CS 208 : Automata Theory and Logic Spring 2024

Homework 1
Due: 19" Jan, 2024 Mazx Marks: 40 (+bonus 5)

Instructions:

e Please start writing your solution to each homework problem on a fresh page.

e [For each homework problem, you must scan your solution and upload a separate PDF file on
Moodle. Please check Moodle for detailed instructions on file naming and uploading instruc-
tions.

e Be brief, complete, and stick to what has been asked.
o Untidy presentation of answers, and random ramblings will be penalized by negative marks.

o Unless asked for explicitly, you may cite results/proofs covered in class without reproducing
them.

e If you need to make any assumptions, state them clearly.

e Do not copy solutions from others. All detected cases of copying will be reported
to DADAC with names and roll nos. of all involved. The stakes are high if
you get reported to DADAC, so you are strongly advised not to risk this.

Question 1 : Implication ” Equations” 15 points
In this question, we will consider “implications” in the same spirit as “equations” between
unspecified propositional formulas. You can think of these as “equations” where the unknowns
are propositional formulas themselves, and the = symbol has been replaced by —.

Let ¢ and ¢y be unknown propositional formulas over i, xs,...x,. Consider the following
implications labelled (1a), (1b) through (na), (nb). A solution to this set of simultaneous
implications is a pair of specific propositional formulas (1, ¢2) such that all implications are
valid, i.e. evaluate to true for all assignments of variables.

(la) (21 Ap1) = @o (Ib) (z1 A pa) = ¢1
(2a) (22 A1) = o (2b) (w2 Apa) — 1
(a) (znAw) —¢s | (b) (va A) = 1

In each of the following questions, you must provide complete reasoning behind your answer.
Answers without reasoning will fetch 0 marks.

1. [5 marks] Suppose we are told that ¢; is L. How many semantically distinct formulas ¢
exist such that implications (1a) through (nb) are valid?

2. [2 marks] Answer the above question, assuming now that ¢; is T.

3. [5 marks] If we do not assume anything about ¢, how many semantically distinct pairs of
formulas (41, p2) exist such that all the implications are valid?

4. [3 marks] Does there exist a formula ¢; such that there is exactly one formula ¢y (modulo
semantic equivalence) that can be paired with it to make (¢1,¢2) a solution of the above
implications?

CS 208 Page 1 of 3 Homework 1

Question 2 : Balanced Parentheses 25 points
A decision problem is a computational problem that has a ”yes” or "no” answer for every given
input. An input to a decision problem is often encoded simply as a string of 0’s and 1’s. Not
surprisingly, we can encode some decision problems P in propositional logic. Specifically, we
construct a propositional logic formula ¢p over as many propositional variables as the count
of letters (0s and 1s) in the binary string encoding the input, such that if the binary string is
interpreted as an assignment to the propositional variables, then the ”yes” /”no” answer to P
is obtained from the value given by the semantics of pp. If the semantics of ¢p evaluates to 0
(or "false”) for the given input, then the output of P for that input is “no”; else, the output is

13 2

yes”.

Consider the following decision problem of checking if a given string of parentheses is balanced.
Given a binary string of length n,n > 1, where 0 encodes ‘(* and 1 encodes ‘)’, we say that the
string has balanced parentheses if and only if:

e The number of open parentheses, represented by Os, in the entire string equals the number
of closing parentheses, represented by 1s.

e In every proper prefix of the string, the number of open parentheses is at least as much as
the number of closing parentheses.

We wish to encode the above problem in propositional logic. Recall from your data structures
and algorithms course that checking balanced parentheses can be solved in polynomial time
(in fact, with linear time complexity). We want this to be reflected in some aspects of your
solution to this problem.

In class, we saw that every propositional formula ¢ can be represented by a parse tree whose
internal nodes are labelled by connectives and whose leaves are labelled by propositional vari-
ables. Sometimes, two different sub-trees in a parse tree may be identical. In such cases, it
makes sense to represent the formula as a directed acyclic graph (DAG), where syntactically
common sub-formulas are represented exactly once. As an example, consider the parse tree
and corresponding DAG in Fig. [1} both representing the formula (rV (p V ¢)) A (p V ¢). Note

A
\v \|/
AN 1|>\ [\

A
|
V
|
r q r

v v
|\ I\
P g P q

Figure 1: A parse tree and corresponding DAG

that a DAG representation of a formula can be exponentially smaller than a parse tree repre-
sentation. Furthermore, a DAG representation suffices to evaluate the semantics of a formula,
since the semantics of a shared sub-formula needs to be evaluated only once. Thus, if the DAG
representation of a formula is small, its semantics can be evaluated efficiently. We define the
DAG size of a formula to be the number of nodes in its DAG representation. This is also the
number of syntactically distinct sub-formulas in the formula.

(a) [10 marks] Encode the problem of checking balanced parentheses in a binary string of
length n as a propositional logic formula whose DAG size is at most O(n?). You must use
only n propositional variables corresponding to the n bits in the input string, and the only
connectives allowed in your formula are two-input V, A and —. Express the DAG size of
your formula as a function of n using big-O notation, with a clear justification of how you
obtained the size expression.

CS 208 Page 2 of 3 Homework 1

(b) [5 marks] Prove that your formula is unsatisfiable for all odd values of n.

(c) [10 (+ bonus 5) marks] Suppose your formula is represented as a DAG, as discussed above.
Given an input string of Os and 1s, there is a simple way to evaluate the semantics of the
formula. Specifically, we evaluate DAG nodes bottom-up, starting from the leaves (these
represent propositional variables whose values are given by the input string) and moving
upwards until we reach the root. The value of the root gives the semantics of the formula.
Normally, a DAG node (labelled A, V or =) can be evaluated only after all its children have
been evaluated. However, if a V (resp. A) labelled node has a child that has evaluated
to 1 (resp. 0), then the node itself can be evaluated to 1 (resp. 0) without evaluating its
other child. This can allow us to find the value of the root without evaluating all nodes in
the DAG.

What is the worst-case number of DAG nodes (as a function of n in big-O notation) that
need to be evaluated for your formula in part (a), in order to find the value at the root
node for any input string of length n? You must give justification for why you really need
these many nodes to be evaluated in the worst-case. Answers without justification will
fetch 0 marks.

You will be awarded bonus 5 marks if you can show that your formula requires evaluating
only O(n)) DAG nodes.

CS 208 Page 3 of 3 Homework 1

