
CS208 Tutorial 5: More on automata theory

1. Consider the DFA shown below that accepts the language {0n1m | n + m is even}. Assume that
the trap state loops back to itself on all letters of Σ.

q0start q1 q2 q3

q4q5

q6

trap

0
1

0
1

0

1

1
0

1

0

0

1
0

1

(a) Using the method discussed in class, find all distinguishable and indistinguishable pairs
of states in the above DFA. You can record this by constructing an upper-triangular (or
lower-triangular) matrix with 8 rows and 8 columns (corresponding to 8 states of the DFA),
as discussed in class.

(b) Find all equivalence classes of the indistinguishability relation obtained above.

(c) Using one state from each equivalence class to represent all states of the class, construct a
minimal DFA for the language represented by the above DFA.

Solution:

(a) Table as shown (State 7 is trap). Each entry is a distinguishing string, if it exists

0 1 2 3 4 5 6 7

0 X ϵ ϵ 01 ϵ 01 ϵ ϵ

1 X 0 ϵ 0 ϵ 0 0

2 X ϵ ϵ 1

3 X ϵ ϵ ϵ

4 X ϵ 1

5 X ϵ ϵ

6 X 1

7 X

(b) The equivalence classes are {q0, q1, (q2, q4, q6), (q3, q5), trap}

(c) The minimized DFA is as shown below:

q0start q1

q2, q4, q6 q3, q5

trap

0

1

0

1

0

1

1

0

2. Consider a language L ⊆ Σ∗ for some finite alphabet Σ. As discussed in class, the Nerode
equivalence ∼L is an equivalence relation over Σ∗ such that for any x, y ∈ Σ∗, x ∼L y if and only
if for every z ∈ Σ∗, xz ∈ L ⇐⇒ yz ∈ L. The relation ∼L partitions Σ∗ into equivalence classes
of words. Hence, each equivalence class of ∼L, viewed as a set of words, is a language by itself.

Recall further from our discussion in class:

• The Nerode equivalence is well-defined for every (regular or non-regular) language L over Σ.

• The Myhill-Nerode Theorem states that L is regular if and only if the number of equivalence
classes of ∼L is finite.

• If the number of equivalence classes of ∼L equals k ∈ N, then the unique (upto isomorphism)
minimal DFA recognizing L has k states.

In this problem we will explore the Nerode equivalence and some of its variants.

(a) For each of the following languages L, describe (in any suitable form) the equivalence classes
of ∼L as languages over {0, 1}.
(a) L is the language corresponding to (00 + 11)∗

(b) L is the language {0i1j | i ≤ j}
(b) Define an equivalence relation ∼R such that for any x, y ∈ Σ∗, x ∼R y if and only if for

every z ∈ Σ∗, zx ∈ L ⇐⇒ zy ∈ L. Note the difference of ∼R from the Nerode equivalence
∼L.

(i) Show that the number of equivalence classes of ∼R is finite if and only if L is regular.

(ii) Let Lrev denote the language formed by reversing each string in L. Show that if the
number of equivalence classes of ∼R is k, then the size of the unique minimal DFA
recognizing Lrev is also k.

Solution:

(a) (a) For a regular language like the one in this question, one way to obtain the Nerode
equivalence classes is to first construct the minimal DFA for the language, and
then for each state q in the minimal DFA, list down the set of strings that bring
you from the start state of the DFA to state q. Clearly, all such strings w must
be in the same Nerode class, since for every string x ∈ Σ∗, whether wx ∈ L or
not simply depends on whether you can reach the accepting state of the minimal
DFA from q on reading x. Similarly, every string w′ that doesn’t bring you from
the start state to q can’t be Nerode equivalent to w since w′ must be brining you
to a different state q′, starting from the start state. However, since q and q′ are
two different states in the minimal DFA for L, there is a distinguishing string x′

such that x′ is accepted starting from q and not accepted starting from q′ or vice
versa. It follows that one of w.x′ and w′.x′ is in L and the other isn’t. Hence, w
and w′ can’t be in the same Nerode class.

