Quiz 1

Time: 21:00-23:30

Instructions:

- Please write your roll number on all pages in the space provided at the top.
- Be brief, complete, and stick to what has been asked.
- You must write your answer for every question only in the space allocated for answering the question. Answers written outside the allocated space risk not being graded.
- You can use an extra answer book for rough calculations.
- You must submit this question+answer book in its entirey along with any extra answer book for rough calculations (if you used one).
- Untidy presentation of answers, and random ramblings will be penalized by negative marks.
- Unless asked for explicitly, you may cite results/proofs covered in class without reproducing them.
- If you need to make any assumptions, state them clearly.
- Do not copy solutions from others. All detected cases of copying will be reported to DADAC with names and roll nos. of all involved. The stakes are high if you get reported to $D A D A C$, so you are strongly advised not to risk this.

1. We love NNFs!

Let P, Q, R be propositional variables.
(a) Convert the formula $((P \rightarrow(Q \rightarrow R)) \rightarrow \neg(P \rightarrow(R \rightarrow Q)))$ to a semantically equivalent formula in Disjunctive Normal Form (DNF). Do not include cubes that contain both a literal and its negation in your DNF formula.
You must show all intermediate steps. Answers without steps will fetch no marks.

$$
\begin{array}{ll}
\text { Solution: } & \\
& ((P \rightarrow(Q \rightarrow R)) \rightarrow \neg(P \rightarrow(R \rightarrow Q))) \\
\Leftrightarrow & \neg(P \rightarrow(Q \rightarrow R)) \vee \neg(P \rightarrow(R \rightarrow Q)) \\
\Leftrightarrow & \text {... Semantics of } \rightarrow \\
\Leftrightarrow & \neg(\neg P \vee(\neg Q \vee R)) \vee \neg(\neg P \vee(\neg R \vee Q)) \\
\Leftrightarrow & \text {.. Semantics of } \rightarrow \\
\Leftrightarrow(P \wedge \neg(\neg Q \vee R)) \vee(P \wedge \neg(\neg R \vee Q)) & \text {... DeMorgan's Law and } \neg \neg \text { elim } \\
\Leftrightarrow(P \wedge(Q \wedge \neg R)) \vee(P \wedge(R \wedge \neg Q)) & \text {... DeMorgan's Law and } \neg \neg \text { elim } \\
\Leftrightarrow(P \wedge Q \wedge \neg R) \vee(P \wedge R \wedge \neg Q) & \ldots \text { Simplify (using associativity) }
\end{array}
$$

(b) Convert the formula $(\neg(P \vee(\neg Q \wedge R)) \rightarrow(\neg P \wedge(Q \vee \neg R)))$ to an equisatisfiable Conjunctive Normal Form (CNF) formula using Tseitin encoding. Do not include clauses that contain both a literal and its negation in your CNF formula.
You must NOT simplify the given formula or check its satisfiability before applying Tseitin encoding. You must show all intermediate steps. Answers
without steps or obtained after simplifying the given formula or after checking its satisfiability will fetch no marks. Answers that give an equisatisfiable formula without using Tseitin encoding will also fetch no marks.

Solution: We first introduce a fresh variable t_{i} for each sub-formula that is neither a variable nor its negation.

```
\(\left(t_{1} \leftrightarrow(\neg Q \wedge R)\right) \wedge\)
\(\left(t_{2} \leftrightarrow \quad\left(P \vee t_{1}\right)\right) \quad \wedge\)
\(\left(t_{3} \leftrightarrow \quad \neg t_{2}\right) \quad \wedge\)
\(\left(t_{4} \leftrightarrow(Q \vee \neg R)\right) \quad \wedge\)
\(\left(t_{5} \leftrightarrow\left(\neg P \wedge t_{4}\right)\right) \wedge\)
\(\left(t_{6} \leftrightarrow\left(t_{3} \rightarrow t_{5}\right)\right) \quad \wedge\)
\(t_{6}\)
```

