# First Order Logic: A Brief Introduction 

Supratik Chakraborty<br>IIT Bombay

- Variables: $x, y, z, \ldots$
- Represent elements of an underlying set
- Constants: $a, b, c, \ldots$
- Specific elements of underlying set
- Function symbols: $f, g, h, \ldots$
- Arity of function: \# of arguments
- 0-ary functions: constants
- Relation (predicate) symbols: $P, Q, R, \ldots$
- Hence, also called "predicate calculus"
- Arity of predicate: \# of arguments
- Fixed symbols:
- Carried over from prop. logic: $\wedge, \vee, \neg, \rightarrow, \leftrightarrow,($,
- New in FOL: $\exists$, $\forall$ ("quantifiers")


## Equality in FOL

- A special binary predicate, used widely in maths
- Represented by special predicate symbol "="
- Semantically, binary identity relation (more on this later ...)
- First-order logic with equality
- Different expressive power vis-a-vis first-order logic
- Most of our discussions will assume availability of "="
- Refer to as "first-order logic" unless the distinction is important


## Syntax of FOL

Two classes of syntactic objects: terms and formulas

## Terms

- Every variable is a term
- If $f$ is an $m$-ary function, $t_{1}, \ldots t_{m}$ are terms, then $f\left(t_{1}, \ldots t_{m}\right)$ is also a term


## Atomic formulas

- If $R$ is an $n$-ary predicate, $t_{1}, \ldots t_{n}$ are terms, then $R\left(t_{1}, \ldots t_{m}\right)$ is an atomic formula
- Special case: $t_{1}=t_{2}$


## Syntax of FOL

- Primitive fixed symbols: $\wedge, \neg, \exists$
- Other choices also possible: E.g., $\vee, \neg, \forall$


## Rules for formuling formulas

- Every atomic formula is a formula
- If $\varphi$ is a formula, so are $\neg \varphi$ and $(\varphi)$
- If $\varphi_{1}$ and $\varphi_{2}$ are formulas, so is $\varphi_{1} \wedge \varphi_{2}$
- If $\varphi$ is a formula, so is $\exists x \varphi$ for any variable $x$
- Formulas with other fixed symbols definable in terms of formulas with primitive symbols.
- $\varphi_{1} \vee \varphi_{2} \triangleq \neg\left(\neg \varphi_{1} \wedge \neg \varphi_{2}\right)$
- $\varphi_{1} \rightarrow \varphi_{2} \triangleq \neg \varphi_{1} \vee \varphi_{2}$
- $\varphi_{1} \leftrightarrow \varphi_{2} \triangleq\left(\varphi_{1} \rightarrow \varphi_{2}\right) \wedge\left(\varphi_{2} \rightarrow \varphi_{1}\right)$
- $\forall x \varphi \triangleq \neg(\exists x \neg \varphi)$


## FOL formulas as strings

- Alphabet (over which strings are constructed):
- Set of variable names, e.g. $\left\{x_{1}, x_{2}, y_{1}, y_{2}\right\}$
- Set of constants, functions, predicates, e.g. $\{a, b, f,=, P\}$
- Fixed symbols $\{\neg, \vee, \wedge, \rightarrow, \leftrightarrow, \exists, \forall\}$
- Well-formed formula: string formed according to rules on prev. slide
- $\forall x_{1}\left(\forall x_{2}\left(\left(\left(x_{1}=a\right) \vee\left(x_{1}=b\right)\right) \wedge \neg\left(f\left(x_{2}\right)=f\left(x_{1}\right)\right)\right)\right)$ is well-formed
- $\forall\left(\forall x_{1}\left(x_{1}=a b\right) \neg() x_{2}\right)$ is not well-formed
- Well-formed formulas can be represented using parse trees
- Consider the rules on prev. slide as production rules in a context-free grammar


## Vocabulary

- Alphabet (over which strings are constructed):
- Set of variable names, e.g. $\left\{x_{1}, x_{2}, y_{1}, y_{2}\right\}$
- Set of constants, functions, predicates, e.g. $\{a, b, f,=\}$ : Vocabulary
- Fixed symbols $\{\neg, \vee, \wedge, \rightarrow, \leftrightarrow, \exists, \forall\}$


## Vocabulary

- Alphabet (over which strings are constructed):
- Set of variable names, e.g. $\left\{x_{1}, x_{2}, y_{1}, y_{2}\right\}$
- Set of constants, functions, predicates, e.g. $\{a, b, f,=\}$ : Vocabulary
- Fixed symbols $\{\neg, \vee, \wedge, \rightarrow, \leftrightarrow, \exists, \forall\}$
- Smallest vocabulary to generate $\forall x_{1}\left(\forall x_{2}\left(\left(\left(x_{1}=a\right) \vee\left(x_{1}=b\right)\right) \wedge \neg\left(f\left(x_{2}\right)=f\left(x_{1}\right)\right)\right)\right)$ ?


