
Tutorial 6: Context-Free Tutorial

1. Solve the following problems. Assume the alphabet to be Σ = {a, b, c}

(a) Consider the language of non-palindromes (words that are not palindromes). A palindrome is
a word that spells the same way forward and backwards. For example, ‘abcba’ is a palindrome
but ‘abbaa’ is not). Construct a PDA and a CFG for the language.

(b) Consider the language {w | w ̸= uu for any u ∈ Σ∗}. Construct a PDA and a CFG for the
language.

Solution:

1. The NPDA keeps pushing letters on the stack up to a point which is our guess of the
halfway point (state Q0). Then we keep popping letters from the stack as long as
they match the scanned letter (state Q1), until we spot a mismatch which is when we
move to state Q2, in which we pop off letters irrespective of a match. We accept the
word if we are in state Q2 at the end, with an empty stack. Formally, the NPDA is
({Q0, Q1, Q2}, Σ = {a, b, c}, Q = {a, b, c,⊥}, δ, Q0,⊥, {Q2}), with δ =

((Q0, x, A), (Q0, xA)) ∀ x ∈ Σ, A ∈ Q

((Q0, x, A), (Q1, A)) ∀ x ∈ Σ ∪ {ϵ}, A ∈ Q

((Q1, x, x), (Q1, ϵ)) ∀ x ∈ Σ

((Q1, x, y), (Q2, ϵ)) ∀ x, y ∈ Σ st x ̸= y

((Q2, x, A), (Q2, ϵ)) ∀ x ∈ Σ, A ∈ Q.

The CFG is:

S → aSa|bSb|cSc

S → xS′y for x ̸= y

S′ → xS′y for all x, y

S′ → a|b|c|ϵ.

2. Let wi..j denote the word formed by the ith to jth position (both inclusive) of w, i.e it

is a continuous substring of w. Let wi denote the ith letter of w. (We count from 1).

Note that odd length words are immediately a part of this language, since they cannot
be of the form uu for any word u. These odd words can be divided into three categories:
Those which have a a at the center, those which have a b at the center, and those
which have a c at the center. The reason for this division will become apparent later.
The following CFG captures these words:

Sodd → A | B | C

A → a | aAb | bAc | cAa | bAa | aAc | cAb

B → b | aBb | bBc | cBa | bBa | aBc | cBb

C → c | aCb | bCc | cCa | bCa | aCc | cCb

For even length word in this language, suppose the length of the word is 2n. Then,
there exists a position k ≤ n such that the letter at position k and position n + k are
different. (otherwise the two halves of w are the same word, and so w = uu). Now

consider the substring w1..2k−1 and w2k..2n. Both of these are of odd length, and the
center letter of the first one is wk and that of the second word is wn+k. Thus, every
even word of this language can be written as the concatenation of two odd words
with different centers, and every concatenation of two odd words with different centers
belongs to this language. Therefore, here is the complete CFG for our language:

S → A | B | C | AB | BC | CA | BA | AC | CB

A → a | aAb | bAc | cAa | bAa | aAc | cAb

B → b | aBb | bBc | cBa | bBa | aBc | cBb

C → c | aCb | bCc | cCa | bCa | aCc | cCb

In the PDA, for odd words we simply accept them. For even words, we make two
non-deterministic guesses: the center of the first odd part and the center of the second
odd part, and check that they have different centers. Here is a description in words:

(a) First, make a nondeterministic guess (without scanning anything) whether we
expect to see an odd word or an even word.

(b) In the odd case, just transition to a 2-state automata that keeps track of whether
even or odd number of letters have been seen. No need of the stack here.

(c) For the even case, keep scanning the word and pushing it on the stack. At some
point, make a guess for a certain letter to be the center of the first odd word.
Remember this letter (using the state, by having one state for each letter). Now,
keep popping off the stack until it becomes empty. This marks the end of the
first odd word. Now, once again start pushing the scanned letters onto the stack,
and at some point make a nondeterministic guess for the center of the second
odd word (only if it is different from the first center). Finally, pop the letters off
the stack until the stack becomes empty, and then accept.

2. Determine if the following languages are context-free or not. If yes, provide a CFG and PDA for
the same, else prove, using the Pumping Lemma, that they are not Context Free

(a) L1 = {w | w = uu for any u ∈ Σ∗}
(b) L2 = {0p|p is prime}

For more on L2, look at the takeaway problems

Solution: For both sub-parts, the languages are not context-free. To show this, we play
the game between the believer and the adversary, as required by the Pumping Lemma for
context-free languages. Specifically, the believer thinks the language is a CFL and chooses
a constant p (> 0) that is at least as large as 2k, where k is the number of non-terminal
symbols in the supposed Chomsky Normal Form grammar for L). The subsequent reasoning
for the two parts is given separately below.

