does M when started on the string w
reach the state g7

¢ Given a Turing Machine M, does it halt on all strings in less than 100 transitions?

¢ Given two Turing machines My and My, do they accept the same language?



4. Take-away problem: Enumerating recursive languages

Show that every infinite recursively enumerable language has an infinite subset that is a recursive
language.



5. Take-away problem: Neither r.e. nor co-r.e.

For purposes of this question, let M; denote the Turing machine encoded by the binary represen-
tation of the natural number i, and let H(M;) denote the language accepted by M; by halting.
Let L = {10/ | i,j € N, H(M;) is a strict subset of H(M;)}. In other words, 1'0/ € L iff every
word in H(M;) is also in H(M,;), but there is at least one word in H(M;) that is not in H(M;).

1. Show that L is not recursively enumerable.

2. Show that L is not co-recursively enumerable either.



6. Take-away problem: Almost undecidable, but not quite!

Let (M) denote the encoding of Turing Machine M as a string over ¥ = {0,1}, as studied in
class. Let w be a string in {0,1}* and let L = {({(M),w) | M when run with w as the initial
string on its tape visits less than |w| tape squares}.

(a) Show that L is decidable.

(b) Give an upper bound of the time complexity (i.e. count of steps taken by a halting Turing
machine) of deciding if a given ({(M),w) pair is in L. Your complexity expression should be
a function of |(M)| and |w].
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