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CS 208 : Automata Theory and Logic Spring 2024
Quiz 1

Time: 21:00 - 23:30 Max Marks: 60

Instructions:

e Please write your roll number on all pages in the space provided
at the top.

e Be brief, complete, and stick to what has been asked.

e You must write your answer for every question only in the space allocated for
answering the question. Answers written outside the allocated space risk not
being graded.

e You can use an extra answer book for rough calculations.

e You must submit this question+answer book in its entirey along with any extra
answer book for rough calculations (if you used one).

o Untidy presentation of answers, and random ramblings will be penalized by negative marks.

o Unless asked for explicitly, you may cite results/proofs covered in class without reproducing
them.

e If you need to make any assumptions, state them clearly.

e Do not copy solutions from others. All detected cases of copying will be reported
to DADAC with names and roll nos. of all involved. The stakes are high if
you get reported to DADAC, so you are strongly advised not to risk this.

DO NOT TURN THIS PAGE UNTIL YOU ARE ASKED TO.
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1. We love NNFs!
Let P, (@, R be propositional variables.
(a) Convert the formula (P — (Q — R)) — —(P — (R — Q))) to a semantically
equivalent formula in Disjunctive Normal Form (DNF). Do not include cubes that

contain both a literal and its negation in your DNF formula.
You must show all intermediate steps. Answers without steps will fetch no marks.
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Convert the formula (=(PV (=Q A R)) = (=P A (Q V =R))) to an equisatisfiable
Conjunctive Normal Form (CNF) formula using Tseitin encoding. Do not include
clauses that contain both a literal and its negation in your CNF formula.

You must NOT simplify the given formula or check its satisfiability be-
fore applying Tseitin encoding. You must show all intermediate steps. Answers
without steps or obtained after simplifying the given formula or after checking its sat-
isfiability will fetch no marks. Answers that give an equisatisfiable formula without
using Tseitin encoding will also fetch no marks.
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2. How expressive are you?

We know that propositional logic formulas are constructed using symbols in the set
{T, L, =, A,V,—,+} in addition to variables, parentheses and commas (if needed). It
turns out that such a large set of symbols may not be needed. For example, the set
S" = {A, —} suffices to construct a formula that is semantically equivalent to any proposi-
tional logic formula. Indeed, from DeMorgan’s laws we know that p; V ps is semantically
equivalent to =(—p; A —py) for every propositional variable (or sub-formula) p; and ps.

Let S be a set of symbols that are used in addition to variables, parentheses and commas
(if needed) to construct formulas. We say that S is propositionally expressive if
for every propositional logic formula ¢ over variables zq,...x,, there is a semantically
equivalent formula over z, ... x, that uses only symbols from S in addition to variables,
parentheses and commas (if needed). From what we have studied in class, it should be
easy for you to see that {A, =} is propositionally expressive.

For purposes of this question, we define new ternary logic connectives «, 3, v and § with
the following semantics.

e a(p,q,r) evaluates to 1 (true) iff either both p and ¢ are 1 (true) or p is 0 (false) and
ris 1 (true). For example, o(1,1,0) = «(0,0,1) = 1 but «(1,0,1) = «(0,1,0) = 0.
You can think of a(p, ¢, r) as intuitively implementing “if p then ¢ else r”.

e (3(p,q,r) evaluates to 1 (true) iff p, ¢ and r all have the same truth value. Thus,
p(1,1,1) = 5(0,0,0) = 1, but (1,0,1) = B(1,1,0) = 0. You can think of 3(p,q,r)
as intuitively implementing “all of p, ¢, r are in consensus”.

e v(p,q,r) evaluates to 1 (true) iff exactly one of p, ¢ and r has the value 1 (true).
Thus, v(1,0,0) = 1 and v(1,1,0) = ~(0,0,0) = 0.

e §(p,q,r) evaluates to the same truth value as the majority of p, ¢ and r. Thus,
§(1,1,0) = 1 and (0, 1,0) = 0.

Given below are three sets S of symbols used to construct formulas. In each case you
must indicate whether S' is propositionally expressive, with justification.

You may use the fact that {A, =} is known to be propositionally expressive. Hence, for
“Yes” answers, you need to show that —p and p A ¢ can be equivalently expressed using
the symbols in S, for any propositional variables (or sub-formulas) p and ¢. For “No”
answers, you must show that there is at least one formula that can be written using {A, =}
but a semantically equivalent formula cannot be written using .S.

