Let $\mathcal{F}=\{\varphi_1,\varphi_2,\ldots\}$ be a (possibly infinite) set of formulas, and ψ be a formula

・日・・四・・川・・田・ 田・ うんの

Let $\mathcal{F}=\{\varphi_1,\varphi_2,\ldots\}$ be a (possibly infinite) set of formulas, and ψ be a formula

・日・・四・・川・・田・ 田・ うんの

- Let $\mathcal{F} = \{\varphi_1, \varphi_2, \ldots\}$ be a (possibly infinite) set of formulas, and ψ be a formula
 - Semantic Entailment: $\mathcal{F} \models \psi$ holds iff whenever $M, \alpha \models \varphi_i$ for all $\varphi_i \in \mathcal{F}$, then $M, \alpha \models \psi$ as well.
 - $\{\forall x ((x = a) \lor R(x, y)), R(a, y)\} \models \forall z R(z, y)$

	▲日▼▲□▼▲回▼▲回▼ 間 ものよの
Supratik Chakraborty IIT Bombay	First Order Logic: A Brief Introduction

- Let $\mathcal{F} = \{\varphi_1, \varphi_2, \ldots\}$ be a (possibly infinite) set of formulas, and
- ψ be a formula
 - Semantic Entailment: F ⊨ ψ holds iff whenever M, α ⊨ φ_i for all φ_i ∈ F, then M, α ⊨ ψ as well.
 - $\{\forall x ((x = a) \lor R(x, y)), R(a, y)\} \models \forall z R(z, y)$
 - Satisfiability: ψ is satisfiable iff there is some M and α such that $M, \alpha \models \psi$
 - $\exists x R(x, f(y, a)) \rightarrow \exists z (\neg (z = a) \land R(z, y))$ is satisfiable

イロトイクトイミト (注) シューシス (2) ション (2) -

- Let $\mathcal{F} = \{\varphi_1, \varphi_2, \ldots\}$ be a (possibly infinite) set of formulas, and ψ be a formula
 - Semantic Entailment: F ⊨ ψ holds iff whenever M, α ⊨ φ_i for all φ_i ∈ F, then M, α ⊨ ψ as well.
 - $\{\forall x ((x = a) \lor R(x, y)), R(a, y)\} \models \forall z R(z, y)$
 - Satisfiability: ψ is satisfiable iff there is some M and α such that $M, \alpha \models \psi$
 - $\exists x R(x, f(y, a)) \rightarrow \exists z (\neg (z = a) \land R(z, y))$ is satisfiable
 - Validity: A V-formula ψ is valid iff M, α ⊨ ψ for all V-structures M and all bindings α that assign values from U^M to free(ψ).
 - $\forall x P(x, y) \rightarrow \exists x P(x, y)$ is valid

・ロ・・聞・・叫・・聞・ しゃくの

- Let $\mathcal{F} = \{\varphi_1, \varphi_2, \ldots\}$ be a (possibly infinite) set of formulas, and ψ be a formula
 - Semantic Entailment: *F* ⊨ ψ holds iff whenever *M*, α ⊨ φ_i for all φ_i ∈ *F*, then *M*, α ⊨ ψ as well.
 - $\{\forall x ((x = a) \lor R(x, y)), R(a, y)\} \models \forall z R(z, y)$
 - Satisfiability: ψ is satisfiable iff there is some M and α such that $M, \alpha \models \psi$
 - $\exists x R(x, f(y, a)) \rightarrow \exists z (\neg (z = a) \land R(z, y))$ is satisfiable
 - Validity: A V-formula ψ is valid iff M, α ⊨ ψ for all V-structures M and all bindings α that assign values from U^M to free(ψ).
 - $\forall x P(x, y) \rightarrow \exists x P(x, y)$ is valid
 - Consistency: *F* is consistent iff there is at least one *M* and *α* such that *M*, *α* ⊨ *φ_i* for all *φ_i* ∈ *F*.
 - $\{\exists x R(x, y), \exists x R(f(x), y), \exists x R(f(f(x)), y), \ldots\}$ is consistent

・ロマ・山 マット・山田・山田・

Sematic Equivalence in FOL

 $\varphi \equiv \psi \text{ iff } \{\varphi\} \models \psi \text{ and } \{\psi\} \models \varphi.$

Quantifier Equivalences

- $\forall x \forall y \varphi \equiv \forall y \forall x \varphi, \quad \exists x \exists y \varphi \equiv \exists y \exists x \varphi$
- $\forall x (\varphi_1 \land \varphi_2) \equiv (\forall x \varphi_1) \land (\forall x \varphi_2)$
- $\exists x (\varphi_1 \lor \varphi_2) \equiv (\exists x \varphi_1) \lor (\exists x \varphi_2)$
- If $x \notin \text{free}(\varphi_2)$, then $Qx(\varphi_1 \text{ op } \varphi_2) \equiv (Qx \varphi_1)$ op φ_2 , where $Q \in \{\exists, \forall\}$ and op $\in \{\lor, \land\}$.