Next, we expand each bi-implication into a conjunction of two implications.

```
(t t > (\negQ\wedgeR)) ^ (t t < < (\negQ\wedgeR)) ^
```



```
(t+ }->(Q\vee\negR))\quad\wedge (\mp@subsup{t}{4}{}\leftarrow(Q\vee\negR)) ^
(t5 -> (\negP\wedge\mp@subsup{t}{4}{}))
```



```
t6
```

Next, we use the semantics of $\rightarrow($ or $\leftarrow)$ to get

$$
\begin{array}{clc}
\left(\neg t_{1} \vee(\neg Q \wedge R)\right) & \wedge & \left(t_{1} \vee \neg(\neg Q \wedge R)\right) \\
\left(\neg t_{2} \vee\left(P \vee t_{1}\right)\right) & \wedge & \wedge \\
\left(\neg t_{2} \vee \neg\left(P \vee \neg t_{2}\right)\right. & \wedge & \left.\left(t_{3} \vee \neg \neg t_{2}\right)\right) \\
\left(\neg t_{4} \vee(Q \vee \neg R)\right) & \wedge & \wedge \\
\left(\neg t_{5} \vee\left(\neg P \wedge t_{4}\right)\right) & \wedge & \wedge \\
\left(t_{4} \vee \neg(Q \vee \neg R)\right) & \wedge \\
\left(\neg t_{6} \vee\left(\neg t_{3} \vee t_{5}\right)\right) & \left.\wedge\left(\neg P \wedge t_{4}\right)\right) & \wedge \\
t_{6} & \left(t_{6} \vee \neg\left(\neg t_{3} \vee t_{5}\right)\right) & \wedge
\end{array}
$$

Next, we use DeMorgan's laws and $\neg \neg$ elimination to get

$\left(\neg t_{1} \vee(\neg Q \wedge R)\right)$	\wedge	$\left(t_{1} \vee(Q \vee \neg R)\right)$	\wedge
$\left(\neg t_{2} \vee\left(P \vee t_{1}\right)\right)$	\wedge	$\left(t_{2} \vee\left(\neg P \wedge \neg t_{1}\right)\right)$	\wedge
$\left(\neg t_{3} \vee \neg t_{2}\right)$	\wedge	$\left(t_{3} \vee t_{2}\right)$	\wedge
$\left(\neg t_{4} \vee(Q \vee \neg R)\right)$	\wedge	$\left(t_{4} \vee(\neg Q \wedge R)\right)$	\wedge
$\left(\neg t_{5} \vee\left(\neg P \wedge t_{4}\right)\right)$	\wedge	$\left(t_{5} \vee\left(P \vee \neg t_{4}\right)\right)$	\wedge
$\left(\neg t_{6} \vee\left(\neg t_{3} \vee t_{5}\right)\right)$	\wedge	$\left(t_{6} \vee\left(t_{3} \wedge \neg t_{5}\right)\right)$	\wedge
t_{6}			

Finally, using distributivity of \wedge over \vee and vice versa, we get the desired Tseitin encoding

$$
\begin{array}{cc}
\left(\neg t_{1} \vee \neg Q\right) \wedge\left(\neg t_{1} \vee R\right) \wedge\left(t_{1} \vee Q \vee \neg R\right) & \wedge \\
\left(\neg t_{2} \vee P \vee t_{1}\right) \wedge\left(t_{2} \vee \neg P\right) \wedge\left(t_{2} \vee \neg t_{1}\right) & \wedge \\
\left(\neg t_{3} \vee \neg t_{2}\right) \wedge\left(t_{3} \vee t_{2}\right) & \wedge \\
\left(\neg t_{4} \vee Q \vee \neg R\right) \wedge\left(t_{4} \vee \neg Q\right) \wedge\left(t_{4} \vee R\right) & \wedge \\
\left(\neg t_{5} \vee \neg P\right) \wedge\left(\neg t_{5} \vee t_{4}\right) \wedge\left(t_{5} \vee P \vee \neg t_{4}\right) & \wedge \\
\left.\left(\neg t_{6} \vee \neg t_{3} \vee t_{5}\right)\right) \wedge\left(t_{6} \vee t_{3}\right) \wedge\left(t_{6} \vee \neg t_{5}\right) & \wedge \\
t_{6} &
\end{array}
$$

