Tutorial 7: Turing machines all around

1. Turing machines and halting programs

Let $\Sigma=\{a, b\}$ and $L \subseteq \Sigma^{*}$ be a language over Σ.

- Define $\operatorname{PREFIX}(L):=\left\{w \mid \exists y \in \Sigma^{*}\right.$ such that $\left.w y \in L\right\}$. Thus, $\operatorname{PREFIX}(L)$ is the the set of all prefixes of all words in L.
- Define $\operatorname{HALF}(L):=\left\{w \mid \exists y \in \Sigma^{*}\right.$ such that $|w|=|y|$ and $\left.w y \in L\right\}$. Thus, $\operatorname{HALF}(L)$ is the set of all first-halves of words of even length in L.
(a) Your best friend has constructed a Turing machine M, such that its halting language $H(M)=L$. Show how to build a Turing machine that has PREFIX (L) as its halting language. Your Turing machine can use M as a sub-machine.
(b) Your second best friend has constructed a Turing machine M^{\prime} that enumerates all and only the words in L on an output tape. Show how to build an enumerator for $\operatorname{HALF}(L)$ using M.
[Hint: Try to construct a simple pseudo-code (with loops, if statements, assignments, jump statements etc.) that achieves the desired task. Then think about whether every construct in this pseudo-code can be converted into a (possibly multi-tape) Turing machine, all of which can then be "strung" together to give you an overall Turing machine that achieves the desired task.]

2. Closure properties of languages accepted by Turing machines

Recall from our discussion in class that a language L is recursively enumerable if there exists a Turing machine M such that its halting language $H(M)$ equals L. Recall also that we discussed that for every such language, we can build another Turing machine that takes no input, but enumerates all and only the strings in L on an output tape.
Finally, recall from our class discussions that language L is recursive if there is a Turing machine M^{\prime} with two designated states q_{Y} and q_{N} such that (a) $H\left(M^{\prime}\right)=\Sigma^{*}$, (b) for all $w \in L$, the machine M^{\prime} halts in state q_{Y} when it is started with w on its tape, and (c) for all $w \notin L$, the machine M^{\prime} halts in state q_{N} when it is started with w. In other words, M^{\prime} halts on all inputs, but it halts in q_{Y} for every string in L, and halts in q_{N} for every string not in L.
Let RE be the class of all recursively enumerable languages, and let R be the class of recursive languages.
(a) Is RE closed under Kleene closure? Is R closed under Kleene closure?
(b) A homomorphism is defined by a mapping $h: \Sigma \rightarrow \Sigma^{*}$. With abuse of notation, we use h to also denote a mapping from strings to strings as follows: $h(\varepsilon)=\varepsilon$ and $h\left(a_{1} \cdot a_{2} \ldots a_{k}\right)=$ $h\left(a_{1}\right) \cdot h\left(a_{2}\right) \ldots h\left(a_{k}\right)$, where each $a_{i} \in \Sigma$ and $a_{1} \cdot a_{2} \ldots a_{k} \in \Sigma^{*}$.
Is RE closed under homomorphisms? Is R closed under homomorphisms?
[Food for thought: Define the inverse homomorphism of a language $L \subseteq \Sigma^{*}$ as $h^{-1}(L)=$ $\left.\left\{w \mid w \in \Sigma^{*}, h(w) \in L\right)\right\}$. Is RE closed under inverse homomorphism? What about R?]

3. Let's decide (if we can)

Find whether the following problems are decidable.

- Given a Turing machine M, a state q and a string w, does M when started on the string w reach the state q ?
- Given a Turing Machine M, does it halt on all strings in less than 100 transitions?
- Given two Turing machines M_{1} and M_{2}, do they accept the same language?

4. Take-away problem: Enumerating recursive languages

Show that every infinite recursively enumerable language has an infinite subset that is a recursive language.
5. Take-away problem: Neither r.e. nor co-r.e.

For purposes of this question, let M_{i} denote the Turing machine encoded by the binary representation of the natural number i, and let $H\left(M_{i}\right)$ denote the language accepted by M_{i} by halting. Let $L=\left\{1^{i} 0^{j} \mid i, j \in \mathbf{N}, H\left(M_{i}\right)\right.$ is a strict subset of $\left.H\left(M_{j}\right)\right\}$. In other words, $1^{i} 0^{j} \in L$ iff every word in $H\left(M_{i}\right)$ is also in $H\left(M_{j}\right)$, but there is at least one word in $H\left(M_{j}\right)$ that is not in $H\left(M_{i}\right)$.

1. Show that L is not recursively enumerable.
2. Show that L is not co-recursively enumerable either.
3. Take-away problem: Almost undecidable, but not quite!

Let $\langle M\rangle$ denote the encoding of Turing Machine M as a string over $\Sigma=\{0,1\}$, as studied in class. Let w be a string in $\{0,1\}^{*}$ and let $L=\{(\langle M\rangle, w) \mid M$ when run with w as the initial string on its tape visits less than $|w|$ tape squares $\}$.
(a) Show that L is decidable.
(b) Give an upper bound of the time complexity (i.e. count of steps taken by a halting Turing machine) of deciding if a given $(\langle M\rangle, w)$ pair is in L. Your complexity expression should be a function of $|\langle M\rangle|$ and $|w|$.