We leave it as an exercise for you to construct the minimal DFA for the given
language L. Once you do that, it is easy to follow the steps outlined above to
find the following Nerode equivalence classes:

S1 = L (set of strings that bring you to the accepting state of the DFA),
S2 = (00 + 11)∗0, S3 = (00 + 11)∗1, S4 = Σ∗ − {S1 ∪ S2 ∪ S3}}

(b) Since this language is not regular (why? Try using the Pumping Lemma for regular
languages), we can’t use the above method for finding the Nerode equivalence
classes. Hence, we have to look into the specifics of the language and try to
construct infinitely many Nerode equivalence classes (Myhill-Nerode theorem
guarantees that there are infinitely many Nerode equivalence classes for a non-
regular language).

It is easy to see that all strings w not belonging to 0∗1∗ are equivalent, since no
matter what string x you concatenate to w, the string w.x is not in 0∗1∗, and
hence not in L. So all strings not in 0∗1∗ form one Nerode equivalence class, say
C1

Let us now focus on strings in 0∗1∗. Consider one such string w = 0i1j, where
j ≥ i and w ̸= ε (i.e. it is not the case that j = i = 0). Notice that for every
string x ∈ 1∗, w.x ∈ L. Similarly, for every string x ̸∈ 1∗, w.x ̸∈ L. Hence, all
strings w = 0i1j, where j ≥ i and w ̸= ε are in the same Nerode equivalence
class, say C2 (they cannot be distinguished by any string x ∈ Σ∗). Moreover, C1
is different from C2, since ε distinguishes any string in C1 from any string in C2.

What if w = ε?. The string x = 01 distinguishes w from every string in C1 ∪ C2.
Hence ε is in a class, say C3, by itself.

What about strings of the form 0i1j, where i > j. Consider any such string
w = 0i1j. The string x = 1i−j distinguishes w from every string in C1. The string
ε distinguishes w from every string in C2. The string x = 01 distinguishes w from
ε. The string x = 1min(i−j,i′−j′) distinguishes w from every string w′ = 0i′1j′ ,
where i′ > j′ and i − j ̸= i′ − j′. Finally, for every string w′ = 0i′1j′ , where
i′ > j′ and i − j = i′ − j′, no string x can distinguish w from w′. Therefore, all
strings 0i+k1i belong to the same Nerode equivalence class for each k > 0, and
the classes corresponding to k1, k2, where k1 ̸= k2 are distinct.

Summarizing all the above cases, the Nerode equivalence classes are: C1 =
L(0∗1∗)c, C2 = L \ {ε}, C3 = {ε}, C3+k = {0i+k1i|i ≥ 0}, for every k ≥ 1.

(b) Let ∼N denote the Nerode equivalence relation for the language Lrev formed by reversing
each string in L. Now, x ∼R y if and only if for every z ∈ Σ∗, zx ∈ L ⇐⇒ zy ∈ L,
ie xRzR ∈ Lrev ⇐⇒ yRzR ∈ Lrev for every z ∈ Σ∗, ie xR ∼N yR.

Consider the function f mapping equivalence classes of ∼R to equivalence classes of
∼N such that for any x ∈ Σ∗, f ([x]R) =

[
xR]

N. Since for any x, y ∈ Σ∗, x ∼R y if

and only if xR ∼N yR, f is well defined and also an injection, and since
(
xR)R

= x
for any x ∈ Σ∗, [x]N = f

([
xR]

R

)
, ie f is a surjection as well. Hence there exists a

bijection between the equivalence classes of ∼R and the equivalence classes of ∼N , ie
they have the same cardinality.

Now, by the Myhill-Nerode Theorem, the number of equivalence classes of ∼N is finite
if and only if Lrev is regular. Now, for any language L, Lrev is regular if and only if L is
regular (this can be seen by reversing the transitions in the DFA recognizing L to get
an NFA recognizing Lrev, and also noting that (Lrev)rev = L).

