First Order Logic: A Brief Introduction

Supratik Chakraborty IIT Bombay

Notation

- Variables: x, y, z, ...
 - Represent elements of an underlying set
- Constants: *a*, *b*, *c*, . . .
 - Specific elements of underlying set
- Function symbols: f, g, h, \ldots
 - Arity of function: # of arguments
 - 0-ary functions: constants
- Relation (predicate) symbols: P, Q, R, ...
 - Hence, also called "predicate calculus"
 - Arity of predicate: # of arguments
- Fixed symbols:
 - Carried over from prop. logic: $\land,~\lor,~\neg,~\rightarrow,~\leftrightarrow,~(,~)$
 - New in FOL: \exists , \forall ("quantifiers")

- 4 回 ト 4 ヨ ト 4 ヨ ト

- A special binary predicate, used widely in maths
- Represented by special predicate symbol "="
- Semantically, binary identity relation (more on this later ...)
- First-order logic with equality
 - Different expressive power vis-a-vis first-order logic
 - Most of our discussions will assume availability of "="
 - Refer to as "first-order logic" unless the distinction is important

A (1) × A (2) × A (2) ×

Two classes of syntactic objects: terms and formulas

Terms	
 Every variable is a term 	
• If f is an m -ary function, $t_1, \ldots t_m$ are terms, then $f(t_1, \ldots t_m)$ is also a term	

Atomic formulas

- If R is an n-ary predicate, t_1, \ldots, t_n are terms, then $R(t_1, \ldots, t_m)$ is an atomic formula
- Special case: $t_1 = t_2$

▲□ ▶ ▲ 国 ▶ ▲ 国 ▶

Syntax of FOL

- Primitive fixed symbols: \land , \neg , \exists
 - \bullet Other choices also possible: E.g., \lor, \neg, \forall

Rules for formuling formulas

- Every atomic formula is a formula
- If φ is a formula, so are $\neg \varphi$ and (φ)
- If φ_1 and φ_2 are formulas, so is $\varphi_1 \wedge \varphi_2$
- If φ is a formula, so is $\exists x \, \varphi$ for any variable x
- Formulas with other fixed symbols definable in terms of formulas with primitive symbols.

•
$$\varphi_1 \lor \varphi_2 \triangleq \neg(\neg \varphi_1 \land \neg \varphi_2)$$

• $\varphi_1 \to \varphi_2 \triangleq \neg \varphi_1 \lor \varphi_2$
• $\varphi_1 \leftrightarrow \varphi_2 \triangleq (\varphi_1 \to \varphi_2) \land (\varphi_2 \to \varphi_1)$
• $\forall x \varphi \triangleq \neg(\exists x \neg \varphi)$

▲冊 ▶ ▲ 臣 ▶ ▲ 臣 ▶

FOL formulas as strings

- Alphabet (over which strings are constructed):
 - Set of variable names, e.g. $\{x_1, x_2, y_1, y_2\}$
 - Set of constants, functions, predicates, e.g. $\{a, b, f, =, P\}$
 - Fixed symbols $\{\neg, \lor, \land, \rightarrow, \leftrightarrow, \exists, \forall\}$
- Well-formed formula: string formed according to rules on prev. slide
 - ∀x₁(∀x₂ (((x₁ = a) ∨ (x₁ = b)) ∧ ¬(f(x₂) = f(x₁)))) is well-formed
 - $\forall (\forall x_1(x_1 = ab) \neg ()x_2)$ is not well-formed
- Well-formed formulas can be represented using parse trees
 - Consider the rules on prev. slide as production rules in a context-free grammar

• Alphabet (over which strings are constructed):

- Set of variable names, e.g. $\{x_1, x_2, y_1, y_2\}$
- Set of constants, functions, predicates, e.g. {*a*, *b*, *f*,=}: Vocabulary
- Fixed symbols $\{\neg, \lor, \land, \rightarrow, \leftrightarrow, \exists, \forall\}$

▲冊▶ ▲臣▶ ▲臣▶

• Alphabet (over which strings are constructed):