1. The adversary chooses w = 0p1p0p1p ∈ L. Next, the believer decomposes w as
u.v.x.y.z with |v.x.y| ≤ p and |x| ≥ 1. Notice that this implies v.x.y must be either
of the form 0i1j, where i > 0, j ≥ 0 or of the form 1i0j, where i > 0, j ≥ 0. In both
cases, if the adversary pumps v and y twice, the string u.v2.x.y2.z ̸∈ L (try to reason
why).

2. The adversary chooses w = 0m, where m is the smallest prime larger than or equal
to p. Next, the believer decomposes w as u.v.x.y.z where |v.x.y| ≤ p and |x| ≥ 1.

Let |v.x.y| = n. The adversary can now pump v and y exactly 1 + m.n times, so that
the resulting word is 0m+m.n or 0m.(1+n). Clearly, m.(1 + n) is not prime, and hence
0m.(1+n) ̸∈ L.

3. Deterministic Context-Free Languages
We know that Context-Free Languages (CFL) are accepted by Push-Down Automata (NPDA),
where we had allowed non-determinism in PDA transitions. In this question, we will explore
Deterministic Push-Down Automata (DPDA). Recall that a (not necessarily deterministic) PDA
M can be defined as a 7-tuple:

M = (Q, Σ, Γ, q0, Z0, A, δ)

h where Q is a finite set of states. Σ is a finite set of input symbols. Γ is a finite set of stack
symbols. q0 ∈ Q is the start state. Z0 ∈ Γ is the starting stack symbol. A ⊆ Q, where A is the set
of accepting, or final, states δ is a transition function, where δ : (Q × (Σ ∪ ε)× Γ) → P(Q × Γ∗)
Here, P(X) is the power set of a set X, and ε denotes the empty string. We say that M is a
deterministic PDA (or DPDA) if it satisfies both the following conditions:

For any q ∈ Q, a ∈ Σ ∪ ε, x ∈ Γ, the set δ(q, a, x) has at most one element.

For any q ∈ Q, x ∈ Γ, if δ(q, ε, x) ̸= ∅, then δ(q, a, x) = ∅ for every a ∈ Σ.

We call the languages accepted by DPDAs as DCFLs (Deterministic Context Free Languages).
We have studied in class that PDAs can accept by empty stack or by final state, and that these
provide equivalent accepting power. Interestingly, this is not so for DPDAs, so we need to make
up our mind about which acceptance criterion to use. For purposes of this question, we will use
acceptance by final state. We investigate acceptance by empty stack in a takeaway question at
the end of this tutorial.

1. Consider the language of balanced parentheses. A string of parentheses is balanced if the
number of opening parentheses in any proper prefix is at least as much as the number
of closing parenthesis in the same prefix. Also, the total number of opening and closing
parenthesis in the entire string must be equal.

Draw a DPDA (accepting by final state) that accepts the language of balanced parentheses
strings.

2. Construct a deterministic PDA for the complement of the above language. Does this give you
an idea why DCFLs (recognized by DPDAs by final state) are closed under complementation?

Solution: Please see the solution posted by us on Piazza. The DPDA shown there accepts the
complement of the language of balanced parentheses. If you flip the accepting/non-accepting
status of the states of the DPDA, you get the DPDA accepting the language of balance
parentheses.

4. Takeaway: The Curious Case of the Unary Alphabet Prove that any language over a unary
alphabet (the alphabet has exactly one element) is context-free if and only if it is regular.

Solution: In the interests of time, we’d like to point interested students to a nice exposition
on this problem here.

5. Takeaway: Expressions in Intermediate Code
Consider the following context-free grammar for expressions in some (familiar) programming
languages, where ⟨expr⟩ is the start symbol of the grammar.

https://piazza.com/class/lqy697w4coj7pj/post/80
https://cs.stackexchange.com/questions/40791/proving-that-any-cf-language-over-a-1-letter-alphabet-is-regular/118017#118017

⟨expr⟩ ::= ⟨term⟩ ‘+’ ⟨term⟩
| ⟨term⟩

⟨term⟩ ::= ⟨factor⟩ ‘*’ ⟨factor⟩
| ⟨factor⟩

⟨factor⟩ ::= ‘(’ ⟨expr⟩ ‘)’
| ⟨number⟩

⟨number⟩ ::= [0-1]+

Now, though expressions can be a sum of as many terms, it is essential, during an intermediate
step of compilation, that every expression must be a sum of at most two terms and every term
must be a product of at most two terms. Draw a Deterministic PDA (definition provided in an
earlier question) to recognise strings that are of the form stated above. Note that the alphabet is
Σ = {0, 1, (,), ∗,+}.

