Semantic Relations in FOL

Let F = {®1,¥2,...} be a (possibly infinite) set of formulas, and
1) be a formula
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Semantic Relations in FOL

Let F = {®1,¥2,...} be a (possibly infinite) set of formulas, and
1) be a formula

e Semantic Entailment: F |= 1 holds iff whenever M, v |= ¢;
for all p; € F, then M, = 1) as well.

o {Wx((x=a)VR(x,y)), R(ay)} F VzR(zy)
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Semantic Relations in FOL

Let F = {p1,¢2,...} be a (possibly infinite) set of formulas, and
1) be a formula

e Semantic Entailment: F |= 1 holds iff whenever M, v |= ¢;
for all p; € F, then M, = 1) as well.

o {Vx((x=2a)VR(x,y)), Ray)} E VzR(zy)
o Satisfiability: v is satisfiable iff there is some M and « such
that M,a E ¢

o IxR(x,f(y,a)) = Iz(—~(z = a) A R(z,y)) is satisfiable
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Semantic Relations in FOL

Let F = {p1,¢2,...} be a (possibly infinite) set of formulas, and
1) be a formula

e Semantic Entailment: F |= 1 holds iff whenever M, v |= ¢;
for all p; € F, then M, = 1) as well.

o {Vx((x=2a)VR(x,y)), Ray)} E VzR(zy)
o Satisfiability: v is satisfiable iff there is some M and « such
that M,a E ¢

o IxR(x,f(y,a)) = Iz(—~(z = a) A R(z,y)) is satisfiable
e Validity: A V-formula v is valid iff M, a |= 1) for all

V-structures M and all bindings o that assign values from UM
to free(v)).

e Vx P(x,y) — 3x P(x,y) is valid
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Semantic Relations in FOL

Let F = {p1,¢2,...} be a (possibly infinite) set of formulas, and
1) be a formula

e Semantic Entailment: F |= 1 holds iff whenever M, v |= ¢;
for all p; € F, then M, = 1) as well.

o {Vx((x=2a)VR(x,y)), Ray)} E VzR(zy)
o Satisfiability: v is satisfiable iff there is some M and « such
that M,a E ¢

o IxR(x,f(y,a)) = Iz(—~(z = a) A R(z,y)) is satisfiable
e Validity: A V-formula v is valid iff M, a |= 1) for all

V-structures M and all bindings o that assign values from UM
to free(v)).

e Vx P(x,y) — 3x P(x,y) is valid

o Consistency: F is consistent iff there is at least one M and «
such that M, a |= ¢; for all p; € F.

o {3x R(X,y), Ix R(F(x),y), IxR(F(F(x)),y),...}is
consistent
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Sematic Equivalence in FOL

e =1 iff {p} F ¥ and {¢} = .

Quantifier Equivalences

o VxVyp = VyVxp, dxdyp = dydxep
@ Vx (o1 /A p2) = (Vxp1) A (Vx2)
@ Ix(p1Vy2) = (Ixep1) V (Ixe2)

o If x & free(yp2), then @x (1 op v2) = (Qx 1) op @2, where
Qe {3,V}and op € {V,A}.

\

Renaming Quantified Variables

Let z ¢ free(p) U bnd(y).
Then Qxp = Qzy[z/x] for Q € {3,V}.

Enabler for substitution, e.g., 3x R(f(x,y),w) = 3z R(f(z,y),w)
f(x,y) not free for y in Ix R(f(x,y), w), but is free for y in
dz R(f(z,y), w).
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Semantically Equivalent Transformations of FOL Formulae
[ Negation Normal Form

Negation Normal Form
Push negations down to atomic predicates using
@ DeMorgan’s Laws
o —dx p(x) = Vx —p(x) and =Vx p(x) = Ix ~¢(x) and

V.