Considering this, along with the fact the set of equivalence classes of ∼R has the same
cardinality as the set of equivalence classes of ∼N , we get that ∼R has a finite number
of equivalence classes if and only if L is regular. Moroever, if ∼R has k equivalence
classes, then so does ∼N , which, by the Myhill-Nerode Theorem means that the unique
minimal DFA recognizing Lrev has k states.

3. A hacker must figure out what a language L is in order to break into a top-secret system. The
hacker knows that the language L is regular and that it is over the alphabet {0, 1}. However, no
other information about L is directly available. Instead, an oracle is available that only answers
”Yes” or ”No” in response to specific types of queries, labeled Q1 and Q2 below.

Q1 Does there exist any DFA with n states that recognizes L?
For every n > 0, the oracle truthfully responds ”Yes” or ”No” to this query.

Q2 Does word w belong to L?
For every w ∈ {0, 1}∗, the oracle truthfully responds ”Yes” or ”No” to this query.

We are required to help the hacker re-construct a minimal DFA for L. Towards this end, we will
proceed systematically as follows.

(a) Show that if the minimal state DFA for L has N states, then N can be determined using a
sequence of O(log2 N) Q1 queries.

Hint: Use galloping (or exponential) search.

(b) Show that it is possible to find a word w ∈ L or determine that L = ∅ using at most 2N

Q2 queries.

Hint: Consider any word in L and repeatedly apply the Pumping Lemma to remove loops in
the path from the initial state to an accepting state.

(c) Once we know the minimal count of states, say N, for a DFA for L, we will construct the
Nerode equivalence classes ∼L for L. Recall from our discussion in class that there are
exactly N of these, and each equivalence class can be uniquely identified with a state of the
minimal DFA recognizing L.
For any two distinct equivalence classes of ∼L, show the following:

(i) There exist words w1, w2 ∈ Σ∗, where |w1| ≤ N − 1 and |w2| ≤ N − 1 such that w1
belongs to the first equivalence class and w2 to the second. We will use [w1] to denote
the first equivalence class and [w2] to denote the second, in the discussion below.

(ii) For [w1] ̸= [w2], there is a word x ∈ Σ∗ of length ≤ N × (N − 1) − 1 such that
w1 · x ∈ L and w2 · x ̸∈ L or vice versa.

(iii) For [w1] ̸= [w2], there exists an edge labeled 0 (resp. 1) from the state corresponding to
[w1] to the state corresponding to [w2] iff for all x ∈ Σ∗, where |x| ≤ N × (N − 1)− 1,
w1 · 0 · x (resp. w1 · 1 · x) and w2 · x are either both in L or both not in L.

Using all the above results, design an algorithm that helps the hacker reconstruct the minimal
DFA for L. Give an upper bound on the count of Q2 queries needed for this re-construction,
in terms of the count N of the states of the minimal DFA for L.

Solution:

(a) We make Q1 queries using powers of 2 (1, 2, 4, . . .) until it returns ”yes”. Say, it returns
yes for 2k+1. Then, we know the smallest DFA representing the language has size
between 2k + 1 and 2k+1. We perform binary search over this space. Total number of
queries are k + 2 +O(log(2k+1 − 2k)) = 2k + 2 ∈ O(log2 N)

(b) Claim: A DFA whose language is non-empty having N states accepts a word of length
at most N − 1. Proof is left as an exercise to the reader (Use ideas similar to Pumping
Lemma). Hence, we can make Q2 queries over all possible words having length less
than or equal to N − 1. Either we conclude that the language is empty or find a word
belonging to the language in at most 20 + 21 + . . . 2N−1 = 2N − 1 Q2 queries

(c) (i) If q1 and q2 are the states corresponding to these equivalence classes in the
minimal DFA (and q0 is the initial state), then a word w is in the equivalence
class of q1 iff δ̂(q0, w) = q1 (and similarly for q2). Since equivalence classes are
by definition non-empty, such a word w1 necessarily exists. We can remove cycles
in the path this word takes from q0 to q1 word to ensure that it’s length is at
most N − 1 (Similarly for w2).