Solution: This can be obtained directly from the CFG to PDA construction studied in class.
Remember that the moves of such a PDA on a given input string effectively mimic a leftmost
derivation of the string using the given grammer. Since there is a unique (deterministic)
parse tree for a string in the given grammar, the leftmost derivation of the string is also
unique. Hence the PDA obtained by transforming the CFG has a unique sequence of moves
on a given string. Indeed, as can be seen by constructing the PDA, it is a DPDA.

6. Takeaway: Null-stack DPDAs
In Problem 3, we used acceptance by final state for a DPDA. Let’s see what happens if we now
allow a DPDA to accept by emptying its stack (regardless of which state it is in, when the stack
becomes empty). We will call such a DPDA a null-stack DPDA, i.e. it’s a DPDA just like we had
earlier, but it accepts by emptying its stack.

1. Prove that no null-stack DPDA can accept the language of balanced parentheses. Recall
that a string of parentheses is balanced if the number of opening parenthesis in any prefix of
the string is at least as much as the number of closing parenthesis in the same prefix, and
the total number of opening and closing parenthesis ar equal.

[Hint:] Can a null-stack DPDA accept two strings u and u.v, where one is a proper prefix of
the other?

Note: This is quite damaging news in the DPDA world, since we saw in Problem 3 that the
language of balanced parentheses can be accepted by a DPDA accepting by final state. The
above proof should now convince you that unlike normal PDAs, acceptance by final state
and acceptance by empty stack are not equally powerful in the DPDA world.

2. A string is said to be minimally balanced parentheses if the number of opening parenthesis
in any proper prefix is strictly more than the number of closing parenthesis in the same
prefix, and the total number of opening and closing parenthesis in the entire string are equal.
Thus, (()()) is a minimally balanced parentheses string, but ()() and ε are not. Any string
of balanced parentheses can be written as either ε or a concatenation of a finite number
of minimally balanced parentheses strings. Show that for every given value of k > 0, we
can construct a null-stack DPDA that accepts the language of balanced parentheses strings
containing exactly k minimal valid parentheses substrings. Can we construct a null-stack
DPDA if we want to accept the language of balanced parentheses containing upto (instead
of exactly) k minimally valid parentheses substrings?

Solution: Suppose there was a null-stack DPDA for recognizing the language of all balanced
parentheses. Then both () and ()() must be accepted by the DPDA. However, since the
DPDA accepts by empty stack, and since it has a unique sequence of moves on reading an
input, its stack must necessarily become empty after reading (). Since a DPDA with empty
stack can’t make any further moves (recall each move of a PDA requires looking up the
symbol at the top of the stack), the null-stack DPDA will get stuck after reading the prefix
() of the string ()(). Hence, it cannot accept ()(). But then, this null-stack DPDA doesn’t
recognize the set of all balanced parentheses strings.

For the second part of the question, first construct a null-stack DPDA accepting a minimally
balanced parentheses string. This should be straightforward, and is left as an exercise. Now
take k such DPDAs, say P1, . . . Pk. Consider their stack alphabets as disjoint, say Γ1, . . . Γk.
Let X0,1, . . . X0,k denote the initial symbol on the stack for P1, . . . Pk respectively. Now create
a new DPDA P whose stack alphabet is Γ1 ∪ · · · Γk ∪ {Z}, where Z is a new bottom of stack
marker symbol that is not in Γ1 ∪ · · · Γk. The new DPDA P uses Z as the initial symbol in
its stack. It also has a new start state. The DPDA P works as follows:

From the start state of P, there is only a single transition that consumes ε, pops Z and
pushes X0,1Z into the stack. It then transitions to the start state of P1. From every state of
Pi, we now add a transition that consumes ε and on seeing Z as the top of the stack, pops Z,
pushes X0,i+1Z into the stack and transitions to the start state of Pi+1. Finally, from every
state in Pk, we add a transition that consumes ε, pops Z from the stack and doesn’t push
anything, thereby emptying the stack.

We leave it for you to complete the reasoning that this accepts all and only strings that are
concatenations of k minimal valid parentheses substrings.

Clearly, we can’t construct a null-stack DPDA that accepts both () and ()() – we’ve reasoned
earlier about this. So we can’t construct a null-stack DPDA that accepts the language
of balanced parentheses containing upto (instead of exactly) k minimally valid parentheses
substrings.

	Tutorial 6: Context-Free Tutorial