(a) S={T,L,a}
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Continuation sheet for Q2a

(b) S={T,7}
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(c) S ={p,0}
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3. Shipping with SAT

A shipping company has n cargo containers that must be transported via ships. Let C' =
{c1,..., ¢, } denote the containers. The company has m ships; let S = {sy,...s,,} denote
these ships. It turns out that not every ship can transport every container. Let A; C C
be the set of containers that are allowed to be transported on ship 7. Furthermore, each
ship s; has a maximum limsit of [; containers that it can transport. All [;’s are assumed
to be non-negative integers.

The shipping company wants to find a set X of at most k& (0 < k& < m) ships that can be
used to transport all n containers, while loading each ship only with containers that are
allowed on the ship, and without overloading each ship beyond the maximum number of
containers it can transport.

As an example, consider n =4, m =5 and [y =1l =1y = 1,l3 = l5 = 2. Furthermore,
suppose Ay = {c1, ¢}, As = {co, 3,4}, Az = {c1,c0,c4}, Ay = {co} and A5 = {c2, s}
In this example, it is impossible to transport all 4 containers on only 2 ships. However, it
is possible to transport all of them on 3 ships. For example, s; can be used to transport
c1, So can be used to transport c3 and s; can be used to transport c; and c¢4. Hence
X = {s1, $2, S5} is one possible solution the shipping company seeks.

We wish to use a satisfiability checker for NNF formulas to help the shipping company.
Specifically, you must construct a propositional NNF formula ¢ such that

o Given n,m,k, ly,ls,...1, where 0 < l; < n for each j € {1,...m}, and the sets
Ay, Ay, ... Ay, the formula ¢ can be constructed in time polynomial in m, n and k.

e There is a bijection between satisfying assignments of ¢ and distinct choices X of
at most k ships that can transport all n containers, while respecting each ship’s
constraints. Note that this means ¢ must be unsatisfiable if it is impossible to
transport all containers in at most £ ships.

To construct the above formula, we will use propositional variables x; for each ¢ €
{1,...m}, such that that z; is true iff ship 7 is included in the set X of chosen ships.

You are free to use auxiliary propositional variables as you consider necessary. How-
ever, you must indicate the interpretation (what does the variable represent) for each
such auxiliary variables. You are also free to use the cardinality constraints of the form
Zzzu b, < w for propositional variables b, ...b, where u <vand 0 <w < (v —u+ 1).
We have already discussed in Tutorial 1 how such a cardinality constraint can be encoded
as a NNF formula in time polynomial in (v — u) and w, possibly with the use of auxiliary
propositional variables. Hence, if you are using such cardinality constraints, you don’t
need to explicitly write the NNF formula corresponding to Z;:u b, < w, but can simply

use (Z;:u b, < w) as a proxy for the NNF formula.
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4. T think I saw you in Tuesday’s lecture
Draw a Deterministic Finite Automaton (DFA) for each of the following languages.
(a) L := {w € {a,b}* : 2 divides n,(w) and 3 divides ny(w)}. Here n,(w) stands for

the number of a’s in w, and n,(w) stands for the number of b’s in w. For example,
nq(abbaab) = ny(abbaab) = 3. Therefore, ababbaa € L but aabababa & L.
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(b) L£:={w € {a,b,c}*: first and last letters of w are different}. For example, abbach €
L but cbbabac & L.
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5. To CNF or to DNF

Define the length of a CNF (or DNF) formula as the total number of all literals over
all clauses (or all cubes, respectively) in the formula. For example, consider the CNF
formula ¢ = (x1 Vo) A(—x1 Vas) A(—x2VasVay). This formula has length 2+2+3 = 7.
Siimilarly, the length of the DNF formula ¢ = (21 Axe) V (mxy Axg A—zy) V(Do Axg Axy)
is2+3+3=28.

Show that there is a family of formulas F = {¢, | n € N} such that

e Every ¢, is a DNF formula over O(n) propositional variables.

e Every ¢, has length in O(n).

e For every ¢, there exists no semantically equivalent CNF formula 1, (over the
same variables as ;) such that the length of ¢, grows polynomially with .

In order to answer this question, you must (a) clearly write the DNF formula ¢,,, (b) show
that its length is in O(n), and (c) prove that there exists no semantically equivalent
CNF formula of length polynomial in n.

In order to score marks in this question, all three parts must be answered correctly.

Note: A formula has polynomial length if and only if length € O(f(n)) where f is some
polynomial in n. You MUST prove why ¢, can’t be equivalently represented by any
polynomial length CNF formula.
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