2. How expressive are you?

We know that propositional logic formulas are constructed using symbols in the set $\{\top, \perp, \neg, \wedge, \vee, \rightarrow, \leftrightarrow\}$ in addition to variables, parentheses and commas (if needed). It turns out that such a large set of symbols may not be needed. For example, the set $S^{\prime}=\{\wedge, \neg\}$ suffices to construct a formula that is semantically equivalent to any propositional logic formula. Indeed, from DeMorgan's laws we know that $p_{1} \vee p_{2}$ is semantically equivalent to $\neg\left(\neg p_{1} \wedge \neg p_{2}\right)$ for every propositional variable (or sub-formula) p_{1} and p_{2}.
Let S be a set of symbols that are used in addition to variables, parentheses and commas (if needed) to construct formulas. We say that S is propositionally expressive if for every propositional logic formula φ over variables $x_{1}, \ldots x_{n}$, there is a semantically equivalent formula over $x_{1}, \ldots x_{n}$ that uses only symbols from S in addition to variables, parentheses and commas (if needed). From what we have studied in class, it should be easy for you to see that $\{\wedge, \neg\}$ is propositionally expressive.
For purposes of this question, we define new ternary logic connectives α, β, γ and δ with the following semantics.

- $\alpha(p, q, r)$ evaluates to 1 (true) iff either both p and q are 1 (true) or p is 0 (false) and r is 1 (true). For example, $\alpha(1,1,0)=\alpha(0,0,1)=1$ but $\alpha(1,0,1)=\alpha(0,1,0)=0$. You can think of $\alpha(p, q, r)$ as intuitively implementing "if p then q else r ".
- $\beta(p, q, r)$ evaluates to 1 (true) iff p, q and r all have the same truth value. Thus, $\beta(1,1,1)=\beta(0,0,0)=1$, but $\beta(1,0,1)=\beta(1,1,0)=0$. You can think of $\beta(p, q, r)$ as intuitively implementing "all of p, q, r are in consensus".
- $\gamma(p, q, r)$ evaluates to 1 (true) iff exactly one of p, q and r has the value 1 (true). Thus, $\gamma(1,0,0)=1$ and $\gamma(1,1,0)=\gamma(0,0,0)=0$.
- $\delta(p, q, r)$ evaluates to the same truth value as the majority of p, q and r. Thus, $\delta(1,1,0)=1$ and $\delta(0,1,0)=0$.
Given below are three sets S of symbols used to construct formulas. In each case you must indicate whether S is propositionally expressive, with justification.
You may use the fact that $\{\wedge, \neg\}$ is known to be propositionally expressive. Hence, for "Yes" answers, you need to show that $\neg p$ and $p \wedge q$ can be equivalently expressed using the symbols in S, for any propositional variables (or sub-formulas) p and q. For "No" answers, you must show that there is at least one formula that can be written using $\{\wedge, \neg\}$ but a semantically equivalent formula cannot be written using S.
(a) $S=\{\top, \perp, \alpha\}$

Solution: To show that S is propositionally expressive, one has to find a semantically equivalent formula constructed using S for every formula constructed using $\{\neg, \wedge\}$. But if we can find formulas constructed using S that are equivalent to $\neg p$ and $p \wedge q$, we can find a formula equivalent to any formula constructed using $\{\neg, \wedge\}$! Why? Simple structural induction : take any formula F constructed using $\{\neg, \wedge\}$. F is either a variable or $\neg G$ or $G_{1} \wedge G_{2}$, where G, G_{1}, G_{2} are formulas constructed using $\{\neg, \wedge\}$.