## Vocabulary

- Alphabet (over which strings are constructed):
- Set of variable names, e.g. $\left\{x_{1}, x_{2}, y_{1}, y_{2}\right\}$
- Set of constants, functions, predicates, e.g. $\{a, b, f,=\}$ : Vocabulary
- Fixed symbols $\{\neg, \vee, \wedge, \rightarrow, \leftrightarrow, \exists, \forall\}$
- Smallest vocabulary to generate $\forall x_{1}\left(\forall x_{2}\left(\left(\left(x_{1}=a\right) \vee\left(x_{1}=b\right)\right) \wedge \neg\left(f\left(x_{2}\right)=f\left(x_{1}\right)\right)\right)\right)$ ?
- $\{a, b, f,=\}$


## Free Variables in a Formula

Free variables are those that are not quantified in a formula. Let free $(\varphi)$ denote the set of free variables in $\varphi$

- If $\varphi$ is an atomic formula, free $(\varphi)=\{x \mid \times$ occurs in $\varphi\}$
- If $\varphi=\neg \psi$ or $\varphi=(\psi)$, free $(\varphi)=$ free $(\psi)$
- If $\varphi=\varphi_{1} \wedge \varphi_{2}$, free $(\varphi)=$ free $\left(\varphi_{1}\right) \cup$ free $\left(\varphi_{2}\right)$
- if $\varphi=\exists x \varphi_{1}$, free $(\varphi)=$ free $\left(\varphi_{1}\right) \backslash\{x\}$

Free variables are those that are not quantified in a formula. Let free $(\varphi)$ denote the set of free variables in $\varphi$

- If $\varphi$ is an atomic formula, free $(\varphi)=\{x \mid \times$ occurs in $\varphi\}$
- If $\varphi=\neg \psi$ or $\varphi=(\psi)$, free $(\varphi)=$ free $(\psi)$
- If $\varphi=\varphi_{1} \wedge \varphi_{2}$, free $(\varphi)=$ free $\left(\varphi_{1}\right) \cup$ free $\left(\varphi_{2}\right)$
- if $\varphi=\exists x \varphi_{1}$, free $(\varphi)=$ free $\left(\varphi_{1}\right) \backslash\{x\}$
- What is free $((\exists x P(x, y)) \wedge(\forall y Q(x, y)))$ ?

Free variables are those that are not quantified in a formula. Let free $(\varphi)$ denote the set of free variables in $\varphi$

- If $\varphi$ is an atomic formula, free $(\varphi)=\{x \mid \times$ occurs in $\varphi\}$
- If $\varphi=\neg \psi$ or $\varphi=(\psi)$, free $(\varphi)=$ free $(\psi)$
- If $\varphi=\varphi_{1} \wedge \varphi_{2}$, free $(\varphi)=$ free $\left(\varphi_{1}\right) \cup$ free $\left(\varphi_{2}\right)$
- if $\varphi=\exists x \varphi_{1}$, free $(\varphi)=$ free $\left(\varphi_{1}\right) \backslash\{x\}$
- What is free $((\exists x P(x, y)) \wedge(\forall y Q(x, y)))$ ?
- $=\operatorname{free}((\exists x P(x, y))) \cup$ free $(\forall y Q(x, y))$
- $=$ free $(P(x, y)) \backslash\{x\} \cup$ free $(Q(x, y)) \backslash\{y\}$
- $=\{x, y\} \backslash\{x\} \cup\{x, y\} \backslash\{y\}=\{x, y\}$

Free variables are those that are not quantified in a formula. Let free $(\varphi)$ denote the set of free variables in $\varphi$

- If $\varphi$ is an atomic formula, free $(\varphi)=\{x \mid \times$ occurs in $\varphi\}$
- If $\varphi=\neg \psi$ or $\varphi=(\psi)$, free $(\varphi)=$ free $(\psi)$
- If $\varphi=\varphi_{1} \wedge \varphi_{2}$, free $(\varphi)=$ free $\left(\varphi_{1}\right) \cup$ free $\left(\varphi_{2}\right)$
- if $\varphi=\exists x \varphi_{1}$, free $(\varphi)=$ free $\left(\varphi_{1}\right) \backslash\{x\}$
- What is free $((\exists x P(x, y)) \wedge(\forall y Q(x, y)))$ ?
- $=$ free $((\exists x P(x, y))) \cup$ free $(\forall y Q(x, y))$
- $=$ free $(P(x, y)) \backslash\{x\} \cup$ free $(Q(x, y)) \backslash\{y\}$
- $=\{x, y\} \backslash\{x\} \cup\{x, y\} \backslash\{y\}=\{x, y\}$

