Semantic Relations in FOL

Let $\mathcal{F}=\left\{\varphi_{1}, \varphi_{2}, \ldots\right\}$ be a (possibly infinite) set of formulas, and ψ be a formula

Semantic Relations in FOL

Let $\mathcal{F}=\left\{\varphi_{1}, \varphi_{2}, \ldots\right\}$ be a (possibly infinite) set of formulas, and ψ be a formula

Semantic Relations in FOL

Let $\mathcal{F}=\left\{\varphi_{1}, \varphi_{2}, \ldots\right\}$ be a (possibly infinite) set of formulas, and ψ be a formula

- Semantic Entailment: $\mathcal{F} \models \psi$ holds iff whenever $M, \alpha \vDash \varphi_{i}$ for all $\varphi_{i} \in \mathcal{F}$, then $M, \alpha \models \psi$ as well.
- $\{\forall x((x=a) \vee R(x, y)), \quad R(a, y)\} \quad \forall z R(z, y)$

Semantic Relations in FOL

Let $\mathcal{F}=\left\{\varphi_{1}, \varphi_{2}, \ldots\right\}$ be a (possibly infinite) set of formulas, and ψ be a formula

- Semantic Entailment: $\mathcal{F} \models \psi$ holds iff whenever $M, \alpha \vDash \varphi_{i}$ for all $\varphi_{i} \in \mathcal{F}$, then $M, \alpha \equiv \psi$ as well.
- $\{\forall x((x=a) \vee R(x, y)), \quad R(a, y)\} \quad \vDash \forall R(z, y)$
- Satisfiability: ψ is satisfiable iff there is some M and α such that $M, \alpha=\psi$
- $\exists x R(x, f(y, a)) \rightarrow \exists z(\neg(z=a) \wedge R(z, y))$ is satisfiable

Semantic Relations in FOL

Let $\mathcal{F}=\left\{\varphi_{1}, \varphi_{2}, \ldots\right\}$ be a (possibly infinite) set of formulas, and ψ be a formula

- Semantic Entailment: $\mathcal{F} \models \psi$ holds iff whenever $M, \alpha \models \varphi_{i}$ for all $\varphi_{i} \in \mathcal{F}$, then $M, \alpha \equiv \psi$ as well.
- $\{\forall x((x=a) \vee R(x, y)), \quad R(a, y)\} \quad \forall z R(z, y)$
- Satisfiability: ψ is satisfiable iff there is some M and α such that $M, \alpha \equiv \psi$
- $\exists x R(x, f(y, a)) \rightarrow \exists z(\neg(z=a) \wedge R(z, y))$ is satisfiable
- Validity: A \mathcal{V}-formula ψ is valid iff $M, \alpha \models \psi$ for all
\mathcal{V}-structures M and all bindings α that assign values from U^{M} to free (ψ).
- $\forall x P(x, y) \rightarrow \exists x P(x, y)$ is valid

Semantic Relations in FOL

Let $\mathcal{F}=\left\{\varphi_{1}, \varphi_{2}, \ldots\right\}$ be a (possibly infinite) set of formulas, and ψ be a formula

- Semantic Entailment: $\mathcal{F} \models \psi$ holds iff whenever $M, \alpha \models \varphi_{i}$ for all $\varphi_{i} \in \mathcal{F}$, then $M, \alpha \equiv \psi$ as well.
- $\{\forall x((x=a) \vee R(x, y)), \quad R(a, y)\} \quad \forall z R(z, y)$
- Satisfiability: ψ is satisfiable iff there is some M and α such that $M, \alpha \equiv \psi$
- $\exists x R(x, f(y, a)) \rightarrow \exists z(\neg(z=a) \wedge R(z, y))$ is satisfiable
- Validity: A \mathcal{V}-formula ψ is valid iff $M, \alpha \models \psi$ for all
\mathcal{V}-structures M and all bindings α that assign values from U^{M} to free (ψ).
- $\forall x P(x, y) \rightarrow \exists x P(x, y)$ is valid
- Consistency: \mathcal{F} is consistent iff there is at least one M and α such that $M, \alpha=\varphi_{i}$ for all $\varphi_{i} \in \mathcal{F}$.
- $\{\exists x R(x, y), \exists x R(f(x), y), \exists x R(f(f(x)), y), \ldots\}$ is consistent

Sematic Equivalence in FOL

$$
\varphi \equiv \psi \text { iff }\{\varphi\} \models \psi \text { and }\{\psi\} \models \varphi \text {. }
$$

Quantifier Equivalences

- $\forall x \forall y \varphi \equiv \forall y \forall x \varphi, \quad \exists x \exists y \varphi \equiv \exists y \exists x \varphi$
- $\forall x\left(\varphi_{1} \wedge \varphi_{2}\right) \equiv\left(\forall x \varphi_{1}\right) \wedge\left(\forall x \varphi_{2}\right)$
- $\exists x\left(\varphi_{1} \vee \varphi_{2}\right) \equiv\left(\exists x \varphi_{1}\right) \vee\left(\exists x \varphi_{2}\right)$
- If $x \notin$ free $\left(\varphi_{2}\right)$, then $Q \times\left(\varphi_{1}\right.$ op $\left.\varphi_{2}\right) \equiv\left(Q \times \varphi_{1}\right)$ op φ_{2}, where $Q \in\{\exists, \forall\}$ and op $\in\{\vee, \wedge\}$.