- Base case: $p, \neg p$ and $p \wedge q$ have semantically equivalent formulas constructed using S.
- Assume: Every sub-formula of F has a semantically equivalent formula constructed using S.
- Induction: Suppose F is $\neg G$ (resp. $G_{1} \wedge G_{2}$). Take the formula for $\neg p$ (resp. $q \wedge r)$ constructed using S, and replace p (resp. q, r) with $G\left(\right.$ resp. $\left.G_{1}, G_{2}\right)$. We have a formula for F constructed using S !
Using the above argument (this is not necessary to be shown as part of your solution), we can easily conclude that $S=\{\top, \perp, \alpha\}$ is propositionally expressive. Indeed, $\neg p \Leftrightarrow \alpha(p, \perp, \top)$ and $(p \wedge q) \Leftrightarrow \alpha(p, q, \perp)$.
(b) $S=\{\top, \gamma\}$

Solution: $\neg p \Leftrightarrow \gamma(p, p, \top)$ and $(\neg p \wedge q) \Leftrightarrow \gamma(p, p, q)$. Hence $(p \wedge q) \Leftrightarrow \gamma(\neg p, \neg p, q)$. Using the equivalence for $\neg p$ already obtained above, we get

$$
(p \wedge q) \Leftrightarrow \gamma(\gamma(p, p, \top), \gamma(p, p, \top), q)
$$

(c) $S=\{\beta, \delta\}$

Solution: S is not propositionally expressive. There is a very simple formula that cannot be expressed using $S: \varphi(p)=p \wedge \neg p=\perp$
Consider a formula B constructed using $S=\{\beta, \delta\}$ that has only one variable p. Notice that every internal node of the parse tree of B has 3 children and every leaf node of the parse tree must be p. Furthermore, every leaf node has a parent labeled either β or δ. Given that the parse tree of a formula constructed using S necessarily has finite height, there must be some leaf node with both its siblings also as leaf nodes. For such a leaf node, if its parent is β, then we have $\beta(p, p, p) \equiv \boldsymbol{T}$. On the other hand, if its parent is δ, we have $\delta(p, p, p) \equiv p$. In order to understand what propositional formula the parse tree represents, We can prune such a leaf node along with its parent and replace it with p or T accordingly. Notice that this introduces T as a symbol at a leaf of the modified parse tree, but this doesn't change the semantics of the formula represented by the parse tree.
After the above pruning step, again consider the leaf nodes whose siblings are also leaf nodes. Unlike in the previous case, a leaf node can now be either p or T. However, its parent must still be labeled by either β or γ. Furthermore, we know that $\beta(p, p, \top) \equiv \beta(p, \top, p) \equiv \beta(\top, p, p) \equiv \beta(p, \top, \top) \equiv \beta(\top, p, \top) \equiv$ $\beta(\top, \top, p) \equiv \delta(p, p, \top) \equiv \delta(p, \top, p) \equiv \delta(\top, p, p) \equiv p$ and $\delta(p, \top, \top) \equiv \delta(\top, p, \top) \equiv$ $\delta(\top, \top, p) \equiv \delta(\top, \top, \top) \equiv \top$. So if we again prune the leaf, its parent and siblings, we will either replace it with p or T. We can now inductively argue that by continuing this process, the entire parse tree will finally be replaced by p or T. Therefore, the parse tree cannot represent a formula that is semantically equivalent to $\varphi(p)=p \wedge \neg p=\perp$.
Notice that by the same argument, we can't construct a formula semantically equivalent to $\neg p$ either using S.
However, if we expand S to be $\{\perp, \beta, \gamma\}$, we can easily express $\neg p$ as $\beta(p, p, \perp)$ and $p \wedge q$ as $\beta(p, q, \beta(p, p, p))$, where $\beta(p, p, p)$ is equivalent to T. In fact, we don't need γ to be in S at all if \perp and β are in S !