- Set of variable names, e.g. $\{x_1, x_2, y_1, y_2\}$
- Set of constants, functions, predicates, e.g. {*a*, *b*, *f*,=}: Vocabulary
- Fixed symbols $\{\neg, \lor, \land, \rightarrow, \leftrightarrow, \exists, \forall\}$
- Smallest vocabulary to generate $\forall x_1(\forall x_2(((x_1 = a) \lor (x_1 = b)) \land \neg(f(x_2) = f(x_1))))?$

• Alphabet (over which strings are constructed):

- Set of variable names, e.g. $\{x_1, x_2, y_1, y_2\}$
- Set of constants, functions, predicates, e.g. {*a*, *b*, *f*,=}: Vocabulary
- Fixed symbols $\{\neg, \lor, \land, \rightarrow, \leftrightarrow, \exists, \forall\}$

Smallest vocabulary to generate ∀x1(∀x2(((x1 = a) ∨ (x1 = b)) ∧ ¬(f(x2) = f(x1))))? {a, b, f, =}

• If φ is an atomic formula, free $(\varphi) = \{x \mid x \text{ occurs in } \varphi\}$

• If
$$\varphi = \neg \psi$$
 or $\varphi = (\psi)$, free $(\varphi) =$ free (ψ)

• If
$$\varphi = \varphi_1 \land \varphi_2$$
, free $(\varphi) =$ free $(\varphi_1) \cup$ free (φ_2)

• if
$$\varphi = \exists x \varphi_1$$
, free $(\varphi) =$ free $(\varphi_1) \setminus \{x\}$

• If φ is an atomic formula, free $(\varphi) = \{x \mid x \text{ occurs in } \varphi\}$

• If
$$\varphi = \neg \psi$$
 or $\varphi = (\psi)$, free $(\varphi) =$ free (ψ)

• If
$$\varphi = \varphi_1 \land \varphi_2$$
, free $(\varphi) =$ free $(\varphi_1) \cup$ free (φ_2)

• if
$$\varphi = \exists x \, \varphi_1$$
, free $(\varphi) = \mathsf{free}(\varphi_1) \setminus \{x\}$

• What is free($(\exists x P(x, y)) \land (\forall y Q(x, y))$)?

▲ 同 ▶ ▲ 臣 ▶ ▲ 臣 ▶ …

• If φ is an atomic formula, free $(\varphi) = \{x \mid x \text{ occurs in } \varphi\}$

• If
$$\varphi = \neg \psi$$
 or $\varphi = (\psi)$, free $(\varphi) =$ free (ψ)

• If
$$\varphi = \varphi_1 \land \varphi_2$$
, free $(\varphi) =$ free $(\varphi_1) \cup$ free (φ_2)

• if
$$\varphi = \exists x \, \varphi_1$$
, free $(\varphi) = \mathsf{free}(\varphi_1) \setminus \{x\}$

- What is free($(\exists x P(x, y)) \land (\forall y Q(x, y)))$?
 - = free(($\exists x P(x, y)$)) \cup free($\forall y Q(x, y)$)
 - = free $(P(x, y)) \setminus \{x\} \cup$ free $(Q(x, y)) \setminus \{y\}$
 - = $\{x, y\} \setminus \{x\} \cup \{x, y\} \setminus \{y\} = \{x, y\}$

• If φ is an atomic formula, free $(\varphi) = \{x \mid x \text{ occurs in } \varphi\}$

• If
$$\varphi = \neg \psi$$
 or $\varphi = (\psi)$, free $(\varphi) =$ free (ψ)

• If
$$\varphi = \varphi_1 \land \varphi_2$$
, free $(\varphi) =$ free $(\varphi_1) \cup$ free (φ_2)

• if
$$arphi = \exists x \, arphi_1$$
, free $(arphi) = \mathsf{free}(arphi_1) \setminus \{x\}$

• What is free(
$$(\exists x P(x, y)) \land (\forall y Q(x, y))$$
)?
• = free($(\exists x P(x, y))) \cup$ free($\forall y Q(x, y)$)
• = free($P(x, y)$) \ {x} \cup free($Q(x, y)$) \ {y}
• = {x, y} \ {x} \cup {x, y} \ {y} = {x, y}

If φ has free variables $\{x, y\}$, we write $\varphi(x, y)$ A formula with no free variables is a **sentence**, e.g. $\exists x \forall y f(x) = y$