Renaming Quantified Variables
 Let $z \notin \operatorname{free}(\varphi) \cup \operatorname{bnd}(\varphi)$.
 Then $Q x \varphi \equiv Q z \varphi[z / x]$ for $Q \in\{\exists, \forall\}$.

Enabler for substitution, e.g., $\exists x R(f(x, y), w) \equiv \exists z R(f(z, y), w)$ $f(x, y)$ not free for y in $\exists x R(f(x, y), w)$, but is free for y in
$\exists z R(f(z, y), w)$.

Semantically Equivalent Transformations of FOL Formulae

Negation Normal Form

Push negations down to atomic predicates using

- DeMorgan's Laws
- $\neg \exists x \varphi(x) \equiv \forall x \neg \varphi(x)$ and $\neg \forall x \varphi(x) \equiv \exists x \neg \varphi(x)$ and

Pull quantifiers out to the left

- Rename every quantified variable to a fresh variable name
- Use rules for scoping of quantifiers in previous slide to pull all quantifiers out to the left
- $\exists x \varphi(x) \vee \exists x \psi(x) \equiv \exists x(\varphi(x) \vee \psi(x))$
- $\exists x \varphi(x) \wedge \exists z \psi(z) \equiv \exists x \exists z(\varphi(x) \wedge \psi(z))$
- $\forall x \varphi(x) \wedge \forall x \psi(x) \equiv \forall x(\varphi(x) \wedge \psi(x))$
- $\forall x \varphi(x) \vee \forall z \psi(z) \equiv \forall x \forall z(\varphi(x) \vee \psi(z))$

Prenex Normal Form (PNF)

First order logic formula of the form:
$Q_{1} x_{1} Q_{2} x_{2} \ldots Q_{k} x_{k} \varphi\left(x_{1}, x_{2}, \ldots x_{k}, y_{1}, \ldots y_{n}\right)$
$Q_{i} \in\{\exists, \forall\}$ for all $i \in\{1, \ldots k\}$ and $\varphi(\cdots)$ quantifier-free

- All quantifiers pulled out to the left: quantifier prefix of formula
- Exact sequencing of \forall and \exists important
- $y_{1}, \ldots y_{n}$ are free variables
- $\varphi\left(x_{1}, x_{2}, \ldots x_{k}, y_{1}, \ldots y_{n}\right)$ is quantifier free: matrix of formula

Every FOL formula has a semantically equivalent PNF

Special prenex normal forms

- Prenex conjunctive normal form (PCNF): matrix in CNF w.r.t. atomic predicates
- Prenex disjunctive normal form (PDNF): matrix in DNF w.r.t. atomic predicates

Every FOL formula has a sem. equivalent PCNF and PDNF

- If φ is a \mathcal{V}-sentence (no free vars), no binding α necessary for evaluating truth of φ
- Given \mathcal{V}-structure M, we can ask if $M=\varphi$
- Class of \mathcal{V}-structures defined by φ is $\{M \models \varphi\}$
- Some examples of structures: graphs, databases, number systems

Graphs as FO structures

A graph G

- U^{G} : set of vertices
- Vocabulary $\mathcal{V}:\{E,=\}$, where E is a binary (edge) relation
- Interpretation: For $a, b \in U^{G}, E^{G}(a, b)=$ true iff there is an edge from vertex a to vertex b in G

Graphs as FO structures

A graph G

- U^{G} : set of vertices
- Vocabulary $\mathcal{V}:\{E,=\}$, where E is a binary (edge) relation
- Interpretation: For $a, b \in U^{G}, E^{G}(a, b)=$ true iff there is an edge from vertex a to vertex b in G
Examples of classes of graphs definable in FOL:
- $\forall x \forall y(\neg(x=y) \rightarrow E(x, y))$
- (Infinite) class of all cliques