A shipping company has n cargo containers that must be transported via ships. Let $C=$ $\left\{c_{1}, \ldots, c_{n}\right\}$ denote the containers. The company has m ships; let $S=\left\{s_{1}, \ldots s_{m}\right\}$ denote these ships. It turns out that not every ship can transport every container. Let $A_{i} \subseteq C$ be the set of containers that are allowed to be transported on ship i. Furthermore, each ship s_{i} has a maximum limit of l_{i} containers that it can transport. All l_{i} 's are assumed to be non-negative integers.
The shipping company wants to find a set X of at most $k(0<k \leq m)$ ships that can be used to transport all n containers, while loading each ship only with containers that are allowed on the ship, and without overloading each ship beyond the maximum number of containers it can transport.
As an example, consider $n=4, m=5$ and $l_{1}=l_{2}=l_{4}=1, l_{3}=l_{5}=2$. Furthermore, suppose $A_{1}=\left\{c_{1}, c_{2}\right\}, A_{2}=\left\{c_{2}, c_{3}, c_{4}\right\}, A_{3}=\left\{c_{1}, c_{2}, c_{4}\right\}, A_{4}=\left\{c_{2}\right\}$ and $A_{5}=\left\{c_{2}, c_{4}\right\}$. In this example, it is impossible to transport all 4 containers on only 2 ships. However, it is possible to transport all of them on 3 ships. For example, s_{1} can be used to transport c_{1}, s_{2} can be used to transport c_{3} and s_{5} can be used to transport c_{2} and c_{4}. Hence $X=\left\{s_{1}, s_{2}, s_{5}\right\}$ is one possible solution the shipping company seeks.
We wish to use a satisfiability checker for NNF formulas to help the shipping company. Specifically, you must construct a propositional NNF formula φ such that

- Given $n, m, k, l_{1}, l_{2}, \ldots l_{m}$ where $0 \leq l_{j} \leq n$ for each $j \in\{1, \ldots m\}$, and the sets $A_{1}, A_{2}, \ldots A_{m}$, the formula φ can be constructed in time polynomial in m, n and k.
- There is a bijection between satisfying assignments of φ and distinct choices X of at most k ships that can transport all n containers, while respecting each ship's constraints. Note that this means φ must be unsatisfiable if it is impossible to transport all containers in at most k ships.
To construct the above formula, we will use propositional variables x_{i} for each $i \in$ $\{1, \ldots m\}$, such that that x_{i} is true iff ship i is included in the set X of chosen ships.
You are free to use auxiliary propositional variables as you consider necessary. However, you must indicate the interpretation (what does the variable represent) for each such auxiliary variables. You are also free to use the cardinality constraints of the form $\sum_{p=u}^{v} b_{p} \leq w$ for propositional variables $b_{u}, \ldots b_{v}$ where $u \leq v$ and $0 \leq w \leq(v-u+1)$. We have already discussed in Tutorial 1 how such a cardinality constraint can be encoded as a NNF formula in time polynomial in $(v-u)$ and w, possibly with the use of auxiliary propositional variables. Hence, if you are using such cardinality constraints, you don't need to explicitly write the NNF formula corresponding to $\sum_{p=u}^{v} b_{p} \leq w$, but can simply use ($\sum_{p=u}^{v} b_{p} \leq w$) as a proxy for the NNF formula.

Solution: Let the propositional variable $x_{i}(1 \leq i \leq m)$ encode "ship $s_{i} \in X$ ", as required by the question. Furthermore, let propositional variable $t_{i, j}(1 \leq i \leq m, 1 \leq$ $j \leq n$) encode "container c_{j} is loaded in ship s_{i} ".
The overall NNF formula is obtained as $\varphi_{1} \wedge \varphi_{2} \wedge \varphi_{3} \wedge \varphi_{4}$, where