Pull quantifiers out to the left

@ Rename every quantified variable to a fresh variable name

@ Use rules for scoping of quantifiers in previous slide to pull all
quantifiers out to the left

o Ixp(x) V IxY(x) = Ix(p(x)V(x))

o Ixp(x) A Jzy(z) = IxIz(p(x) AY(2))

o Vxp(x) A Vxu(x) = Vx(e(x)A(x))

o Vxp(x) V Vzu(z) = VxVz(p(x)V1¥(z)) )
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Prenex Normal Form (PNF)

First order logic formula of the form:

Qix1 Q2x2 - . Quxk P(X1, X2, -+ - Xk» Y15+ - - Yn)

Qi € {3,V} forall i € {1,...k} and ¢(---) quantifier-free
o All quantifiers pulled out to the left: quantifier prefix of
formula
e Exact sequencing of ¥V and 3 important

® yi,...Yy, are free variables
@ o(x1,X2,... Xk, Y1, -.Yn) is quantifier free: matrix of formula
Every FOL formula has a semantically equivalent PNF

Special prenex normal forms

@ Prenex conjunctive normal form (PCNF): matrix in CNF w.r.t.
atomic predicates

@ Prenex disjunctive normal form (PDNF): matrix in DNF w.r.t.
atomic predicates

Every FOL formula has a sem. equivalent PCNF and PDNF.
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First-order Definable Structures

e If v is a V-sentence (no free vars), no binding « necessary for
evaluating truth of ¢

o Given V-structure M, we can ask if M = ¢
o Class of V-structures defined by ¢ is {M = ¢}
@ Some examples of structures: graphs, databases, number
systems
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Graphs as FO structures

A graph G
@ UC: set of vertices
e Vocabulary V: {E, =}, where E is a binary (edge) relation

o Interpretation: For a,b € U®, EC®(a, b) = true iff there is an
edge from vertex a to vertex b in G
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Graphs as FO structures

A graph G
@ UC: set of vertices
e Vocabulary V: {E, =}, where E is a binary (edge) relation

o Interpretation: For a,b € U®, EC®(a, b) = true iff there is an
edge from vertex a to vertex b in G

Examples of classes of graphs definable in FOL:
o VxVy (~(x =y) = E(x,y))

o (Infinite) class of all cliques
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Graphs as FO structures

A graph G
e UC: set of vertices
e Vocabulary V: {E, =}, where E is a binary (edge) relation
o Interpretation: For a,b € U®, EC®(a, b) = true iff there is an
edge from vertex a to vertex b in G
Examples of classes of graphs definable in FOL:
o VxVy (=(x =y) = E(x,y))
o (Infinite) class of all cliques
o IxVy (=(x =y) = =E(x,y))

o (Infinite) class of all graphs with at least one vertex from
which there is no edge to any other vertex
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Graphs as FO structures

A graph G
e UC: set of vertices
e Vocabulary V: {E, =}, where E is a binary (edge) relation
o Interpretation: For a,b € U®, EC®(a, b) = true iff there is an
edge from vertex a to vertex b in G
Examples of classes of graphs definable in FOL:
o VxVy (=(x =y) = E(x,y))
o (Infinite) class of all cliques
o IxVy (=(x =y) = =E(x,y))

o (Infinite) class of all graphs with at least one vertex from
which there is no edge to any other vertex

o VxVyVz(—(x=y)A=(y =2)A=(z=x)) —
—(E(x,y) NE(y, z) A E(z,x))
o (Infinite) class of all graphs with no cycles of length 3
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Graphs as FO structures

A graph G
e UC: set of vertices
e Vocabulary V: {E, =}, where E is a binary (edge) relation
o Interpretation: For a,b € U®, EC®(a, b) = true iff there is an
edge from vertex a to vertex b in G
Examples of classes of graphs definable in FOL:
o VxVy (=(x =y) = E(x,y))
o (Infinite) class of all cliques
o IxVy (=(x =y) = =E(x,y))

o (Infinite) class of all graphs with at least one vertex from
which there is no edge to any other vertex

o VxVyVz(—(x=y)A=(y =2)A=(z=x)) —
~(E(xy) A E(y,2) A E(2,x))
o (Infinite) class of all graphs with no cycles of length 3
o IxTy (~(x = y) A E(x,y) AVz((x = 2) V (y = 2)))

o (Finite) class of graphs with exactly two connected vertices.
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Relational Databases as FO structures