(ii) Let q1 be the state corresponding to [w1] and q2 the state corresponding to [w2].
Since [w1] and [w2] are distinct equivalence classes, there must exist a string x
such that exactly one of w1x and w2x are in L. We will show that there exists
such an x with length at most N − 2.
Consider an equivalence relation ∼k over the state set Q of the minimal DFA where
q1 ∼k q2 iff for every string x of length at most k, δ̂(q1, x) ∈ F ⇐⇒ δ̂(q2, x) ∈ F.
Some observations:

i. q1 ∼0 q2 iff q1 ∈ F ⇐⇒ q2 ∈ F
ii. q1 ∼k+1 q2 =⇒ q 1 ∼k q2, ie the equivalence classes of ∼k+1 are subsets

of those of ∼k

By the second observation, ∼k+1 has at least as many equivalence classes as
∼k, and if the number of equivalence classes is the same, then ∼k+1 and ∼k are
identical. Note that ∼0 has 2 equivalence classes. This means that in the number
of equivalence classes of the sequence ∼0,∼1,∼2, . . . keeps increasing from 2,
until some k where ∼k=∼k+1, after which it remains constant. Since the number
of equivalence classes of ∼0 is 2, and the number of equivalence classes of ∼k is
at most N, k can be at most N − 2.
Now, for distinct q1, q2, since the DFA is minimal, there exists some string x such
that exactly one of δ̂(q1, x) and δ̂(q2, x) lies in F. Say |x| = p. Then q1 ≁p q2.
If p > N − 2, then ∼p=∼ k, ie q1 ≁k q2, ie there is some x′ of length at most k
such that exactly one of δ̂(q1, x′) and δ̂(q2, x′) is in F. Since k is at most N − 2,
this means for any distinct q1 and q2 there will exist a string x of length at most
N − 2 such that exactly one of δ̂(q1, x) and δ̂(q2, x) lies in F. This means that
for distinct [w1] and [w2] there will exist an x of length at most N − 2 such that
exactly one of w1x and w2x is in L.

Algorithm:
Find the value of N (Part a). Consider all words having length less than or equal to N − 1.
Find equivalence classes over these words by taking pairs at a time and iterating over all
words having length less than or equal to N − 2. If you find a distinguisher, they’re in
different equivalence classes, else they are in the same equivalence class. Each equivalence
class now represents a state. Accepting state is simply found by using Q2 on one word in
each equivalence class. To find the transition function, we can simply consider the shortest
words in each equivalence class and use their prefixes to construct the path from the starting
state. The starting state is the class which contains epsilon.

4. Takeaway: You can view this question as a continuation of Question 1 on Nerode equivalences
and their variants. Define an equivalence relation ∼S such that for any x, y ∈ Σ∗, x ∼R y if and
only if for every u, v ∈ Σ∗, uxv ∈ L ⇐⇒ uyv ∈ L.

(i) Show that the number of equivalence classes of ∼S is finite if and only if L is regular.

(ii) Assuming that L is regular, if the minimal DFA recognizing L has k states, show that the
number of equivalence classes of ∼S is at most kk

Solution: Say L is regular and is recognized by minimal DFA (Q, Σ, δ, q0, F).

If x ∼S y, then for every state q ∈ Q we must have δ̂(q0, x) = δ̂(q0, y). To see this, note
that since (Q, Σ, δ, q0, F) is the minimal DFA recognizing L, for every q ∈ Q there exists
u ∈ Σ∗ such that δ̂(q0, u) = q. Furthermore, if q1 ̸= q2 are distinct states in Q, then there
exists v ∈ Σ∗ such that exactly one of the following are true:

• δ̂(q1, v) ∈ F

• δ̂(q2, v) ∈ F

(otherwise the states q1 and q2 could be merged). Now, if x ∼S y, but if there is some q such
that δ̂(q, x) ̸= δ̂(q, y) (call these q1 and q2), then there exists u ∈ Σ∗ such that δ̂(q0, u) = q
and there exists v ∈ Σ∗ such that (WLOG) δ̂(q1, v) ∈ F and δ̂(q2, v) /∈ F. This means that
there exist u, v ∈ Σ∗ such that δ̂(q0, uxv) ∈ F but δ̂(q0, uyv) /∈ F, which means uxv ∈ L
but uyv /∈ L, contradicting the definition of ∼S.