- φ_{1} is $\left(\sum_{i=1}^{m} x_{i} \leq k\right)$. This encodes that at most k ships are chosen to be in the solution set X.
- φ_{2} is $\bigwedge_{j=1}^{n} \bigwedge_{i: c_{j} \notin A_{i}} \neg t_{i j}$. This encodes that for each container c_{j} and for each ship s_{i} such that c_{j} is not allowed on s_{i}, the variable $t_{i j}$ must be false.
- φ_{3} is $\bigwedge_{j=1}^{n}\left(\bigvee_{i: c_{j} \in A_{i}}\left(x_{i} \wedge t_{i j} \wedge \bigwedge_{k: c_{j} \in A_{k}, k \neq i} \neg t_{k j}\right)\right)$. This encodes that for each container c_{j}, there is exactly one ship s_{i} such that $s_{i} \in X$ and $c_{j} \in A_{i}$ for which $t_{i j}$ is true. All other ships s_{k} such that $c_{j} \in A_{k}$ must have $t_{k j}$ false. In other words, every container must be in exactly one ship in X that is allowed to transport the container.
- φ_{4} is $\bigwedge_{i=1}^{m}\left(x_{i} \rightarrow\left(\sum_{j=1}^{n} t_{i j} \leq l_{i}\right)\right)$. This encodes that for each ship s_{i}, if it is chosen to be in X, the total count of containers loaded on s_{i} can be no more than l_{i}.

There are some variations of the above formulation that also serve the purpose of the question. Think about if a satisfying assignment of $\varphi_{1} \wedge \varphi_{3} \wedge \varphi_{4}$ would also serve the purpose of the shipping company. What would be the interpretation of $t_{i j}$ in this case?

4. I think I saw you in Tuesday's lecture

Draw a Deterministic Finite Automaton (DFA) for each of the following languages.
(a) $\mathcal{L}:=\left\{w \in\{a, b\}^{*}: 2\right.$ divides $n_{a}(w)$ and 3 divides $\left.n_{b}(w)\right\}$. Here $n_{a}(w)$ stands for the number of a's in w, and $n_{b}(w)$ stands for the number of b's in w. For example, $n_{a}(a b b a a b)=n_{b}(a b b a a b)=3$. Therefore, ababbaa $\in \mathcal{L}$ but aabababa $\notin \mathcal{L}$.

Solution:

State $q_{i j}$ represents "Word w seen so far has $n_{a}(w) \bmod 2=i$ and $n_{b}(w) \bmod 3=$ j.
(b) $\mathcal{L}:=\left\{w \in\{a, b, c\}^{*}\right.$: first and last letters of w are different $\}$. For example, abbacb \in \mathcal{L} but cbbabac $\notin \mathcal{L}$.

Solution:

State	Interpretation
q_{0}	Haven't seen any letter
q_{1}	Start and end letters a
q_{2}	Start letter a, end letter b or c
q_{3}	Start and end letters b
q_{4}	Start letter b, end letter a or c
q_{5}	Start and end letters c
q_{5}	Start letter c, end letter a or b

5. To CNF or to DNF Define the length of a CNF (or DNF) formula as the total number of all literals over all clauses (or all cubes, respectively) in the formula. For example, consider the CNF formula $\phi=\left(x_{1} \vee x_{2}\right) \wedge\left(\neg x_{1} \vee x_{3}\right) \wedge\left(\neg x_{2} \vee x_{3} \vee x_{4}\right)$. This formula has length $2+2+3=7$. Siimilarly, the length of the DNF formula $\psi=\left(x_{1} \wedge x_{2}\right) \vee\left(\neg x_{1} \wedge\right.$ $\left.x_{3} \wedge \neg x_{4}\right) \vee\left(\neg x_{2} \wedge x_{3} \wedge x_{4}\right)$ is $2+3+3=8$.
Show that there is a family of formulas $\mathcal{F}=\left\{\varphi_{n} \mid n \in \mathbb{N}\right\}$ such that

- Every φ_{n} is a DNF formula over $\mathcal{O}(n)$ propositional variables.
- Every φ_{n} has length in $\mathcal{O}(n)$.
- For every φ_{n}, there exists no semantically equivalent CNF formula ψ_{n} (over the same variables as φ_{n}) such that the length of ψ_{n} grows polynomially with n.
In order to answer this question, you must (a) clearly write the DNF formula φ_{n}, (b) show that its length is in $\mathcal{O}(n)$, and (c) prove that there exists no semantically equivalent CNF formula of length polynomial in n.
In order to score marks in this question, all three parts must be answered correctly.
Note: A formula has polynomial length if and only if length $\in \mathcal{O}(f(n))$ where f is some polynomial in n. You MUST prove why φ_{n} can't be equivalently represented by any polynomial length CNF formula.