(4月) トイヨト イヨト

Bound Variables in a Formula

Bound variables are those that are quantified in a formula. Let $bnd(\varphi)$ denote the set of bound variables in φ

• If
$$arphi$$
 is an atomic formula, $\mathsf{bnd}(arphi) = \emptyset$

• If
$$\varphi = \neg \psi$$
 or $\varphi = (\psi)$, $\mathsf{bnd}(\varphi) = \mathsf{bnd}(\psi)$

• If
$$\varphi = \varphi_1 \land \varphi_2$$
, $\mathsf{bnd}(\varphi) = \mathsf{bnd}(\varphi_1) \cup \mathsf{bnd}(\varphi_2)$

• if
$$\varphi = \exists x \, \varphi_1$$
, $\mathsf{bnd}(\varphi) = \mathsf{bnd}(\varphi_1) \cup \{x\}$

▲□ ▶ ▲ 国 ▶ ▲ 国 ▶

Bound Variables in a Formula

Bound variables are those that are quantified in a formula. Let $bnd(\varphi)$ denote the set of bound variables in φ

• If
$$arphi$$
 is an atomic formula, $\mathsf{bnd}(arphi) = \emptyset$

• If
$$\varphi = \neg \psi$$
 or $\varphi = (\psi)$, $\mathsf{bnd}(\varphi) = \mathsf{bnd}(\psi)$

• If
$$\varphi = \varphi_1 \land \varphi_2$$
, $\mathsf{bnd}(\varphi) = \mathsf{bnd}(\varphi_1) \cup \mathsf{bnd}(\varphi_2)$

• if
$$\varphi = \exists x \, \varphi_1$$
, $\mathsf{bnd}(\varphi) = \mathsf{bnd}(\varphi_1) \cup \{x\}$

• What is
$$bnd((\exists x P(x, y)) \land (\forall y Q(x, y)))$$
?

▲冊 ▶ ▲ 臣 ▶ ▲ 臣 ▶

Bound Variables in a Formula

Bound variables are those that are quantified in a formula. Let $bnd(\varphi)$ denote the set of bound variables in φ

• If
$$arphi$$
 is an atomic formula, $\mathsf{bnd}(arphi) = \emptyset$

• If
$$\varphi = \neg \psi$$
 or $\varphi = (\psi)$, $\mathsf{bnd}(\varphi) = \mathsf{bnd}(\psi)$

• If
$$\varphi = \varphi_1 \land \varphi_2$$
, $\mathsf{bnd}(\varphi) = \mathsf{bnd}(\varphi_1) \cup \mathsf{bnd}(\varphi_2)$

• if
$$\varphi = \exists x \, \varphi_1$$
, $\mathsf{bnd}(\varphi) = \mathsf{bnd}(\varphi_1) \cup \{x\}$

• What is bnd(
$$(\exists x P(x, y)) \land (\forall y Q(x, y)))$$
?

• = bnd((
$$\exists x P(x, y)$$
)) \cup bnd($\forall y Q(x, y)$)

• = bnd(
$$P(x, y)$$
) \cup {x} \cup bnd($Q(x, y)$) \cup {y}

• =
$$\emptyset \cup \{x\} \cup \emptyset \cup \{y\}$$

• = {
$$x$$
} \cup { y } = { x, y } !!!

• free(φ) and bnd(φ) are not complements!

Suppose $x \in \text{free}(\varphi)$ and t is any term.

We wish to replace every free occurrence of x in φ with t, such that free variables in t stay free in the resulting formula.

Term t is free for x in φ if no free occurrence of x in φ is in the scope of $\forall y$ or $\exists y$ for any variable y occurring in t.

- $\varphi \triangleq \exists y R(x, y) \lor \forall x R(z, x)$, and t is f(z, x)
- f(z,x) is free for x in φ , but f(y,x) is not

 $\varphi[t/x]$: Formula obtained by replacing each free occurrence of x in φ by t, if t is free for x in φ

• For φ defined above,

 $\varphi[f(z,x)/x] \triangleq \exists y \, R(f(z,x),y) \lor \forall x \, R(z,x)$

A (1) × (2) × (3) ×