Graphs as FO structures

A graph G

- U^{G} : set of vertices
- Vocabulary $\mathcal{V}:\{E,=\}$, where E is a binary (edge) relation
- Interpretation: For $a, b \in U^{G}, E^{G}(a, b)=$ true iff there is an edge from vertex a to vertex b in G
Examples of classes of graphs definable in FOL:
- $\forall x \forall y(\neg(x=y) \rightarrow E(x, y))$
- (Infinite) class of all cliques
- $\exists x \forall y(\neg(x=y) \rightarrow \neg E(x, y))$
- (Infinite) class of all graphs with at least one vertex from which there is no edge to any other vertex

Graphs as FO structures

A graph G

- U^{G} : set of vertices
- Vocabulary $\mathcal{V}:\{E,=\}$, where E is a binary (edge) relation
- Interpretation: For $a, b \in U^{G}, E^{G}(a, b)=$ true iff there is an edge from vertex a to vertex b in G
Examples of classes of graphs definable in FOL:
- $\forall x \forall y(\neg(x=y) \rightarrow E(x, y))$
- (Infinite) class of all cliques
- $\exists x \forall y(\neg(x=y) \rightarrow \neg E(x, y))$
- (Infinite) class of all graphs with at least one vertex from which there is no edge to any other vertex
- $\forall x \forall y \forall z(\neg(x=y) \wedge \neg(y=z) \wedge \neg(z=x)) \rightarrow$

$$
\neg(E(x, y) \wedge E(y, z) \wedge E(z, x))
$$

- (Infinite) class of all graphs with no cycles of length 3

Graphs as FO structures

A graph G

- U^{G} : set of vertices
- Vocabulary $\mathcal{V}:\{E,=\}$, where E is a binary (edge) relation
- Interpretation: For $a, b \in U^{G}, E^{G}(a, b)=$ true iff there is an edge from vertex a to vertex b in G
Examples of classes of graphs definable in FOL:
- $\forall x \forall y(\neg(x=y) \rightarrow E(x, y))$
- (Infinite) class of all cliques
- $\exists x \forall y(\neg(x=y) \rightarrow \neg E(x, y))$
- (Infinite) class of all graphs with at least one vertex from which there is no edge to any other vertex
- $\forall x \forall y \forall z(\neg(x=y) \wedge \neg(y=z) \wedge \neg(z=x)) \rightarrow$

$$
\neg(E(x, y) \wedge E(y, z) \wedge E(z, x))
$$

- (Infinite) class of all graphs with no cycles of length 3
- $\exists x \exists y(\neg(x=y) \wedge E(x, y) \wedge \forall z((x=z) \vee(y=z)))$
- (Finite) class of graphs with exactly two connected vertices.

Relational Databases as FO structures

A relational database D

- U^{D} : set of (possibly differently typed) data items
- Vocabulary $\mathcal{V}:\left\{P_{1}, \ldots P_{k},=\right\}$, where P_{i} is a k_{i}-ary predicate corr. to the $i^{\text {th }}$ table in database with k_{i} columns
- Interpretation: For $a_{1}, \ldots a_{k_{i}} \in U^{D}, P_{i}\left(a_{1}, \ldots a_{k_{i}}\right)=$ true iff $\left(a_{1}, \ldots a_{k_{1}}\right)$ is a row of the $i^{\text {th }}$ table

Relational Databases as FO structures

A relational database D

- U^{D} : set of (possibly differently typed) data items
- Vocabulary $\mathcal{V}:\left\{P_{1}, \ldots P_{k},=\right\}$, where P_{i} is a k_{i}-ary predicate corr. to the $i^{\text {th }}$ table in database with k_{i} columns
- Interpretation: For $a_{1}, \ldots a_{k_{i}} \in U^{D}, P_{i}\left(a_{1}, \ldots a_{k_{i}}\right)=$ true iff $\left(a_{1}, \ldots a_{k_{1}}\right)$ is a row of the $i^{t h}$ table
Examples of classes of databases definable in FOL:
- $\forall x \forall y \forall z \operatorname{StRec}(x, y, z) \leftrightarrow \operatorname{Dob}(x, y) \wedge \operatorname{Class}(x, z)$
- Table StRec is the natural join of Tables Dob and Class

Relational Databases as FO structures

A relational database D

- U^{D} : set of (possibly differently typed) data items
- Vocabulary $\mathcal{V}:\left\{P_{1}, \ldots P_{k},=\right\}$, where P_{i} is a k_{i}-ary predicate corr. to the $i^{\text {th }}$ table in database with k_{i} columns
- Interpretation: For $a_{1}, \ldots a_{k_{i}} \in U^{D}, P_{i}\left(a_{1}, \ldots a_{k_{i}}\right)=$ true iff $\left(a_{1}, \ldots a_{k_{1}}\right)$ is a row of the $i^{t h}$ table
Examples of classes of databases definable in FOL
- $\forall x \forall y \forall z \operatorname{StRec}(x, y, z) \leftrightarrow \operatorname{Dob}(x, y) \wedge \operatorname{Class}(x, z)$
- Table StRec is the natural join of Tables Dob and Class
- $\forall x \forall y \operatorname{Dob}(x, y) \rightarrow \exists z \operatorname{StRec}(x, y, z)$
- Table Dob is a projection of Table StRec