Solution:

Note: This is not the only possible solution. There are alternative solu-
tions as well. tions as well.
Consider the family $\mathcal{F}=\left\{\varphi_{n} \mid n \in \mathbb{N}\right\}$, where

$$
\varphi_{n}=\left(X_{1} \wedge Y_{1}\right) \vee\left(X_{2} \wedge Y_{2}\right) \vee \cdots \vee\left(X_{n} \wedge Y_{n}\right)
$$

Clearly φ_{n} is in DNF and has $2 n$ variables. Furthermore, its length is $2 n$. We now show below that there exists no semantically equivalent CNF formula ψ_{n} such that the length of ψ_{n} grows polynomially in n.
Claim 1: Each clause of the CNF formula ψ_{n} must contain either X_{i} or Y_{i} as literals, for every $i \in\{1, \ldots n\}$.

Suppose, if possible, there is a clause C_{j} that does contains neither X_{i} nor Y_{i} as literal. Consider the assignment where X_{i} and Y_{i} have value 1, and all literals in C_{j} have value 0 . Under this assignment, φ_{n} evaluates to 1 (recall φ_{n} has a cube $X_{i} \wedge Y_{i}$), but ψ_{n} evaluates to 0 as C_{j} evaluates to 0 . Therefore, φ_{n} is not semantically equivalent to ψ_{n} - a contradiction! Hence, every clause C_{j} must have either X_{i} or Y_{i} as literal, for every $i \in\{1, \ldots n\}$.
Given Claim 1, the clauses in ψ_{n} can be divided into two categories: (a) those that have both X_{i} and Y_{i} as literals for some $i \in\{1, \ldots n\}$, and (b) those that have either X_{i} or Y_{i}, but not both, as literals for every $i \in\{1, \ldots n\}$.
Let us focus on clauses of type (b).
Claim 2: For every tuple of literals in $\left\{X_{1}, Y_{1}\right\} \times\left\{X_{2}, Y_{2}\right\} \times \cdots \times\left\{X_{n}, Y_{n}\right\}$, there is a clause of type (b) in ψ_{n} that contains the literals in the tuple.
Suppose, if possible, there is a tuple of literals in the Cartesian product such that there is no clause of type (b) in ψ_{n} that contains the literals in this tuple. Now consider the
assignment that sets all variables in this specific tuple to 1 and all other variables to 0 . Thus, this assignment sets exactly one of $\left\{X_{i}, Y_{i}\right\}$ to 0 and exactly one of them to 1 , for every $i \in\{1, \ldots n\}$. Since by Claim 1, every clause in ψ_{n} has either X_{i} or Y_{i} as a literal, for every $i \in\{1, \ldots n\}$, it follows that every clause in ψ_{n}, and hence ψ_{n} itself, evaluates to 1 under this assignment. However, clearly φ_{n} evaluates to 0 under this assignment, since for every $i \in\{1, \ldots n\}$, at least one of X_{i} and Y_{i} is 0 . Hence, φ_{n} is not semantically equivalent to $\psi_{n}-$ a contradiction! It follows that for every tuple of literals in the Cartesian product, the corresponding literals must be present in a type (b) clause of ψ_{n}.

Since there are 2^{n} distinct tuples in $\left\{X_{1}, Y_{1}\right\} \times \cdots \times\left\{X_{n}, Y_{n}\right\}$, Claim 2 shows that there are at least 2^{n} clauses of type (b) in ψ_{n}. Hence the length of ψ_{n} is at least 2^{n}.