A relational database D
o UP: set of (possibly differently typed) data items
@ Vocabulary V: {P1,...Px,=}, where P; is a kj-ary predicate
corr. to the it" table in database with k; columns
o Interpretation: For ay,...ax, € UP, Pi(a1,...ax ) = true iff
(a1,...ax) is a row of the i*h table
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Relational Databases as FO structures

A relational database D
o UP: set of (possibly differently typed) data items
@ Vocabulary V: {P1,...Px,=}, where P; is a kj-ary predicate
corr. to the it" table in database with k; columns
o Interpretation: For ay,...ax, € UP, Pi(a1,...ax ) = true iff
(a1,...ax) is a row of the i*h table
Examples of classes of databases definable in FOL:
@ VxVyVzStRec(x, y, z) <+ Dob(x, y) A Class(x, z)
e Table StRec is the natural join of Tables Dob and Class
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Relational Databases as FO structures

A relational database D
o UP: set of (possibly differently typed) data items
@ Vocabulary V: {P1,...Px,=}, where P; is a kj-ary predicate
corr. to the it" table in database with k; columns
o Interpretation: For ay,...ax, € UP, Pi(a1,...ax ) = true iff
(a1,...ax) is a row of the i*h table
Examples of classes of databases definable in FOL:
@ VxVyVzStRec(x, y, z) <+ Dob(x, y) A Class(x, z)
e Table StRec is the natural join of Tables Dob and Class
e VxVy Dob(x, y) — 3z StRec(x, y, z)
e Table Dob is a projection of Table StRec
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Relational Databases as FO structures

A relational database D
o UP: set of (possibly differently typed) data items
@ Vocabulary V: {P1,...Px,=}, where P; is a kj-ary predicate
corr. to the it" table in database with k; columns
o Interpretation: For ay,...ax, € UP, Pi(a1,...ax ) = true iff
(a1,...ax) is a row of the i*h table
Examples of classes of databases definable in FOL:
@ VxVyVzStRec(x, y, z) <+ Dob(x, y) A Class(x, z)
e Table StRec is the natural join of Tables Dob and Class
e VxVy Dob(x, y) — 3z StRec(x, y, z)
e Table Dob is a projection of Table StRec
Example database query:
o ¢(x) £ 3y3z (Dob(x, y) A After(y, “01/01/1990") A
Class(x, z) A Primary(z))
Defines set of students born after “01/01/1990" and studying
in a primary class.
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Number systems as FO structures

Natural/real numbers with addition, multiplication, linear ordering
and constants 0 and 1 (fixed interpretation)

° m:(N70a17><7+7<’:)
° 9%2(R,0,1,X,+,<,:)
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Number systems as FO structures

Natural/real numbers with addition, multiplication, linear ordering
and constants 0 and 1 (fixed interpretation)

e M=(N,0,1, x,+,<,=)
e B=(R,0,1, x,+,<,=)

Examples of properties expressible in FOL:
o R=Vxdy (x=((y xy) xy))

o Every real number has a real cube root
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Number systems as FO structures

Natural/real numbers with addition, multiplication, linear ordering
and constants 0 and 1 (fixed interpretation)

e M=(N,0,1, x,+,<,=)
e B=(R,0,1, x,+,<,=)

Examples of properties expressible in FOL:
o R=Vxdy (x=((y xy) xy))

o Every real number has a real cube root

e NMEVxIydz(x = (y xy)+(z x 2))
REVxIydz(x = (y xy)+(z x 2))
o Not every natural number can be expressed as the sum of
squares of two natural numbers. This can be done for real
numbers
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Number systems as FO structures

Natural/real numbers with addition, multiplication, linear ordering
and constants 0 and 1 (fixed interpretation)

° m: (N70’17 ><7+7<’:)
° m: (R,O,l, X7+7<7:)
Examples of properties expressible in FOL:

o R=Vxdy (x=((y xy) xy))
o Every real number has a real cube root

e NMEVxIydz(x = (y xy)+(z x 2))

REVxIydz(x = (y xy)+(z x 2))

o Not every natural number can be expressed as the sum of

squares of two natural numbers. This can be done for real
numbers

e MEVxIy ((x < y)A
(V2Vw (y =z xw) = ((z=y) vV (w =y)))
e There are infinitely many prime natural numbers
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