Moreover, if δ̂(q, x) = δ̂(q, y) for every q ∈ Q, then for every u, v ∈ Σ∗, δ̂(q0, uxv) =
δ̂(q0, uyv), ie uxv ∈ L ⇐⇒ uyv ∈ L, ie x ∼S y. Therefore, for any x, y ∈ Σ∗, x ∼S y if
and only if for every q ∈ Q, δ̂(q, x) = δ̂(q, y).

Consider the set of functions from Q to itself, denoted by QQ. Consider the function f mapping
equivalence classes of ∼S to elements of QQ such that for every q ∈ Q, f ([x]S) (q) = δ̂(q, x).
By the previous result, f is well defined and an injection. Therefore, there exists an injection
from the equivalence classes of ∼L to QQ, a finite set.

Therefore, if L is regular, then the number of equivalence classes of ∼L must be finite, and
is at most

∣∣QQ
∣∣, where Q is the set of states of the minimal DFA recognizing L. If |Q| = k,

then we get that the number of equivalence classes is at most kk.

It is easier to show the other direction of the implication, ie if the number of equivalence
classes of L is finite, then L must be regular. This can be done by constructing a DFA
recognizing L. Consider the DFA whose set of states Q = {[x]S : x ∈ Σ∗} (ie the set of

states is the set of equivalence classes of ∼S), and transitions are of the form [x]S
a−→ [xa]S,

for any a ∈ Σ (ie δ ([x] , a) = [xa]). This transition function is well defined, since if x ∼S y,
then xa ∼S ya for any a ∈ Σ. The initial state is taken to be q0 = [ε]S and the set of
final states is F = {[x]S : x ∈ L}. It can be shown that the language recognized by this
automaton is precisely L (note that δ̂(q0, x) = [x] and if x ∼S y then x ∈ L ⇐⇒ y ∈ L).

5. Takeaway: Let Σ = {a}.

(i) Show that for every language L (regular or not) over Σ, the language L∗ =
⋃∞

i=0 Li is
regular.

(ii) Show that for every regular language L over Σ, there exist two finite sets of words S1 and
S2 and an integer n > 0 such that L = S1 ∪ S2 · (an)∗

Solution: (a) To those interested, please read here

(b) Refer to the solution of Tut 4, Question 5

https://cs.stackexchange.com/questions/10555/show-that-the-kleene-star-of-any-unary-language-is-regular

6. Takeaway: The star-height of a regular expression r, denoted SH(r), is a function from regular
expressions to natural numbers. It is defined inductively as follows:

• SH(0) = SH(1) = SH(ε) = SH(Φ) = 0.

• SH(r1 + r2) = SH(r1 · r2) = max(SH(r1),SH(r2))

• SH(r∗) = SH(r) + 1

Give a regular expression r over Σ = {0, 1} such that the following hold:

• SH(r) > 0, and

• Every regular expression with star-height < SH(r) represents a language different from that
represented by r.

You must give a brief justification why no regular expression with lesser star-height can represent
the same language.

Solution: The answer to this specific question is really simple if you think about the definition
of star height. However, the study of star heights of regular expressions and about the hierarchy
of languages corresponding to increasing star heights is very interesting. For those interested
in knowing more about star heights, a good starting point is here

For this specific question, you can simply take the regular expression 0∗, which has star
height 1. What are the regular expressions with star height < 1. These are 1, 0, ε, Φ and
combinations of these regular expressions using + and ·. All of these represent languages
with finitely many words, while 0∗ represents a language with infinitely many words.

However, the study of the star height hierarchy is not just limited to star heights of 0 and 1.
It extends to all star heights (see here for more details).

https://en.wikipedia.org/wiki/Star_height
https://en.wikipedia.org/wiki/Star_height

	CS208 Tutorial 5: More on automata theory