Renaming Quantified Variables

Let $z \notin \text{free}(\varphi) \cup \text{bnd}(\varphi)$. Then $Qx \varphi \equiv Qz \varphi[z/x]$ for $Q \in \{\exists, \forall\}$.

Enabler for substitution, e.g., $\exists x R(f(x, y), w) \equiv \exists z R(f(z, y), w)$ f(x, y) not free for y in $\exists x R(f(x, y), w)$, but is free for y in $\exists z R(f(z, y), w)$.

Semantically Equivalent Transformations of FOL Formulae

Negation Normal Form

Push negations down to atomic predicates using

- DeMorgan's Laws
- $\neg \exists x \varphi(x) \equiv \forall x \neg \varphi(x) \text{ and } \neg \forall x \varphi(x) \equiv \exists x \neg \varphi(x) \text{ and }$

Pull quantifiers out to the left

- Rename every quantified variable to a fresh variable name
- Use rules for scoping of quantifiers in previous slide to pull all quantifiers out to the left

•
$$\exists x \varphi(x) \lor \exists x \psi(x) \equiv \exists x (\varphi(x) \lor \psi(x))$$

- $\exists x \varphi(x) \land \exists z \psi(z) \equiv \exists x \exists z (\varphi(x) \land \psi(z))$
- $\forall x \varphi(x) \land \forall x \psi(x) \equiv \forall x (\varphi(x) \land \psi(x))$
- $\forall x \varphi(x) \lor \forall z \psi(z) \equiv \forall x \forall z (\varphi(x) \lor \psi(z))$

▲□▶▲□▶▲≡▶▲≡▶ ■ のへの

Prenex Normal Form (PNF)

First order logic formula of the form:

 $Q_1 x_1 Q_2 x_2 \ldots Q_k x_k \varphi(x_1, x_2, \ldots x_k, y_1, \ldots y_n)$

- $Q_i \in \{\exists, \forall\}$ for all $i \in \{1, \dots, k\}$ and $\varphi(\dots)$ quantifier-free
 - All quantifiers pulled out to the left: *quantifier prefix* of formula
 - Exact sequencing of \forall and \exists important
 - y_1, \ldots, y_n are free variables
 - $\varphi(x_1, x_2, \dots, x_k, y_1, \dots, y_n)$ is quantifier free: *matrix* of formula

Every FOL formula has a semantically equivalent PNF

First-order Definable Structures

- If φ is a $\mathcal V\text{-sentence}$ (no free vars), no binding α necessary for evaluating truth of φ
 - Given \mathcal{V} -structure M, we can ask if $M \models \varphi$
 - Class of \mathcal{V} -structures defined by φ is $\{M \models \varphi\}$
- Some examples of structures: graphs, databases, number systems

イロトイクトイミトイミト ミークへで Supratik Chakraborty IIT Bombay First Order Logic: A Brief Introduction

A graph G

- U^G : set of vertices
- Vocabulary \mathcal{V} : {E,=}, where E is a binary (edge) relation
- Interpretation: For $a, b \in U^G$, $E^G(a, b) =$ **true** iff there is an edge from vertex a to vertex b in G

・ロマ・山マ・山マ・山マ

A graph G

- U^G : set of vertices
- Vocabulary \mathcal{V} : {E,=}, where E is a binary (edge) relation
- Interpretation: For $a, b \in U^G$, $E^G(a, b) =$ **true** iff there is an edge from vertex a to vertex b in G

Examples of classes of graphs definable in FOL:

•
$$\forall x \forall y (\neg (x = y) \rightarrow E(x, y))$$

• (Infinite) class of all cliques

イロトイクトイミト モラーモーション Supratik Chakraborty IIT Bombay First Order Logic: A Brief Introduction

A graph G

- U^G : set of vertices
- Vocabulary \mathcal{V} : $\{E, =\}$, where E is a binary (edge) relation
- Interpretation: For a, b ∈ U^G, E^G(a, b) = true iff there is an edge from vertex a to vertex b in G