Relational Databases as FO structures

A relational database D

- U^{D} : set of (possibly differently typed) data items
- Vocabulary $\mathcal{V}:\left\{P_{1}, \ldots P_{k},=\right\}$, where P_{i} is a k_{i}-ary predicate corr. to the $i^{\text {th }}$ table in database with k_{i} columns
- Interpretation: For $a_{1}, \ldots a_{k_{i}} \in U^{D}, P_{i}\left(a_{1}, \ldots a_{k_{i}}\right)=$ true iff $\left(a_{1}, \ldots a_{k_{1}}\right)$ is a row of the $i^{t h}$ table
Examples of classes of databases definable in FOL:
- $\forall x \forall y \forall z \operatorname{StRec}(x, y, z) \leftrightarrow \operatorname{Dob}(x, y) \wedge \operatorname{Class}(x, z)$
- Table StRec is the natural join of Tables Dob and Class
- $\forall x \forall y \operatorname{Dob}(x, y) \rightarrow \exists z \operatorname{StRec}(x, y, z)$
- Table Dob is a projection of Table StRec

Example database query:

- $\varphi(x) \triangleq \exists y \exists z\left(\operatorname{Dob}(x, y) \wedge \operatorname{After}\left(y, " 01 / 01 / 1990^{\prime \prime}\right) \wedge\right.$ Class $(x, z) \wedge \operatorname{Primary}(z))$
Defines set of students born after "01/01/1990" and studying in a primary class.

Number systems as FO structures
Natural/real numbers with addition, multiplication, linear ordering and constants $\mathbf{0}$ and $\mathbf{1}$ (fixed interpretation)

- $\mathfrak{N}=(\mathbb{N}, \mathbf{0}, \mathbf{1}, \times,+,<,=)$
- $\mathfrak{R}=(\mathbb{R}, \mathbf{0}, \mathbf{1}, \times,+,<,=)$

Number systems as FO structures
Natural/real numbers with addition, multiplication, linear ordering and constants $\mathbf{0}$ and $\mathbf{1}$ (fixed interpretation)

- $\mathfrak{N}=(\mathbb{N}, \mathbf{0}, \mathbf{1}, \times,+,<,=)$
- $\mathfrak{R}=(\mathbb{R}, \mathbf{0}, \mathbf{1}, \times,+,<,=)$

Examples of properties expressible in FOL:

- $\mathfrak{R} \models \forall x \exists y(x=((y \times y) \times y))$
- Every real number has a real cube root

Number systems as FO structures
Natural/real numbers with addition, multiplication, linear ordering and constants $\mathbf{0}$ and $\mathbf{1}$ (fixed interpretation)

- $\mathfrak{N}=(\mathbb{N}, \mathbf{0}, \mathbf{1}, \times,+,<,=)$
- $\mathfrak{R}=(\mathbb{R}, \mathbf{0}, \mathbf{1}, \times,+,<,=)$

Examples of properties expressible in FOL:

- $\mathfrak{R} \equiv \forall x \exists y(x=((y \times y) \times y))$
- Every real number has a real cube root
- $\mathfrak{N} \not \vDash \forall x \exists y \exists z(x=(y \times y)+(z \times z))$
$\mathfrak{R}=\forall x \exists y \exists z(x=(y \times y)+(z \times z))$
- Not every natural number can be expressed as the sum of squares of two natural numbers. This can be done for real numbers

Natural/real numbers with addition, multiplication, linear ordering and constants $\mathbf{0}$ and $\mathbf{1}$ (fixed interpretation)

- $\mathfrak{N}=(\mathbb{N}, \mathbf{0}, \mathbf{1}, \times,+,<,=)$
- $\mathfrak{R}=(\mathbb{R}, \mathbf{0}, \mathbf{1}, \times,+,<,=)$

Examples of properties expressible in FOL:

- $\mathfrak{R} \equiv \forall x \exists y(x=((y \times y) \times y))$
- Every real number has a real cube root
- $\mathfrak{N} \mid \vDash \forall x \exists y \exists z(x=(y \times y)+(z \times z))$
$\mathfrak{R} \vDash \forall x \exists y \exists z(x=(y \times y)+(z \times z))$
- Not every natural number can be expressed as the sum of squares of two natural numbers. This can be done for real numbers
- $\mathfrak{N} \mid=\forall x \exists y((x<y) \wedge$

$$
(\forall z \forall w(y=z \times w) \rightarrow((z=y) \vee(w=y)))
$$

- There are infinitely many prime natural numbers

