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Let F = {φ1,φ2, . . .} be a (possibly infinite) set of formulas, and
ψ be a formula

Semantic Entailment: F |= ψ holds iff whenever M,α |= φi

for all φi ∈ F , then M,α |= ψ as well.

{∀x ((x = a) ∨ R(x , y)), R(a, y)} |= ∀z R(z , y)
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ψ be a formula

Semantic Entailment: F |= ψ holds iff whenever M,α |= φi

for all φi ∈ F , then M,α |= ψ as well.

{∀x ((x = a) ∨ R(x , y)), R(a, y)} |= ∀z R(z , y)
Satisfiability: ψ is satisfiable iff there is some M and α such
that M,α |= ψ

∃x R(x , f (y , a)) → ∃z (¬(z = a) ∧ R(z , y)) is satisfiable
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V-structures M and all bindings α that assign values from UM
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Semantic Relations in FOL

Let F = {φ1,φ2, . . .} be a (possibly infinite) set of formulas, and
ψ be a formula

Semantic Entailment: F |= ψ holds iff whenever M,α |= φi

for all φi ∈ F , then M,α |= ψ as well.

{∀x ((x = a) ∨ R(x , y)), R(a, y)} |= ∀z R(z , y)
Satisfiability: ψ is satisfiable iff there is some M and α such
that M,α |= ψ

∃x R(x , f (y , a)) → ∃z (¬(z = a) ∧ R(z , y)) is satisfiable

Validity: A V-formula ψ is valid iff M,α |= ψ for all
V-structures M and all bindings α that assign values from UM

to free(ψ).

∀x P(x , y) → ∃x P(x , y) is valid
Consistency: F is consistent iff there is at least one M and α
such that M,α |= φi for all φi ∈ F .

{∃x R(x , y), ∃x R(f (x), y), ∃x R(f (f (x)), y), . . .} is
consistent
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Sematic Equivalence in FOL

φ ≡ ψ iff {φ} |= ψ and {ψ} |= φ.

Quantifier Equivalences

∀x∀y φ ≡ ∀y∀x φ, ∃x∃y φ ≡ ∃y∃x φ
∀x (φ1 ∧ φ2) ≡ (∀x φ1) ∧ (∀x φ2)

∃x (φ1 ∨ φ2) ≡ (∃x φ1) ∨ (∃x φ2)

If x ̸∈ free(φ2), then Qx (φ1 op φ2) ≡ (Qx φ1) op φ2, where
Q ∈ {∃, ∀} and op ∈ {∨,∧}.

Renaming Quantified Variables

Let z ̸∈ free(φ) ∪ bnd(φ).
Then Qx φ ≡ Qz φ[z/x ] for Q ∈ {∃, ∀}.

Enabler for substitution, e.g., ∃x R(f (x , y),w) ≡ ∃z R(f (z , y),w)
f (x , y) not free for y in ∃x R(f (x , y),w), but is free for y in
∃z R(f (z , y),w).
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Semantically Equivalent Transformations of FOL Formulae

Negation Normal Form

Push negations down to atomic predicates using

DeMorgan’s Laws

¬∃x φ(x) ≡ ∀x ¬φ(x) and ¬∀x φ(x) ≡ ∃x ¬φ(x) and

Pull quantifiers out to the left

Rename every quantified variable to a fresh variable name

Use rules for scoping of quantifiers in previous slide to pull all
quantifiers out to the left

∃x φ(x) ∨ ∃x ψ(x) ≡ ∃x (φ(x) ∨ ψ(x))
∃x φ(x) ∧ ∃z ψ(z) ≡ ∃x∃z (φ(x) ∧ ψ(z))
∀x φ(x) ∧ ∀x ψ(x) ≡ ∀x (φ(x) ∧ ψ(x))
∀x φ(x) ∨ ∀z ψ(z) ≡ ∀x∀z (φ(x) ∨ ψ(z))
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Prenex Normal Form (PNF)

First order logic formula of the form:

Q1x1Q2x2 . . .Qkxk φ(x1, x2, . . . xk , y1, . . . yn)

Qi ∈ {∃, ∀} for all i ∈ {1, . . . k} and φ(· · · ) quantifier-free
All quantifiers pulled out to the left: quantifier prefix of
formula

Exact sequencing of ∀ and ∃ important

y1, . . . yn are free variables

φ(x1, x2, . . . xk , y1, . . . yn) is quantifier free: matrix of formula

Every FOL formula has a semantically equivalent PNF

Special prenex normal forms

Prenex conjunctive normal form (PCNF): matrix in CNF w.r.t.
atomic predicates

Prenex disjunctive normal form (PDNF): matrix in DNF w.r.t.
atomic predicates

Every FOL formula has a sem. equivalent PCNF and PDNF.
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First-order Definable Structures

If φ is a V-sentence (no free vars), no binding α necessary for
evaluating truth of φ

Given V-structure M, we can ask if M |= φ
Class of V-structures defined by φ is {M |= φ}

Some examples of structures: graphs, databases, number
systems
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Graphs as FO structures

A graph G

UG : set of vertices

Vocabulary V: {E ,=}, where E is a binary (edge) relation

Interpretation: For a, b ∈ UG , EG (a, b) = true iff there is an
edge from vertex a to vertex b in G
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Examples of classes of graphs definable in FOL:

∀x∀y (¬(x = y) → E (x , y))

(Infinite) class of all cliques
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∃x∀y (¬(x = y) → ¬E (x , y))
(Infinite) class of all graphs with at least one vertex from
which there is no edge to any other vertex

∀x∀y∀z (¬(x = y) ∧ ¬(y = z) ∧ ¬(z = x)) →
¬(E (x , y) ∧ E (y , z) ∧ E (z , x))

(Infinite) class of all graphs with no cycles of length 3
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Graphs as FO structures

A graph G

UG : set of vertices

Vocabulary V: {E ,=}, where E is a binary (edge) relation

Interpretation: For a, b ∈ UG , EG (a, b) = true iff there is an
edge from vertex a to vertex b in G

Examples of classes of graphs definable in FOL:

∀x∀y (¬(x = y) → E (x , y))

(Infinite) class of all cliques

∃x∀y (¬(x = y) → ¬E (x , y))
(Infinite) class of all graphs with at least one vertex from
which there is no edge to any other vertex

∀x∀y∀z (¬(x = y) ∧ ¬(y = z) ∧ ¬(z = x)) →
¬(E (x , y) ∧ E (y , z) ∧ E (z , x))

(Infinite) class of all graphs with no cycles of length 3

∃x∃y (¬(x = y) ∧ E (x , y) ∧ ∀z ((x = z) ∨ (y = z)))

(Finite) class of graphs with exactly two connected vertices.
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Relational Databases as FO structures

A relational database D

UD : set of (possibly differently typed) data items

Vocabulary V: {P1, . . .Pk ,=}, where Pi is a ki -ary predicate
corr. to the i th table in database with ki columns

Interpretation: For a1, . . . aki ∈ UD , Pi (a1, . . . aki ) = true iff
(a1, . . . ak1) is a row of the i th table
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A relational database D

UD : set of (possibly differently typed) data items

Vocabulary V: {P1, . . .Pk ,=}, where Pi is a ki -ary predicate
corr. to the i th table in database with ki columns

Interpretation: For a1, . . . aki ∈ UD , Pi (a1, . . . aki ) = true iff
(a1, . . . ak1) is a row of the i th table

Examples of classes of databases definable in FOL:

∀x∀y∀z StRec(x , y , z) ↔ Dob(x , y) ∧ Class(x , z)
Table StRec is the natural join of Tables Dob and Class
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Relational Databases as FO structures

A relational database D

UD : set of (possibly differently typed) data items

Vocabulary V: {P1, . . .Pk ,=}, where Pi is a ki -ary predicate
corr. to the i th table in database with ki columns

Interpretation: For a1, . . . aki ∈ UD , Pi (a1, . . . aki ) = true iff
(a1, . . . ak1) is a row of the i th table

Examples of classes of databases definable in FOL:

∀x∀y∀z StRec(x , y , z) ↔ Dob(x , y) ∧ Class(x , z)
Table StRec is the natural join of Tables Dob and Class

∀x∀y Dob(x , y) → ∃z StRec(x , y , z)
Table Dob is a projection of Table StRec

Example database query:

φ(x) ≜ ∃y∃z (Dob(x , y) ∧ After(y , “01/01/1990′′) ∧
Class(x , z) ∧ Primary(z))

Defines set of students born after “01/01/1990” and studying
in a primary class.
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Number systems as FO structures

Natural/real numbers with addition, multiplication, linear ordering
and constants 0 and 1 (fixed interpretation)

N = (N, 0, 1,×,+, <,=)

R = (R, 0, 1,×,+, <,=)
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Number systems as FO structures

Natural/real numbers with addition, multiplication, linear ordering
and constants 0 and 1 (fixed interpretation)

N = (N, 0, 1,×,+, <,=)

R = (R, 0, 1,×,+, <,=)

Examples of properties expressible in FOL:

R |= ∀x∃y (x = ((y × y)× y))

Every real number has a real cube root
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Natural/real numbers with addition, multiplication, linear ordering
and constants 0 and 1 (fixed interpretation)

N = (N, 0, 1,×,+, <,=)

R = (R, 0, 1,×,+, <,=)

Examples of properties expressible in FOL:

R |= ∀x∃y (x = ((y × y)× y))

Every real number has a real cube root

N ̸|= ∀x∃y∃z (x = (y × y) + (z × z))
R |= ∀x∃y∃z (x = (y × y) + (z × z))

Not every natural number can be expressed as the sum of
squares of two natural numbers. This can be done for real
numbers
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Number systems as FO structures

Natural/real numbers with addition, multiplication, linear ordering
and constants 0 and 1 (fixed interpretation)

N = (N, 0, 1,×,+, <,=)

R = (R, 0, 1,×,+, <,=)

Examples of properties expressible in FOL:

R |= ∀x∃y (x = ((y × y)× y))

Every real number has a real cube root

N ̸|= ∀x∃y∃z (x = (y × y) + (z × z))
R |= ∀x∃y∃z (x = (y × y) + (z × z))

Not every natural number can be expressed as the sum of
squares of two natural numbers. This can be done for real
numbers

N |= ∀x∃y ((x < y)∧
(∀z∀w (y = z × w) → ((z = y) ∨ (w = y)))

There are infinitely many prime natural numbers
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