Examples of classes of graphs definable in FOL:

- $\forall x \forall y (\neg (x = y) \rightarrow E(x, y))$
 - (Infinite) class of all cliques
- $\exists x \forall y (\neg (x = y) \rightarrow \neg E(x, y))$
 - (Infinite) class of all graphs with at least one vertex from which there is no edge to any other vertex

・ロ・・雪・・雪・・雪・ 少々の

A graph G

- U^G : set of vertices
- Vocabulary \mathcal{V} : $\{E, =\}$, where E is a binary (edge) relation
- Interpretation: For a, b ∈ U^G, E^G(a, b) = true iff there is an edge from vertex a to vertex b in G

Examples of classes of graphs definable in FOL:

- $\forall x \forall y (\neg (x = y) \rightarrow E(x, y))$
 - (Infinite) class of all cliques
- $\exists x \forall y (\neg (x = y) \rightarrow \neg E(x, y))$
 - (Infinite) class of all graphs with at least one vertex from which there is no edge to any other vertex
- $\forall x \forall y \forall z (\neg (x = y) \land \neg (y = z) \land \neg (z = x)) \rightarrow \neg (E(x, y) \land E(y, z) \land E(z, x))$
 - (Infinite) class of all graphs with no cycles of length 3

A graph G

- U^G : set of vertices
- Vocabulary \mathcal{V} : $\{E, =\}$, where E is a binary (edge) relation
- Interpretation: For a, b ∈ U^G, E^G(a, b) = true iff there is an edge from vertex a to vertex b in G

Examples of classes of graphs definable in FOL:

- $\forall x \forall y (\neg (x = y) \rightarrow E(x, y))$
 - (Infinite) class of all cliques
- $\exists x \forall y (\neg (x = y) \rightarrow \neg E(x, y))$
 - (Infinite) class of all graphs with at least one vertex from which there is no edge to any other vertex
- $\forall x \forall y \forall z (\neg (x = y) \land \neg (y = z) \land \neg (z = x)) \rightarrow \neg (E(x, y) \land E(y, z) \land E(z, x))$
 - (Infinite) class of all graphs with no cycles of length 3
- $\exists x \exists y (\neg (x = y) \land E(x, y) \land \forall z ((x = z) \lor (y = z)))$
 - (Finite) class of graphs with exactly two connected vertices.

Supratik Chakraborty IIT Bombay First Order Logic: A Brief Introduction

A relational database ${\cal D}$

- U^D: set of (possibly differently typed) data items
- Vocabulary \mathcal{V} : $\{P_1, \ldots, P_k, =\}$, where P_i is a k_i -ary predicate corr. to the i^{th} table in database with k_i columns
- Interpretation: For $a_1, \ldots a_{k_i} \in U^D$, $P_i(a_1, \ldots a_{k_i}) =$ true iff $(a_1, \ldots a_{k_1})$ is a row of the i^{th} table

A relational database D

- U^D: set of (possibly differently typed) data items
- Vocabulary \mathcal{V} : { $P_1, \ldots P_k, =$ }, where P_i is a k_i -ary predicate corr. to the i^{th} table in database with k_i columns
- Interpretation: For $a_1, \ldots a_{k_i} \in U^D$, $P_i(a_1, \ldots a_{k_i}) =$ true iff $(a_1, \ldots a_{k_1})$ is a row of the i^{th} table

Examples of classes of databases definable in FOL:

- $\forall x \forall y \forall z \operatorname{StRec}(x, y, z) \leftrightarrow \operatorname{Dob}(x, y) \land \operatorname{Class}(x, z)$
 - Table StRec is the natural join of Tables Dob and Class

・ロト・パラト・イミト・ミラーションのペア Supratik Chakraborty IIT Bombay First Order Logic: A Brief Introduction

A relational database D

- U^D: set of (possibly differently typed) data items
- Vocabulary \mathcal{V} : $\{P_1, \ldots, P_k, =\}$, where P_i is a k_i -ary predicate corr. to the i^{th} table in database with k_i columns
- Interpretation: For $a_1, \ldots a_{k_i} \in U^D$, $P_i(a_1, \ldots a_{k_i}) =$ true iff $(a_1, \ldots a_{k_1})$ is a row of the i^{th} table

Examples of classes of databases definable in FOL:

- $\forall x \forall y \forall z \operatorname{StRec}(x, y, z) \leftrightarrow \operatorname{Dob}(x, y) \land \operatorname{Class}(x, z)$
 - Table StRec is the natural join of Tables Dob and Class
- $\forall x \forall y \operatorname{Dob}(x, y) \rightarrow \exists z \operatorname{StRec}(x, y, z)$
 - Table Dob is a projection of Table StRec