If $\varphi$ has free variables $\{x, y\}$, we write $\varphi(x, y)$
A formula with no free variables is a sentence, e.g. $\exists x \forall y f(x)=y$

## Bound Variables in a Formula

Bound variables are those that are quantified in a formula. Let bnd $(\varphi)$ denote the set of bound variables in $\varphi$

- If $\varphi$ is an atomic formula, $\operatorname{bnd}(\varphi)=\emptyset$
- If $\varphi=\neg \psi$ or $\varphi=(\psi)$, bnd $(\varphi)=\operatorname{bnd}(\psi)$
- If $\varphi=\varphi_{1} \wedge \varphi_{2}, \operatorname{bnd}(\varphi)=\operatorname{bnd}\left(\varphi_{1}\right) \cup \operatorname{bnd}\left(\varphi_{2}\right)$
- if $\varphi=\exists x \varphi_{1}, \operatorname{bnd}(\varphi)=\operatorname{bnd}\left(\varphi_{1}\right) \cup\{x\}$


## Bound Variables in a Formula

Bound variables are those that are quantified in a formula. Let bnd $(\varphi)$ denote the set of bound variables in $\varphi$

- If $\varphi$ is an atomic formula, $\operatorname{bnd}(\varphi)=\emptyset$
- If $\varphi=\neg \psi$ or $\varphi=(\psi)$, bnd $(\varphi)=\operatorname{bnd}(\psi)$
- If $\varphi=\varphi_{1} \wedge \varphi_{2}, \operatorname{bnd}(\varphi)=\operatorname{bnd}\left(\varphi_{1}\right) \cup \operatorname{bnd}\left(\varphi_{2}\right)$
- if $\varphi=\exists x \varphi_{1}, \operatorname{bnd}(\varphi)=\operatorname{bnd}\left(\varphi_{1}\right) \cup\{x\}$
- What is $\operatorname{bnd}((\exists x P(x, y)) \wedge(\forall y Q(x, y)))$ ?


## Bound Variables in a Formula

Bound variables are those that are quantified in a formula. Let bnd $(\varphi)$ denote the set of bound variables in $\varphi$

- If $\varphi$ is an atomic formula, $\operatorname{bnd}(\varphi)=\emptyset$
- If $\varphi=\neg \psi$ or $\varphi=(\psi)$, bnd $(\varphi)=\operatorname{bnd}(\psi)$
- If $\varphi=\varphi_{1} \wedge \varphi_{2}, \operatorname{bnd}(\varphi)=\operatorname{bnd}\left(\varphi_{1}\right) \cup \operatorname{bnd}\left(\varphi_{2}\right)$
- if $\varphi=\exists x \varphi_{1}, \operatorname{bnd}(\varphi)=\operatorname{bnd}\left(\varphi_{1}\right) \cup\{x\}$
- What is $\operatorname{bnd}((\exists x P(x, y)) \wedge(\forall y Q(x, y)))$ ?

$$
\begin{aligned}
& \mathbf{\bullet}=\operatorname{bnd}((\exists x P(x, y))) \cup \operatorname{bnd}(\forall y Q(x, y)) \\
& \bullet=\operatorname{bnd}(P(x, y)) \cup\{x\} \cup \operatorname{bnd}(Q(x, y)) \cup\{y\} \\
& \mathbf{0}=\emptyset \cup\{x\} \cup \emptyset \cup\{y\} \\
& \mathbf{0}=\{x\} \cup\{y\}=\{x, y\}!!!
\end{aligned}
$$

- free $(\varphi)$ and $\operatorname{bnd}(\varphi)$ are not complements!

Suppose $x \in$ free $(\varphi)$ and $t$ is any term.
We wish to replace every free occurrence of $x$ in $\varphi$ with $t$, such that free variables in $t$ stay free in the resulting formula.

Term $t$ is free for $x$ in $\varphi$ if no free occurrence of $x$ in $\varphi$ is in the scope of $\forall y$ or $\exists y$ for any variable $y$ occurring in $t$.

- $\varphi \triangleq \exists y R(x, y) \vee \forall x R(z, x)$, and $t$ is $f(z, x)$
- $f(z, x)$ is free for $x$ in $\varphi$, but $f(y, x)$ is not
$\varphi[t / x]$ : Formula obtained by replacing each free occurrence of $x$ in $\varphi$ by $t$, if $t$ is free for $x$ in $\varphi$
- For $\varphi$ defined above,

$$
\varphi[f(z, x) / x] \triangleq \exists y R(f(z, x), y) \vee \forall x R(z, x)
$$