▲□▶▲□▶▲目▶▲目▶ 目 のへの

A relational database D

- U^D: set of (possibly differently typed) data items
- Vocabulary V: {P₁,...P_k,=}, where P_i is a k_i-ary predicate corr. to the ith table in database with k_i columns
- Interpretation: For $a_1, \ldots a_{k_i} \in U^D$, $P_i(a_1, \ldots a_{k_i}) =$ true iff $(a_1, \ldots a_{k_1})$ is a row of the i^{th} table

Examples of classes of databases definable in FOL:

- $\forall x \forall y \forall z \operatorname{StRec}(x, y, z) \leftrightarrow \operatorname{Dob}(x, y) \land \operatorname{Class}(x, z)$
 - Table StRec is the natural join of Tables Dob and Class
- $\forall x \forall y \operatorname{Dob}(x, y) \rightarrow \exists z \operatorname{StRec}(x, y, z)$
 - Table Dob is a projection of Table StRec

Example database query:

• $\varphi(x) \triangleq \exists y \exists z (\text{Dob}(x, y) \land \text{After}(y, "01/01/1990") \land Class(x, z) \land \text{Primary}(z))$ Defines set of students born after "01/01/1990" and studying in a primary class.

Natural/real numbers with addition, multiplication, linear ordering and constants ${\bf 0}$ and ${\bf 1}$ (fixed interpretation)

•
$$\mathfrak{N} = (\mathbb{N}, \mathbf{0}, \mathbf{1}, \times, +, <, =)$$

•
$$\mathfrak{R} = (\mathbb{R}, \mathbf{0}, \mathbf{1}, \times, +, <, =)$$

Natural/real numbers with addition, multiplication, linear ordering and constants ${\bf 0}$ and ${\bf 1}$ (fixed interpretation)

- $\mathfrak{N} = (\mathbb{N}, \mathbf{0}, \mathbf{1}, \times, +, <, =)$
- $\mathfrak{R} = (\mathbb{R}, \mathbf{0}, \mathbf{1}, \times, +, <, =)$

Examples of properties expressible in FOL:

- $\mathfrak{R} \models \forall x \exists y (x = ((y \times y) \times y))$
 - Every real number has a real cube root

Natural/real numbers with addition, multiplication, linear ordering and constants $\mathbf{0}$ and $\mathbf{1}$ (fixed interpretation)

- $\mathfrak{N} = (\mathbb{N}, \mathbf{0}, \mathbf{1}, \times, +, <, =)$
- $\mathfrak{R} = (\mathbb{R}, \mathbf{0}, \mathbf{1}, \times, +, <, =)$

Examples of properties expressible in FOL:

- $\mathfrak{R} \models \forall x \exists y (x = ((y \times y) \times y))$
 - Every real number has a real cube root
- $\mathfrak{N} \not\models \forall x \exists y \exists z (x = (y \times y) + (z \times z))$ $\mathfrak{N} \models \forall x \exists y \exists z (x = (y \times y) + (z \times z))$
 - Not every natural number can be expressed as the sum of squares of two natural numbers. This can be done for real numbers

Natural/real numbers with addition, multiplication, linear ordering and constants ${\bf 0}$ and ${\bf 1}$ (fixed interpretation)

- $\mathfrak{N} = (\mathbb{N}, \mathbf{0}, \mathbf{1}, \times, +, <, =)$
- $\mathfrak{R} = (\mathbb{R}, \mathbf{0}, \mathbf{1}, \times, +, <, =)$

Examples of properties expressible in FOL:

- $\mathfrak{R} \models \forall x \exists y (x = ((y \times y) \times y))$
 - Every real number has a real cube root
- $\mathfrak{N} \not\models \forall x \exists y \exists z (x = (y \times y) + (z \times z))$ $\mathfrak{N} \models \forall x \exists y \exists z (x = (y \times y) + (z \times z))$
 - Not every natural number can be expressed as the sum of squares of two natural numbers. This can be done for real numbers
- $\mathfrak{N} \models \forall x \exists y ((x < y) \land (\forall z \forall w (y = z \times w) \rightarrow ((z = y) \lor (w = y)))$
 - There are infinitely many prime natural numbers

・ロト・(書)・(書)・(書)・(書)・言 のへで Supratik Chakraborty IIT Bombay First Order Logic: A Brief Introduction